1
|
Moshtaghion SMM, Locri F, Reyes AP, Plastino F, Kvanta A, Morillo-Sanchez MJ, Rodríguez-de-la-Rúa E, Gutierrez-Sanchez E, Montero-Sánchez A, Lucena-Padros H, André H, Díaz-Corrales FJ. VEGF in Tears as a Biomarker for Exudative Age-Related Macular Degeneration: Molecular Dynamics in a Mouse Model and Human Samples. Int J Mol Sci 2025; 26:3855. [PMID: 40332529 PMCID: PMC12027898 DOI: 10.3390/ijms26083855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 05/08/2025] Open
Abstract
Vascular endothelial growth factor (VEGF) is a key mediator of exudative age-related macular degeneration (eAMD), yet non-invasive biomarkers for disease monitoring remain limited. This study evaluates VEGF levels in human tear fluid as a potential biomarker for eAMD and investigates the molecular dynamics of VEGF in a laser-induced choroidal neovascularization (lCNV) mouse model. Tear VEGF levels were quantified using proximity qPCR immunoassays in eAMD patients (n = 29) and healthy controls (n = 21) and correlated with optical coherence tomography (OCT) findings. Molecular analyses, including immunohistochemistry, gene expression profiling, and phosphorylation assays, were conducted on choroid-retinal pigment epithelium (RPE) and lacrimal gland (LG) tissues from lCNV mice (n = 25). Tear VEGF levels were significantly elevated in eAMD patients, correlating with disease severity. Females exhibited higher VEGF levels, a pattern not replicated in the mouse model. In lCNV mice, VEGF overexpression originated from the choroid-RPE, driven by hypoxic and inflammatory signaling, with no significant LG contribution. Increased VEGF, IL-6, and vimentin expression, along with NF-κB and STAT3 activation, were observed. These findings suggest that tear VEGF is a promising non-invasive biomarker for eAMD, warranting further validation for clinical application in disease monitoring and treatment optimization.
Collapse
Affiliation(s)
- Seyed Mohamad Mehdi Moshtaghion
- Department of Integrative Pathophysiology and Therapies, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, University of Seville, University Pablo de Olavide, 41092 Seville, Spain; (A.P.R.); (A.M.-S.)
| | - Filippo Locri
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, 17177 Stockholm, Sweden; (F.L.); (F.P.); (A.K.); (H.A.)
| | - Alvaro Plaza Reyes
- Department of Integrative Pathophysiology and Therapies, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, University of Seville, University Pablo de Olavide, 41092 Seville, Spain; (A.P.R.); (A.M.-S.)
| | - Flavia Plastino
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, 17177 Stockholm, Sweden; (F.L.); (F.P.); (A.K.); (H.A.)
| | - Anders Kvanta
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, 17177 Stockholm, Sweden; (F.L.); (F.P.); (A.K.); (H.A.)
| | - Maria Jose Morillo-Sanchez
- Department of Ophthalmology, Virgen Macarena University Hospital, 41009 Seville, Spain; (M.J.M.-S.); (E.R.-d.-l.-R.); (E.G.-S.)
| | - Enrique Rodríguez-de-la-Rúa
- Department of Ophthalmology, Virgen Macarena University Hospital, 41009 Seville, Spain; (M.J.M.-S.); (E.R.-d.-l.-R.); (E.G.-S.)
- Department of Surgery, Ophthalmology Area, University of Seville, 41009 Seville, Spain
| | - Estanislao Gutierrez-Sanchez
- Department of Ophthalmology, Virgen Macarena University Hospital, 41009 Seville, Spain; (M.J.M.-S.); (E.R.-d.-l.-R.); (E.G.-S.)
- Department of Surgery, Ophthalmology Area, University of Seville, 41009 Seville, Spain
| | - Adoración Montero-Sánchez
- Department of Integrative Pathophysiology and Therapies, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, University of Seville, University Pablo de Olavide, 41092 Seville, Spain; (A.P.R.); (A.M.-S.)
| | - Helena Lucena-Padros
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, CSIC, Virgen del Rocio University Hospital, University of Seville, 41013 Seville, Spain;
| | - Helder André
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, 17177 Stockholm, Sweden; (F.L.); (F.P.); (A.K.); (H.A.)
| | - Francisco J. Díaz-Corrales
- Department of Integrative Pathophysiology and Therapies, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, University of Seville, University Pablo de Olavide, 41092 Seville, Spain; (A.P.R.); (A.M.-S.)
| |
Collapse
|
2
|
Alsoudi AF, Koo E, Wai K, Mruthyunjaya P, Rahimy E. Ocular Neovascular Conversion and Systemic Bleeding Complications in Patients with Age-Related Macular Degeneration on Anticoagulants. Ophthalmology 2025; 132:219-227. [PMID: 39116948 DOI: 10.1016/j.ophtha.2024.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
PURPOSE Conversion to neovascular disease in patients with non-neovascular age-related macular degeneration (AMD) initiated on direct oral anticoagulants (DOACs) compared with matched patients treated with warfarin. DESIGN Retrospective cohort study. PARTICIPANTS The study included 20 300 patients and 13 387 patients with non-neovascular AMD initiated on DOACs or warfarin, respectively, before propensity score matching (PSM). METHODS TriNetX was used to identify patients diagnosed with non-neovascular AMD stratified by treatment with DOACs or warfarin with at least 6 months of follow-up. Propensity score matching was performed to control for baseline demographics and medical comorbidities. MAIN OUTCOME MEASURES Relative risk (RR) of developing neovascular AMD, macular hemorrhage (MH), vitreous hemorrhage (VH), and requiring an ocular intervention (intravitreal anti-VEGF therapy or pars plana vitrectomy [PPV]) within 6 months and 1 year. Patients with chronic atrial fibrillation (AF) on anticoagulation were separately evaluated for the same measures within 5 years after initiating therapy. RESULTS Treatment with warfarin was associated with a higher risk of developing neovascular AMD at 6 months (RR, 1.24, 95% confidence interval [CI], 1.12-1.39; P < 0.001) and 1 year (RR, 1.26, 95% CI, 1.14-1.40; P < 0.001) when compared with matched patients treated with DOACs. There was an increased risk of requiring intravitreal anti-VEGF therapy (6 months: RR, 1.30; 95% CI, 1.13-1.49; P < 0.001; 1 year: RR, 1.31, 95% CI, 0.72-2.05; P < 0.001) and PPV (6 months: RR, 2.13; 95% CI, 1.16-3.94; P = 0.01; 1 year: RR, 2.29, 95% CI, 1.30-4.05; P = 0.003). Among patients with AMD and AF treated with warfarin, there was an increased risk of ocular complications (neovascular AMD: RR, 1.25; 95% CI, 1.14-1.38; P < 0.001; MH: RR, 1.86; 95% CI, 1.47-2.35; P < 0.001; VH: RR, 2.22; 95% CI, 1.51-3.26; P < 0.001) and need for intravitreal anti-VEGF therapy (RR, 1.34; 95% CI, 1.18-1.52; P < 0.001) over an extended 5-year period. There was no significant difference in the development of major systemic hemorrhagic events between the 2 cohorts over 5 years. CONCLUSIONS Patients with non-neovascular AMD treated with warfarin were more likely to develop neovascular disease and require ocular intervention for hemorrhagic complications when compared with matched patients initiated on DOACs. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found after the references.
Collapse
Affiliation(s)
- Amer F Alsoudi
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas
| | - Euna Koo
- Byers Eye Institute, Horngren Family Vitreoretinal Center, Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California
| | - Karen Wai
- Byers Eye Institute, Horngren Family Vitreoretinal Center, Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California
| | - Prithvi Mruthyunjaya
- Byers Eye Institute, Horngren Family Vitreoretinal Center, Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California
| | - Ehsan Rahimy
- Byers Eye Institute, Horngren Family Vitreoretinal Center, Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California; Department of Ophthalmology, Palo Alto Medical Foundation, Palo Alto, California.
| |
Collapse
|
3
|
Cebatoriene D, Vilkeviciute A, Gedvilaite-Vaicechauskiene G, Duseikaite M, Bruzaite A, Kriauciuniene L, Zaliuniene D, Liutkeviciene R. The Impact of ARMS2 (rs10490924), VEGFA (rs3024997), TNFRSF1B (rs1061622), TNFRSF1A (rs4149576), and IL1B1 (rs1143623) Polymorphisms and Serum Levels on Age-Related Macular Degeneration Development and Therapeutic Responses. Int J Mol Sci 2024; 25:9750. [PMID: 39273697 PMCID: PMC11396313 DOI: 10.3390/ijms25179750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Age-related macular degeneration (AMD) is a major global health problem as it is the leading cause of irreversible loss of central vision in the aging population. Anti-vascular endothelial growth factor (anti-VEGF) therapies are effective but do not respond optimally in all patients. This study investigates the genetic factors associated with susceptibility to AMD and response to treatment, focusing on key polymorphisms in the ARMS2 (rs10490924), IL1B1 (rs1143623), TNFRSF1B (rs1061622), TNFRSF1A (rs4149576), VEGFA (rs3024997), ARMS2, IL1B1, TNFRSF1B, TNFRSF1A, and VEGFA serum levels in AMD development and treatment efficacy. This study examined the associations of specific genetic polymorphisms and serum protein levels with exudative and early AMD and the response to anti-VEGF treatment. The AA genotype of VEGFA (rs3024997) was significantly associated with a 20-fold reduction in the odds of exudative AMD compared to the GG + GA genotypes. Conversely, the TT genotype of ARMS2 (rs10490924) was linked to a 4.2-fold increase in the odds of exudative AMD compared to GG + GT genotypes. In females, each T allele of ARMS2 increased the odds by 2.3-fold, while in males, the TT genotype was associated with a 5-fold increase. Lower serum IL1B levels were observed in the exudative AMD group compared to the controls. Early AMD patients had higher serum TNFRSF1B levels than controls, particularly those with the GG genotype of TNFRSF1B rs1061622. Exudative AMD patients with the CC genotype of TNFRSF1A rs4149576 had lower serum TNFRSF1A levels compared to the controls. Visual acuity (VA) analysis showed that non-responders had better baseline VA than responders but experienced decreased VA after treatment, whereas responders showed improvement. Central retinal thickness (CRT) reduced significantly in responders after treatment and was lower in responders compared to non-responders after treatment. The T allele of TNFRSF1B rs1061622 was associated with a better response to anti-VEGF treatment under both dominant and additive genetic models. These findings highlight significant genetic and biochemical markers associated with AMD and treatment response. This study found that the VEGFA rs3024997 AA genotype reduces the odds of exudative AMD, while the ARMS2 rs10490924 TT genotype increases it. Lower serum IL1B levels and variations in TNFRSF1B and TNFRSF1A levels were linked to AMD. The TNFRSF1B rs1061622 T allele was associated with better anti-VEGF treatment response. These markers could potentially guide risk assessment and personalized treatment for AMD.
Collapse
Affiliation(s)
- Dzastina Cebatoriene
- Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus St. 9, LT-44307 Kaunas, Lithuania
| | - Alvita Vilkeviciute
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu St. 2, LT-50161 Kaunas, Lithuania
| | | | - Monika Duseikaite
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu St. 2, LT-50161 Kaunas, Lithuania
| | - Akvile Bruzaite
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu St. 2, LT-50161 Kaunas, Lithuania
| | - Loresa Kriauciuniene
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu St. 2, LT-50161 Kaunas, Lithuania
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, Eiveniu St. 2, LT-50161 Kaunas, Lithuania
| | - Dalia Zaliuniene
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, Eiveniu St. 2, LT-50161 Kaunas, Lithuania
| | - Rasa Liutkeviciene
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu St. 2, LT-50161 Kaunas, Lithuania
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, Eiveniu St. 2, LT-50161 Kaunas, Lithuania
| |
Collapse
|
4
|
Wesp V, Scholz L, Ziermann-Canabarro JM, Schuster S, Stark H. Constructing networks for comparison of collagen types. J Integr Bioinform 2024; 21:jib-2024-0020. [PMID: 38997817 PMCID: PMC11602231 DOI: 10.1515/jib-2024-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 05/15/2024] [Indexed: 07/14/2024] Open
Abstract
Collagens are structural proteins that are predominantly found in the extracellular matrix of multicellular animals, where they are mainly responsible for the stability and structural integrity of various tissues. All collagens contain polypeptide strands (α-chains). There are several types of collagens, some of which differ significantly in form, function, and tissue specificity. Because of their importance in clinical research, they are grouped into subdivisions, the so-called collagen families, and their sequences are often analysed. However, problems arise with highly homologous sequence segments. To increase the accuracy of collagen classification and prediction of their functions, the structure of these collagens and their expression in different tissues could result in a better focus on sequence segments of interest. Here, we analyse collagen families with different levels of conservation. As a result, clusters with high interconnectivity can be found, such as the fibrillar collagens, the COL4 network-forming collagens, and the COL9 FACITs. Furthermore, a large cluster between network-forming, FACIT, and COL28a1 α-chains is formed with COL6a3 as a major hub node. The formation of clusters also signifies, why it is important to always analyse the α-chains and why structural changes can have a wide range of effects on the body.
Collapse
Affiliation(s)
- Valentin Wesp
- Department of Bioinformatics, Friedrich-Schiller-University Jena, Jena, Germany
| | - Lukas Scholz
- Department of Bioinformatics, Friedrich-Schiller-University Jena, Jena, Germany
| | | | - Stefan Schuster
- Department of Bioinformatics, Friedrich-Schiller-University Jena, Jena, Germany
| | - Heiko Stark
- Department of Bioinformatics, Friedrich-Schiller-University Jena, Jena, Germany
- Institute of Zoology and Evolutionary Research, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
5
|
Yang R, Zhao P, Wang L, Feng C, Peng C, Wang Z, Zhang Y, Shen M, Shi K, Weng S, Dong C, Zeng F, Zhang T, Chen X, Wang S, Wang Y, Luo Y, Chen Q, Chen Y, Jiang C, Jia S, Yu Z, Liu J, Wang F, Jiang S, Xu W, Li L, Wang G, Mo X, Zheng G, Chen A, Zhou X, Jiang C, Yuan Y, Yan B, Zhang J. Assessment of visual function in blind mice and monkeys with subretinally implanted nanowire arrays as artificial photoreceptors. Nat Biomed Eng 2024; 8:1018-1039. [PMID: 37996614 DOI: 10.1038/s41551-023-01137-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 10/17/2023] [Indexed: 11/25/2023]
Abstract
Retinal prostheses could restore image-forming vision in conditions of photoreceptor degeneration. However, contrast sensitivity and visual acuity are often insufficient. Here we report the performance, in mice and monkeys with induced photoreceptor degeneration, of subretinally implanted gold-nanoparticle-coated titania nanowire arrays providing a spatial resolution of 77.5 μm and a temporal resolution of 3.92 Hz in ex vivo retinas (as determined by patch-clamp recording of retinal ganglion cells). In blind mice, the arrays allowed for the detection of drifting gratings and flashing objects at light-intensity thresholds of 15.70-18.09 μW mm-2, and offered visual acuities of 0.3-0.4 cycles per degree, as determined by recordings of visually evoked potentials and optomotor-response tests. In monkeys, the arrays were stable for 54 weeks, allowed for the detection of a 10-μW mm-2 beam of light (0.5° in beam angle) in visually guided saccade experiments, and induced plastic changes in the primary visual cortex, as indicated by long-term in vivo calcium imaging. Nanomaterials as artificial photoreceptors may ameliorate visual deficits in patients with photoreceptor degeneration.
Collapse
Affiliation(s)
- Ruyi Yang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Peng Zhao
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Liyang Wang
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Chenli Feng
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Chen Peng
- Laboratory of Advanced Materials, Department of Chemistry, Fudan University, Shanghai, P. R. China
| | - Zhexuan Wang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Yingying Zhang
- Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai, P. R. China
| | - Minqian Shen
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Kaiwen Shi
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Shijun Weng
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Chunqiong Dong
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Fu Zeng
- Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai, P. R. China
| | - Tianyun Zhang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Xingdong Chen
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Shuiyuan Wang
- Shanghai Key Lab for Future Computing Hardware and System, School of Microelectronics, Fudan University, Shanghai, P. R. China
| | - Yiheng Wang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Yuanyuan Luo
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Qingyuan Chen
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Yuqing Chen
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Chengyong Jiang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Shanshan Jia
- School of Computer Science, Institute for Artificial Intelligence, Peking University, Beijing, P.R. China
| | - Zhaofei Yu
- School of Computer Science, Institute for Artificial Intelligence, Peking University, Beijing, P.R. China
| | - Jian Liu
- School of Computer Science, University of Birmingham, Birmingham, UK
| | - Fei Wang
- Department of Hand Surgery, the National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Su Jiang
- Department of Hand Surgery, the National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Wendong Xu
- Department of Hand Surgery, the National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, P. R. China
- Department of Hand and Upper Extremity Surgery, Jing'an District Central Hospital, Fudan University, Shanghai, P.R. China
| | - Liang Li
- Center of Brain Sciences, Beijing Institute of Basic Medical Sciences, Beijing, P. R. China
| | - Gang Wang
- Center of Brain Sciences, Beijing Institute of Basic Medical Sciences, Beijing, P. R. China
| | - Xiaofen Mo
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Gengfeng Zheng
- Laboratory of Advanced Materials, Department of Chemistry, Fudan University, Shanghai, P. R. China
| | - Aihua Chen
- Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai, P. R. China
| | - Xingtao Zhou
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Chunhui Jiang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China.
| | - Yuanzhi Yuan
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China.
- Zhongshan Hospital (Xiamen), Fudan University, Xiamen, P.R. China.
| | - Biao Yan
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China.
| | - Jiayi Zhang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China.
| |
Collapse
|
6
|
Kaštelan S, Nikuševa-Martić T, Pašalić D, Antunica AG, Zimak DM. Genetic and Epigenetic Biomarkers Linking Alzheimer's Disease and Age-Related Macular Degeneration. Int J Mol Sci 2024; 25:7271. [PMID: 39000382 PMCID: PMC11242094 DOI: 10.3390/ijms25137271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
Alzheimer's disease (AD) represents a prominent neurodegenerative disorder (NDD), accounting for the majority of dementia cases worldwide. In addition to memory deficits, individuals with AD also experience alterations in the visual system. As the retina is an extension of the central nervous system (CNS), the loss in retinal ganglion cells manifests clinically as decreased visual acuity, narrowed visual field, and reduced contrast sensitivity. Among the extensively studied retinal disorders, age-related macular degeneration (AMD) shares numerous aging processes and risk factors with NDDs such as cognitive impairment that occurs in AD. Histopathological investigations have revealed similarities in pathological deposits found in the retina and brain of patients with AD and AMD. Cellular aging processes demonstrate similar associations with organelles and signaling pathways in retinal and brain tissues. Despite these similarities, there are distinct genetic backgrounds underlying these diseases. This review comprehensively explores the genetic similarities and differences between AMD and AD. The purpose of this review is to discuss the parallels and differences between AMD and AD in terms of pathophysiology, genetics, and epigenetics.
Collapse
Affiliation(s)
- Snježana Kaštelan
- Department of Ophthalmology, Clinical Hospital Dubrava, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Tamara Nikuševa-Martić
- Department of Biology and Genetics, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Daria Pašalić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | | | | |
Collapse
|
7
|
Bonfiglio R, Sisto R, Casciardi S, Palumbo V, Scioli MP, Palumbo A, Trivigno D, Giacobbi E, Servadei F, Melino G, Mauriello A, Scimeca M. The impact of toxic metal bioaccumulation on colorectal cancer: Unravelling the unexplored connection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167667. [PMID: 37813250 DOI: 10.1016/j.scitotenv.2023.167667] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
Colorectal cancer is a major public health concern, with increasing incidence and mortality rates worldwide. Environmental factors, including exposure to toxic metals, such as lead, chromium, cadmium, aluminium, copper, arsenic and mercury, have been suggested to play a significant role in the development and progression of this neoplasia. In particular, the bioaccumulation of toxic metals can play a significant role in colorectal cancer by regulating biological phenomenon associated to both cancer occurrence and progression, such as cell death and proliferation. Also, frequently these metals can induce DNA mutations in well-known oncogenes. This review provides a critical analysis of the current evidence, highlighting the need for further research to fully grasp the complex interplay between toxic metal bioaccumulation and colorectal cancer. Understanding the contribution of toxic metals to colorectal cancer occurrence and progression is essential for the development of targeted preventive strategies and social interventions, with the ultimate goal of reducing the burden of this disease.
Collapse
Affiliation(s)
- Rita Bonfiglio
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Renata Sisto
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, National Institute for Insurance against Accidents at Work (INAIL), Rome, Italy.
| | - Stefano Casciardi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, National Institute for Insurance against Accidents at Work (INAIL), Rome, Italy.
| | - Valeria Palumbo
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Maria Paola Scioli
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Alessia Palumbo
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Donata Trivigno
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Erica Giacobbi
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Francesca Servadei
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Alessandro Mauriello
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Manuel Scimeca
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| |
Collapse
|
8
|
García-Quintanilla L, Almuiña-Varela P, Maroñas O, Gil-Rodriguez A, Rodríguez-Cid MJ, Gil-Martinez M, Abraldes MJ, Gómez-Ulla de Irazazabal F, González-Barcia M, Mondelo-Garcia C, Cruz R, Estany-Gestal A, Fernández-Rodríguez M, Fernández-Ferreiro A. Influence of Genetic Polymorphisms on the Short-Term Response to Ranibizumab in Patients With Neovascular Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2023; 64:34. [PMID: 37862026 PMCID: PMC10599160 DOI: 10.1167/iovs.64.13.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/27/2023] [Indexed: 10/21/2023] Open
Abstract
Purpose To determine whether genetic risk single nucleotide polymorphisms (SNPs) for age-related macular degeneration (AMD) influence short-term response to intravitreal ranibizumab treatment. Methods Forty-four treatment-naive AMD patients were included in a prospective observational study. They underwent three monthly injections of intravitreal ranibizumab for neovascular AMD. After an initial clinical examination (baseline measurement), a follow-up visit was performed to determine treatment response one month after the third injection (treatment evaluation). Patients were evaluated based on ophthalmoscopy, fluorescein angiography, optical coherence tomography (OCT), and OCT angiography. Peripheral venous blood was collected for DNA analysis at baseline visit. Patients were genotyped for single-nucleotide polymorphisms within AMD-relevant genes and classified on good or poor responders based on visual acuity, central retinal thickness, intraretinal fluid, and subretinal fluid. Results One hundred ten AMD-associated SNPs have been analyzed. Six were found to be relevant when associated to ranibizumab treatment response. The genetic variants rs890293 (CYP2J2), rs11200638 (HTRA1), rs405509 (APOE), rs9513070 (FLT1), and rs8135665 (SLC16A8) predisposed patients to a good response, whereas rs3093077 (CRP) was associated with a poor response. FTL1, SLC16A8, and APOE were the SNPs that showed significance (P < 0.05) but did not pass Bonferroni correction. Conclusions This is the first study that links novel polymorphisms in genes such as CRP, SCL16A8, or CYP2J2 to treatment response to ranibizumab therapy. On the other hand, HTRA1, FLT1, and APOE are linked to a good ranibizumab response. These SNPs may be good candidates for short-term treatment response biomarkers in AMD patients. However, further studies will be necessary to confirm our findings.
Collapse
Affiliation(s)
- Laura García-Quintanilla
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Pablo Almuiña-Varela
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Ophthalmology Department, University Clinical Hospital of Santiago de Compostela, (SERGAS), Santiago de Compostela, Spain
| | - Olalla Maroñas
- Grupo de Genética, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Galicia, Spain
- Grupo de Medicina Xenómica, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Grupo de Medicina Xenómica, Fundación Pública Galega de Medicina Xenómica (FPGMX), Santiago de Compostela, Galicia, Spain
| | - Almudena Gil-Rodriguez
- Grupo de Genética, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Galicia, Spain
- Grupo de Medicina Xenómica, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - María José Rodríguez-Cid
- Ophthalmology Department, University Clinical Hospital of Santiago de Compostela, (SERGAS), Santiago de Compostela, Spain
| | - María Gil-Martinez
- Ophthalmology Department, University Clinical Hospital of Santiago de Compostela, (SERGAS), Santiago de Compostela, Spain
| | - Maximino J. Abraldes
- Ophthalmology Department, University Clinical Hospital of Santiago de Compostela, (SERGAS), Santiago de Compostela, Spain
- Instituto Oftalmológico Gómez-Ulla, Santiago de Compostela, Spain
- Department of Surgery, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | - Miguel González-Barcia
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Cristina Mondelo-Garcia
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Raquel Cruz
- Grupo de Medicina Xenómica, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Estany-Gestal
- FIDIS-Unidad de Epidemiología e Investigación Clínica, Santiago de Compostela (A Coruña), Spain
| | - Maribel Fernández-Rodríguez
- Ophthalmology Department, University Clinical Hospital of Santiago de Compostela, (SERGAS), Santiago de Compostela, Spain
- Instituto Oftalmológico Gómez-Ulla, Santiago de Compostela, Spain
- Department of Surgery, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Anxo Fernández-Ferreiro
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| |
Collapse
|
9
|
Thottarath S, Chandra S, Gurudas S, Tsai WS, Giani A, De Cock E, Yamaguchi TCN, Sivaprasad S. Study protocol on prevalence of non-exudative macular neovascularisation and its contribution to prediction of exudation in fellow eyes with unilateral exudative AMD (EYE-NEON). Eye (Lond) 2023; 37:3004-3008. [PMID: 36882530 PMCID: PMC10516882 DOI: 10.1038/s41433-023-02460-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/26/2023] [Accepted: 02/15/2023] [Indexed: 03/09/2023] Open
Abstract
PURPOSE Fellow eyes of patients with unilateral neovascular age-related macular degeneration (nAMD) are at risk of developing macular neovascularisation (MNV). These eyes may first develop subclinical non-exudative MNV (neMNV) before they leak to form exudative MNV (eMNV). The EYE NEON study is a 2-year study aimed at estimating the prevalence and incidence of neMNV and evaluating its role as a predictor for conversion to neovascular AMD. METHODS EYE NEON is a multicentre study that will run in retinal clinics across 25 National Health Service with the aim to recruit 800 patients with new onset nAMD in the first eye. The fellow-eye with no evidence of nAMD at baseline will be the study eye. All study eyes will have OCT and OCTA done at first and second year following first anti-VEGF treatment to the first eye (non-study eye), with new onset nAMD. We will estimate the prevalence and incidence of neMNV over 2 years, rate of conversion from neMNV to eMNV and numbers initiated on treatment for neovascular AMD in the study eye will be reported. Predictive models of conversion including neMNV with other demographic and imaging parameters will be developed. CONCLUSION The study design with proposed target sample size is sufficient to evaluate the retinal imaging characteristics of the study eyes with and without neMNV and develop predictive models to inform risk of conversion to nAMD.
Collapse
Affiliation(s)
- Sridevi Thottarath
- NIHR Moorfields Clinical Research Facility and Biomedical Research Centre, Moorfields Eye Hospital, London, UK
| | - Shruti Chandra
- NIHR Moorfields Clinical Research Facility and Biomedical Research Centre, Moorfields Eye Hospital, London, UK
- Institute of Ophthalmology, University College London, London, UK
| | - Sarega Gurudas
- Institute of Ophthalmology, University College London, London, UK
| | - Wei-Shan Tsai
- NIHR Moorfields Clinical Research Facility and Biomedical Research Centre, Moorfields Eye Hospital, London, UK
- Institute of Ophthalmology, University College London, London, UK
| | - Andrea Giani
- Boehringer Ingelheim International GmbH, Ingelheim am Rhein, Germany
| | - Eduard De Cock
- Boehringer Ingelheim International GmbH, Ingelheim am Rhein, Germany
| | | | - Sobha Sivaprasad
- NIHR Moorfields Clinical Research Facility and Biomedical Research Centre, Moorfields Eye Hospital, London, UK.
- Institute of Ophthalmology, University College London, London, UK.
| |
Collapse
|
10
|
Applications of Genomics and Transcriptomics in Precision Medicine for Myopia Control or Prevention. Biomolecules 2023; 13:biom13030494. [PMID: 36979429 PMCID: PMC10046175 DOI: 10.3390/biom13030494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/18/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
Myopia is a globally emerging concern accompanied by multiple medical and socio-economic burdens with no well-established causal treatment to control thus far. The study of the genomics and transcriptomics of myopia treatment is crucial to delineate disease pathways and provide valuable insights for the design of precise and effective therapeutics. A strong understanding of altered biochemical pathways and underlying pathogenesis leading to myopia may facilitate early diagnosis and treatment of myopia, ultimately leading to the development of more effective preventive and therapeutic measures. In this review, we summarize current data about the genomics and transcriptomics of myopia in human and animal models. We also discuss the potential applicability of these findings to precision medicine for myopia treatment.
Collapse
|
11
|
Li X, Ma B, Zhang W, Song Z, Zhang X, Liao M, Li X, Zhao X, Du M, Yu J, He S, Yan H. The essential role of N6-methyladenosine RNA methylation in complex eye diseases. Genes Dis 2023; 10:505-520. [PMID: 37223523 PMCID: PMC10201676 DOI: 10.1016/j.gendis.2022.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/29/2022] [Accepted: 05/08/2022] [Indexed: 11/20/2022] Open
Abstract
There are many complex eye diseases which are the leading causes of blindness, however, the pathogenesis of the complex eye diseases is not fully understood, especially the underlying molecular mechanisms of N6-methyladenosine (m6A) RNA methylation in the eye diseases have not been extensive clarified. Our review summarizes the latest advances in the studies of m6A modification in the pathogenesis of the complex eye diseases, including cornea disease, cataract, diabetic retinopathy, age-related macular degeneration, proliferative vitreoretinopathy, Graves' disease, uveal melanoma, retinoblastoma, and traumatic optic neuropathy. We further discuss the possibility of developing m6A modification signatures as biomarkers for the diagnosis of the eye diseases, as well as potential therapeutic approaches.
Collapse
Affiliation(s)
- Xiaohua Li
- Henan Provincial People’s Hospital, Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan 450003, China
| | - Binyun Ma
- Department of Medicine/Hematology, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Wenfang Zhang
- Department of Ophthalmology, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China
| | - Zongming Song
- Henan Provincial People’s Hospital, Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan 450003, China
| | - Xiaodan Zhang
- Department of Ophthalmology, Tianjin Medical University General Hospital, Laboratory of Molecular Ophthalmology, Tianjin Medical University. Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300052, China
| | - Mengyu Liao
- Department of Ophthalmology, Tianjin Medical University General Hospital, Laboratory of Molecular Ophthalmology, Tianjin Medical University. Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300052, China
| | - Xue Li
- Henan Provincial People’s Hospital, Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan 450003, China
| | - Xueru Zhao
- Henan Provincial People’s Hospital, Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan 450003, China
| | - Mei Du
- Department of Ophthalmology, Tianjin Medical University General Hospital, Laboratory of Molecular Ophthalmology, Tianjin Medical University. Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300052, China
| | - Jinguo Yu
- Department of Ophthalmology, Tianjin Medical University General Hospital, Laboratory of Molecular Ophthalmology, Tianjin Medical University. Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300052, China
| | - Shikun He
- Henan Provincial People’s Hospital, Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan 450003, China
- Department of Ophthalmology, Tianjin Medical University General Hospital, Laboratory of Molecular Ophthalmology, Tianjin Medical University. Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300052, China
- Department of Pathology and Ophthalmology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Hua Yan
- Department of Ophthalmology, Tianjin Medical University General Hospital, Laboratory of Molecular Ophthalmology, Tianjin Medical University. Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300052, China
| |
Collapse
|
12
|
Stradiotto E, Allegrini D, Fossati G, Raimondi R, Sorrentino T, Tripepi D, Barone G, Inforzato A, Romano MR. Genetic Aspects of Age-Related Macular Degeneration and Their Therapeutic Potential. Int J Mol Sci 2022; 23:13280. [PMID: 36362067 PMCID: PMC9653831 DOI: 10.3390/ijms232113280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/05/2022] [Accepted: 10/28/2022] [Indexed: 08/27/2023] Open
Abstract
Age-related macular degeneration (AMD) is a complex and multifactorial disease, resulting from the interaction of environmental and genetic factors. The continuous discovery of associations between genetic polymorphisms and AMD gives reason for the pivotal role attributed to the genetic component to its development. In that light, genetic tests and polygenic scores have been created to predict the risk of development and response to therapy. Still, none of them have yet been validated. Furthermore, there is no evidence from a clinical trial that the determination of the individual genetic structure can improve treatment outcomes. In this comprehensive review, we summarize the polymorphisms of the main pathogenetic ways involved in AMD development to identify which of them constitutes a potential therapeutic target. As complement overactivation plays a major role, the modulation of targeted complement proteins seems to be a promising therapeutic approach. Herein, we summarize the complement-modulating molecules now undergoing clinical trials, enlightening those in an advanced phase of trial. Gene therapy is a potential innovative one-time treatment, and its relevance is quickly evolving in the field of retinal diseases. We describe the state of the art of gene therapies now undergoing clinical trials both in the field of complement-suppressors and that of anti-VEGF.
Collapse
Affiliation(s)
- Elisa Stradiotto
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Department of Ophthalmology, Eye Unit Humanitas Gavazzeni-Castelli, Via Mazzini 11, 24128 Bergamo, Italy
| | - Davide Allegrini
- Department of Ophthalmology, Eye Unit Humanitas Gavazzeni-Castelli, Via Mazzini 11, 24128 Bergamo, Italy
| | - Giovanni Fossati
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Department of Ophthalmology, Eye Unit Humanitas Gavazzeni-Castelli, Via Mazzini 11, 24128 Bergamo, Italy
| | - Raffaele Raimondi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Department of Ophthalmology, Eye Unit Humanitas Gavazzeni-Castelli, Via Mazzini 11, 24128 Bergamo, Italy
| | - Tania Sorrentino
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Department of Ophthalmology, Eye Unit Humanitas Gavazzeni-Castelli, Via Mazzini 11, 24128 Bergamo, Italy
| | - Domenico Tripepi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Department of Ophthalmology, Eye Unit Humanitas Gavazzeni-Castelli, Via Mazzini 11, 24128 Bergamo, Italy
| | - Gianmaria Barone
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Department of Ophthalmology, Eye Unit Humanitas Gavazzeni-Castelli, Via Mazzini 11, 24128 Bergamo, Italy
| | - Antonio Inforzato
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano-Milan, Italy
| | - Mario R. Romano
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Department of Ophthalmology, Eye Unit Humanitas Gavazzeni-Castelli, Via Mazzini 11, 24128 Bergamo, Italy
| |
Collapse
|
13
|
Liu L, Li C, Yu H, Yang X. A critical review on air pollutant exposure and age-related macular degeneration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156717. [PMID: 35709989 DOI: 10.1016/j.scitotenv.2022.156717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/25/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Age-related macular degeneration (AMD) is the leading cause of visual impairments and blindness worldwide in the elderly and its incidence strongly increases with ages. The etiology of AMD is complex and attributed to the genetic modifiers, environmental factors and gene-environment interactions. Recently, the impacts of air pollution on the development of eye diseases have become the new area of focus, and disordered air exposure combined with inadequate health management has caused problems for the eye health, such as dry eye, glaucoma, and retinopathy, while its specific role in the occurrence of AMD is still not well understood. In order to summarize the progress of this research field, we performed a critical review to summarize the epidemiological and mechanism evidence on the association between air pollutants exposure and AMD. This review documented that exposure to air pollutants will accelerate or worsen the morbidity and prevalence of AMD. Air pollutants exposure may change the homeostasis, interfere with the inflammatory response, and take direct action on the lipid metabolism and oxidative stress in the macula. More attention should be given to understanding the impact of ambient air pollution on AMD worldwide.
Collapse
Affiliation(s)
- Lei Liu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Cong Li
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Honghua Yu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Xiaohong Yang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| |
Collapse
|
14
|
WARE: Wet AMD Risk-Evaluation Tool as a Clinical Decision-Support System Integrating Genetic and Non-Genetic Factors. J Pers Med 2022; 12:jpm12071034. [PMID: 35887531 PMCID: PMC9321802 DOI: 10.3390/jpm12071034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 12/01/2022] Open
Abstract
Given the multifactorial features characterizing age-related macular degeneration (AMD), the availability of a tool able to provide the individual risk profile is extremely helpful for personalizing the follow-up and treatment protocols of patients. To this purpose, we developed an open-source computational tool named WARE (Wet AMD Risk Evaluation), able to assess the individual risk profile for wet AMD based on genetic and non-genetic factors. In particular, the tool uses genetic risk measures normalized for their relative frequencies in the general population and disease prevalence. WARE is characterized by a user-friendly web page interface that is intended to assist clinicians in reporting risk assessment upon patient evaluation. When using the tool, plots of population risk distribution highlight a “low-risk zone” and a “high-risk zone” into which subjects can fall depending on their risk-assessment result. WARE represents a reliable population-specific computational system for wet AMD risk evaluation that can be exploited to promote preventive actions and personalized medicine approach for affected patients or at-risk individuals. This tool can be suitable to compute the disease risk adjusted to different populations considering their specific genetic factors and related frequencies, non-genetic factors, and the disease prevalence.
Collapse
|
15
|
Battu P, Sharma K, Thangavel R, Singh R, Sharma S, Srivastava V, Anand A. Genotyping of Clinical Parameters in Age-Related Macular Degeneration. Clin Ophthalmol 2022; 16:517-529. [PMID: 35241908 PMCID: PMC8888136 DOI: 10.2147/opth.s318098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/20/2021] [Indexed: 11/23/2022] Open
Abstract
Background Methods Results Conclusion
Collapse
Affiliation(s)
- Priya Battu
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Kaushal Sharma
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | | | - Ramandeep Singh
- Advanced Eye Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Suresh Sharma
- Department of Statistics, Panjab University, Chandigarh, India
| | - Vinod Srivastava
- College of Health and Behavioral Sciences, Fort Hays State University, Hays, KS, USA
| | - Akshay Anand
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
- Correspondence: Akshay Anand, Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India, Tel +911722756094, Email
| |
Collapse
|
16
|
Predictive Biomarkers of Age-Related Macular Degeneration Response to Anti-VEGF Treatment. J Pers Med 2021; 11:jpm11121329. [PMID: 34945801 PMCID: PMC8706948 DOI: 10.3390/jpm11121329] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/10/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023] Open
Abstract
Age-related macular degeneration (AMD) is an incurable disease associated with aging that destroys sharp and central vision. Increasing evidence implicates both systemic and local inflammation in the pathogenesis of AMD. Intravitreal injection of anti-vascular endothelial growth factor (VEGF) agents is currently the first-line therapy for choroidal neovascularization in AMD patients. However, a high number of patients do not show satisfactory responses to anti-VEGF treatment after three injections. Predictive treatment response models are one of the most powerful tools for personalized medicine. Therefore, the application of these models is very helpful to predict the optimal treatment for an early application on each patient. We analyzed the transcriptome of peripheral blood mononuclear cells (PBMCs) from AMD patients before treatment to identify biomarkers of response to ranibizumab. A classification model comprised of four mRNAs and one miRNA isolated from PBMCs was able to predict the response to ranibizumab with high accuracy (Area Under the Curve of the Receiver Operating Characteristic curve = 0.968), before treatment. We consider that our classification model, based on mRNA and miRNA from PBMCs allows a robust prediction of patients with insufficient response to anti-VEGF treatment. In addition, it could be used in combination with other methods, such as specific baseline characteristics, to identify patients with poor response to anti-VEGF treatment to establish patient-specific treatment plans at the first visit.
Collapse
|
17
|
Caputo V, Strafella C, Termine A, Fabrizio C, Ruffo P, Cusumano A, Giardina E, Ricci F, Cascella R. Epigenomic signatures in age-related macular degeneration: Focus on their role as disease modifiers and therapeutic targets. Eur J Ophthalmol 2021; 31:2856-2867. [PMID: 34798695 DOI: 10.1177/11206721211028054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Epigenetics is characterized by molecular modifications able to shape gene expression profiles in response to inner and external stimuli. Therefore, epigenetic elements are able to provide intriguing and useful information for the comprehension and management of different human conditions, including aging process, and diseases. On this subject, Age-related Macular Degeneration (AMD) represents one of the most frequent age-related disorders, dramatically affecting the quality of life of older adults worldwide. The etiopathogenesis is characterized by an interplay among multiple genetic and non-genetic factors, which have been extensively studied. Nevertheless, a deeper dissection of molecular machinery associated with risk, onset, progression and effectiveness of therapies is still missing. In this regard, epigenetic signals may be further explored to disentangle disease etiopathogenesis, the possible therapeutic avenues and the differential response to AMD treatment. This review will discuss the epigenomic signatures mostly investigated in AMD, which could be applied to improve the knowledge of disease mechanisms and to set-up novel or modified treatment options.
Collapse
Affiliation(s)
- Valerio Caputo
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy.,Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Claudia Strafella
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy.,Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Andrea Termine
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Carlo Fabrizio
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Paola Ruffo
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Andrea Cusumano
- UOSD of Ophthalmology PTV Foundation "Policlinico Tor Vergata", Rome, Italy
| | - Emiliano Giardina
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy.,UILDM Lazio ONLUS Foundation, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Federico Ricci
- UNIT Retinal Diseases PTV Foundation "Policlinico Tor Vergata", Rome, Italy
| | - Raffaella Cascella
- Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy.,Department of Biomedical Sciences, Catholic University Our Lady of Good Counsel, Tirana, Albania
| |
Collapse
|
18
|
Ulańczyk Z, Grabowicz A, Mozolewska‐Piotrowska K, Safranow K, Kawa MP, Pałucha A, Krawczyk M, Sikora P, Matczyńska E, Machaliński B, Machalińska A. Genetic factors associated with age-related macular degeneration: identification of a novel PRPH2 single nucleotide polymorphism associated with increased risk of the disease. Acta Ophthalmol 2021; 99:739-749. [PMID: 33354892 DOI: 10.1111/aos.14721] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 11/20/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE Age-related macular degeneration (AMD) is associated with multiple environmental and genetic risk factors. Two main risk factors for AMD are variants in the CFH and ARMS2/HTRA1 genes. We investigated over 2000 variants in AMD patients and controls using high-throughput sequencing methods to search for variants associated with AMD. METHODS A total of 296 AMD patients and 100 controls were enrolled in this study. Genetic analysis was performed with the Illumina NextSeq 500 system. RESULTS Multivariate analysis of patients and controls, adjusted for age, sex and smoking status (pack-years), revealed that three SNPs were strong risk factors independently associated with AMD: CFH Y402H, ARMS A69S and PRPH2 c.582-67T>A (rs3818086). The TC genotype in CFH Y402H was associated with 1.90-fold higher odds, and the CC genotype was associated with 5.66-fold higher odds of AMD compared with the TT genotype. The GT genotype in ARMS A69S was associated with 2.40-fold higher odds, and the TT genotype was associated with 6.75-fold higher odds of disease compared with the GG genotype. In the case of rs3818086, the A allele could be considered a 'risk' allele, since AA + TA genotypes were associated with 2.33-fold higher odds of AMD compared with the TT genotype. CONCLUSIONS Although PRPH2 mutations have been previously implicated in various forms of retinal degeneration, to the best of our knowledge, this study is the first to show that the rs3818086 variant increases the risk for AMD more than two times. Further studies on larger cohorts are required to elucidate how this variant affects protein structure.
Collapse
Affiliation(s)
- Zofia Ulańczyk
- Department of General Pathology Pomeranian Medical University Szczecin Poland
| | | | | | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry Pomeranian Medical University Szczecin Poland
| | - Miłosz Piotr Kawa
- Department of General Pathology Pomeranian Medical University Szczecin Poland
| | | | | | | | | | | | - Anna Machalińska
- First Department of Ophthalmology Pomeranian Medical University Szczecin Poland
| |
Collapse
|
19
|
List W, Singer C, Schwab C, Riedl R, Plhak EM, Weger M, Haas A, Wedrich A, Seidel G. Cotinine and cytokine levels in the vitreous body and blood serum of smokers and non-smokers - A pilot study. Exp Eye Res 2021; 212:108773. [PMID: 34560088 DOI: 10.1016/j.exer.2021.108773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 09/08/2021] [Accepted: 09/20/2021] [Indexed: 10/20/2022]
Abstract
Tobacco smoking is a risk factor for many ocular diseases. Of the multiple tobacco smoke compounds nicotine and its main metabolite cotinine are likely agents in disease modulation. The interaction of these compounds with exposed tissue is complex and ranges from proinflammatory to potentially neuroprotective properties. We aimed to determine cotinine and cytokines in the vitreous in smokers and non-smokers in this prospective, cross-sectional study at the Department of Ophthalmology, Medical University Graz, Austria. We included 10 smokers and 10 non-smokers. Vitreous and serum samples were analyzed for cotinine and cytokines. The cytokine analysis was performed with multiplex assay and cotinine was quantified with enzyme-linked immunosorbent assay. Cotinine was detectable in smokers only with a mean of 154.0 ng/ml ± 107.3 ng/ml in the vitreous and of 194.1 ng/ml ± 121.3 ng/ml in the serum. The difference between intraocular and systemic levels was statistically significant. There were no statistically significant differences between the cytokine levels of smokers and non-smokers. However, intravitreal VEGF-A was by trend elevated in smokers and correlated positively with intravitreal cotinine (r = 0.59, p = 0.073). In conclusion cotinine is detectable in the vitreous of smokers and is lower than the serum. There is a trend towards elevation of VEGF-A in the vitreous of smokers.
Collapse
Affiliation(s)
- Wolfgang List
- Department of Ophthalmology, Medical University of Graz, Auenbruggerplatz 4, 8036, Graz, Austria
| | - Christoph Singer
- Department of Ophthalmology, Medical University of Graz, Auenbruggerplatz 4, 8036, Graz, Austria
| | - Christoph Schwab
- Department of Ophthalmology, Medical University of Graz, Auenbruggerplatz 4, 8036, Graz, Austria
| | - Regina Riedl
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Auenbruggerplatz 2, 8036, Graz, Austria
| | - Elisabeth Maria Plhak
- Department of Nuclear Medicine, Medical University of Graz, Auenbruggerplatz 9, 8036, Graz, Austria
| | - Martin Weger
- Department of Ophthalmology, Medical University of Graz, Auenbruggerplatz 4, 8036, Graz, Austria
| | - Anton Haas
- Department of Ophthalmology, Medical University of Graz, Auenbruggerplatz 4, 8036, Graz, Austria
| | - Andreas Wedrich
- Department of Ophthalmology, Medical University of Graz, Auenbruggerplatz 4, 8036, Graz, Austria
| | - Gerald Seidel
- Department of Ophthalmology, Medical University of Graz, Auenbruggerplatz 4, 8036, Graz, Austria.
| |
Collapse
|
20
|
Detecting retinal cell stress and apoptosis with DARC: Progression from lab to clinic. Prog Retin Eye Res 2021; 86:100976. [PMID: 34102318 DOI: 10.1016/j.preteyeres.2021.100976] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 12/15/2022]
Abstract
DARC (Detection of Apoptosing Retinal Cells) is a retinal imaging technology that has been developed within the last 2 decades from basic laboratory science to Phase 2 clinical trials. It uses ANX776 (fluorescently labelled Annexin A5) to identify stressed and apoptotic cells in the living eye. During its development, DARC has undergone biochemistry optimisation, scale-up and GMP manufacture and extensive preclinical evaluation. Initially tested in preclinical glaucoma and optic neuropathy models, it has also been investigated in Alzheimer, Parkinson's and Diabetic models, and used to assess efficacy of therapies. Progression to clinical trials has not been speedy. Intravenous ANX776 has to date been found to be safe and well-tolerated in 129 patients, including 16 from Phase 1 and 113 from Phase 2. Results on glaucoma and AMD patients have been recently published, and suggest DARC with an AI-aided algorithm can be used to predict disease activity. New analyses of DARC in GA prediction are reported here. Although further studies are needed to validate these findings, it appears there is potential of the technology to be used as a biomarker. Much larger clinical studies will be needed before it can be considered as a diagnostic, although the relatively non-invasive nature of the nasal as opposed to intravenous administration would widen its acceptability in the future as a screening tool. This review describes DARC development and its progression into Phase 2 clinical trials from lab-based research. It discusses hypotheses, potential challenges, and regulatory hurdles in translating technology.
Collapse
|
21
|
Sharma K, Singh R, Sharma SK, Anand A. Sleeping pattern and activities of daily living modulate protein expression in AMD. PLoS One 2021; 16:e0248523. [PMID: 34061866 PMCID: PMC8168906 DOI: 10.1371/journal.pone.0248523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/26/2021] [Indexed: 11/18/2022] Open
Abstract
Degeneration of macular photoreceptors is a prominent characteristic of age-related macular degeneration (AMD) which leads to devastating and irreversible vision loss in the elderly population. In this exploratory study, the contribution of environmental factors on the progression of AMD pathology by probing the expression of candidate proteins was analyzed. Four hundred and sixty four participants were recruited in the study comprising of AMD (n = 277) and controls (n = 187). Genetics related data was analyzed to demonstrate the activities of daily living (ADL) by using regression analysis and statistical modeling, including contrast estimate, multinomial regression analysis in AMD progression. Regression analysis revealed contribution of smoking, alcohol, and sleeping hours on AMD by altered expression of IER-3, HTRA1, B3GALTL, LIPC and TIMP3 as compared to normal levels. Contrast estimate supports the gender polarization phenomenon in AMD by significant decreased expression of SLC16A8 and LIPC in control population which was found to be unaltered in AMD patients. The smoking, food habits and duration of night sleeping hours also contributed in AMD progression as evident from multinomial regression analysis. Predicted model (prediction estimate = 86.7%) also indicated the crucial role of night sleeping hours along with the decreased expression of TIMP-3, IER3 and SLC16A8. Results revealed an unambiguous role of environmental factors in AMD progression mediated by various regulatory proteins which might result in intermittent AMD phenotypes and possibly influence the outcome of anti-VEGF treatment.
Collapse
Affiliation(s)
- Kaushal Sharma
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
- Advanced Pediatrics Centre, Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ramandeep Singh
- Department of Ophthalmology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | | | - Akshay Anand
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
22
|
Strafella C, Caputo V, Termine A, Fabrizio C, Ruffo P, Potenza S, Cusumano A, Ricci F, Caltagirone C, Giardina E, Cascella R. Genetic Determinants Highlight the Existence of Shared Etiopathogenetic Mechanisms Characterizing Age-Related Macular Degeneration and Neurodegenerative Disorders. Front Neurol 2021; 12:626066. [PMID: 34135841 PMCID: PMC8200556 DOI: 10.3389/fneur.2021.626066] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/20/2021] [Indexed: 01/03/2023] Open
Abstract
Age-related macular degeneration (AMD) showed several processes and risk factors in common with neurodegenerative disorders (NDDs). The present work explored the existence of genetic determinants associated with AMD, which may provide insightful clues concerning its relationship with NDDs and their possible application into the clinical practice. In this study, 400 AMD patients were subjected to the genotyping analysis of 120 genetic variants by OpenArray technology. As the reference group, 503 samples representative of the European general population were utilized. Statistical analysis revealed the association of 23 single-nucleotide polymorphisms (SNPs) with AMD risk. The analysis of epistatic effects revealed that ARMS2, IL6, APOE, and IL2RA could contribute to AMD and neurodegenerative processes by synergistic modulation of the expression of disease-relevant genes. In addition, the bioinformatic analysis of the associated miRNA variants highlighted miR-196a, miR-6796, miR-6499, miR-6810, miR-499, and miR-7854 as potential candidates for counteracting AMD and neurodegenerative processes. Finally, this work highlighted the existence of shared disease mechanisms (oxidative stress, immune-inflammatory response, mitochondrial dysfunction, axonal guidance pathway, and synaptogenesis) between AMD and NDDs and described the associated SNPs as candidate biomarkers for developing novel strategies for early diagnosis, monitoring, and treatment of such disorders in a progressive aging population.
Collapse
Affiliation(s)
- Claudia Strafella
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy.,Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Valerio Caputo
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy.,Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Andrea Termine
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Carlo Fabrizio
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Paola Ruffo
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Saverio Potenza
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Andrea Cusumano
- UOSD of Ophthalmology PTV Foundation "Policlinico Tor Vergata", Rome, Italy
| | - Federico Ricci
- UNIT Retinal Diseases PTV Foundation "Policlinico Tor Vergata", Rome, Italy
| | - Carlo Caltagirone
- Department of Clinical and Behavioral Neurology, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Emiliano Giardina
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy.,Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Raffaella Cascella
- Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy.,Department of Biomedical Sciences, Catholic University Our Lady of Good Counsel, Tirana, Albania
| |
Collapse
|
23
|
Zampatti S, Ragazzo M, Peconi C, Luciano S, Gambardella S, Caputo V, Strafella C, Cascella R, Caltagirone C, Giardina E. Genetic Counselling Improves the Molecular Characterisation of Dementing Disorders. J Pers Med 2021; 11:474. [PMID: 34073306 PMCID: PMC8227097 DOI: 10.3390/jpm11060474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/31/2022] Open
Abstract
Dementing disorders are a complex group of neurodegenerative diseases characterised by different, but often overlapping, pathological pathways. Genetics have been largely associated with the development or the risk to develop dementing diseases. Recent advances in molecular technologies permit analyzing of several genes in a small time, but the interpretation analysis is complicated by several factors: the clinical complexity of neurodegenerative disorders, the frequency of co-morbidities, and the high phenotypic heterogeneity of genetic diseases. Genetic counselling supports the diagnostic path, providing an accurate familial and phenotypic characterisation of patients. In this review, we summarise neurodegenerative dementing disorders and their genetic determinants. Genetic variants and associated phenotypes will be divided into high and low impact, in order to reflect the pathologic continuum between multifactorial and mendelian genetic factors. Moreover, we report a molecular characterisation of genes associated with neurodegenerative disorders with cognitive impairment. In particular, the high frequency of rare coding genetic variants in dementing genes strongly supports the role of geneticists in both, clinical phenotype characterisation and interpretation of genotypic data. The smart application of exome analysis to dementia patients, with a pre-analytical selection on familial, clinical, and instrumental features, improves the diagnostic yield of genetic test, reduces time for diagnosis, and allows a rapid and personalised management of disease.
Collapse
Affiliation(s)
- Stefania Zampatti
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.Z.); (C.P.); (S.L.); (C.S.); (R.C.)
| | - Michele Ragazzo
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy; (M.R.); (V.C.)
| | - Cristina Peconi
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.Z.); (C.P.); (S.L.); (C.S.); (R.C.)
| | - Serena Luciano
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.Z.); (C.P.); (S.L.); (C.S.); (R.C.)
| | - Stefano Gambardella
- IRCCS Neuromed, 86077 Pozzilli, Italy;
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino, Italy
| | - Valerio Caputo
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy; (M.R.); (V.C.)
| | - Claudia Strafella
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.Z.); (C.P.); (S.L.); (C.S.); (R.C.)
| | - Raffaella Cascella
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.Z.); (C.P.); (S.L.); (C.S.); (R.C.)
- Department of Biomedical Sciences, Catholic University Our Lady of Good Counsel, 1000 Tirana, Albania
| | - Carlo Caltagirone
- Department of Clinical and Behavioral Neurology, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy;
| | - Emiliano Giardina
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.Z.); (C.P.); (S.L.); (C.S.); (R.C.)
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy; (M.R.); (V.C.)
| |
Collapse
|
24
|
Meng LH, Chen YX. Lipid accumulation and protein modifications of Bruch's membrane in age-related macular degeneration. Int J Ophthalmol 2021; 14:766-773. [PMID: 34012894 DOI: 10.18240/ijo.2021.05.19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 02/26/2021] [Indexed: 12/26/2022] Open
Abstract
Age-related macular degeneration (AMD) is a progressive retinal disease, which is the leading cause of blindness in western countries. There is an urgency to establish new therapeutic strategies that could prevent or delay the progression of AMD more efficiently. Until now, the pathogenesis of AMD has remained unclear, limiting the development of the novel therapy. Bruch's membrane (BM) goes through remarkable changes in AMD, playing a significant role during the disease course. The main aim of this review is to present the crucial processes that occur at the level of BM, with special consideration of the lipid accumulation and protein modifications. Besides, some therapies targeted at these molecules and the construction of BM in tissue engineering of retinal pigment epithelium (RPE) cells transplantation were listed. Hopefully, this review may provide a reference for researchers engaged in pathogenesis or management on AMD.
Collapse
Affiliation(s)
- Li-Hui Meng
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China.,Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - You-Xin Chen
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China.,Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
25
|
Krytkowska E, Ulanczyk Z, Grabowicz A, Mozolewska-Piotrowska K, Safranow K, Palucha A, Krawczyk M, Sikora P, Matczynska E, Stahl A, Machalinski B, Machalinska A. Retinal Vessel Functionality Is Linked With ARMS2 A69S and CFH Y402H Polymorphisms and Choroidal Status in AMD Patients. Invest Ophthalmol Vis Sci 2021; 62:30. [PMID: 33900362 PMCID: PMC8088223 DOI: 10.1167/iovs.62.4.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose We aimed to investigate the reactivity of retinal vessels to a flickering stimulus in patients with age-related macular degeneration (AMD) and healthy participants. We also assessed whether the parameters of retinal vessels are dependent on genetic predisposition. Methods A total of 354 patients with AMD and 121 controls were recruited for the study. All participants underwent thorough ophthalmologic examination and static and dynamic retinal vessel analysis. AMD risk polymorphisms were genotyped in the CFH and ARMS2 genes. Results We found no differences between the AMD group and controls in central retinal arteriolar equivalent (CRAE), central retinal venular equivalent (CRVE), arteriovenous ratio (AVR), dynamic analysis of arteries (DAAs), or dynamic analysis of veins (DAVs). Eyes with early AMD presented with significantly higher AVR values than eyes with late AMD. In the AMD group, DAA correlated positively with both choroidal thickness (Rs = 0.14, P = 0.00096) and choroidal volume (Rs = 0.23, P < 0.0001), and no such associations were observed in the controls. We found significantly lower DAA (1.47 ± 1.50) in TT homozygotes for the ARMS2 A69S polymorphism in comparison with GG homozygotes (2.38 ± 1.79) and patients with GG + GT genotypes (2.28 ± 1.84). We also observed less prominent DAV (3.24 ± 1.71) in patients with TC + CC genotypes in the CFH Y402H polymorphism compared with TT homozygotes (3.83 ± 1.68). Conclusions Our findings suggest that retinal microcirculation appears to be associated with the genetic background, choroidal parameters, and clinical features of the patients with AMD.
Collapse
Affiliation(s)
- Elzbieta Krytkowska
- First Department of Ophthalmology, Pomeranian Medical University, Szczecin, Poland
| | - Zofia Ulanczyk
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Aleksandra Grabowicz
- First Department of Ophthalmology, Pomeranian Medical University, Szczecin, Poland
| | | | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | | | | | | | | | - Andreas Stahl
- Department of Ophthalmology, University Medicine Greifswald, Greifswald, Germany
| | - Boguslaw Machalinski
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Anna Machalinska
- First Department of Ophthalmology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
26
|
Hamid MA, Moustafa MT, Nashine S, Costa RD, Schneider K, Atilano SR, Kuppermann BD, Kenney MC. Anti-VEGF Drugs Influence Epigenetic Regulation and AMD-Specific Molecular Markers in ARPE-19 Cells. Cells 2021; 10:cells10040878. [PMID: 33921543 PMCID: PMC8069662 DOI: 10.3390/cells10040878] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 12/16/2022] Open
Abstract
Our study assesses the effects of anti-VEGF (Vascular Endothelial Growth Factor) drugs and Trichostatin A (TSA), an inhibitor of histone deacetylase (HDAC) activity, on cultured ARPE-19 (Adult Retinal Pigment Epithelial-19) cells that are immortalized human retinal pigment epithelial cells. ARPE-19 cells were treated with the following anti-VEGF drugs: aflibercept, ranibizumab, or bevacizumab at 1× and 2× concentrations of the clinical intravitreal dose (12.5 μL/mL and 25 μL/mL, respectively) and analyzed for transcription profiles of genes associated with the pathogenesis age-related macular degeneration (AMD). HDAC activity was measured using the Fluorometric Histone Deacetylase assay. TSA downregulated HIF-1α and IL-1β genes, and upregulated BCL2L13, CASPASE-9, and IL-18 genes. TSA alone or bevacizumab plus TSA showed a significant reduction of HDAC activity compared to untreated ARPE-19 cells. Bevacizumab alone did not significantly alter HDAC activity, but increased gene expression of SOD2, BCL2L13, CASPASE-3, and IL-18 and caused downregulation of HIF-1α and IL-18. Combination of bevacizumab plus TSA increased gene expression of SOD2, HIF-1α, GPX3A, BCL2L13, and CASPASE-3, and reduced CASPASE-9 and IL-β. In conclusion, we demonstrated that anti-VEGF drugs can: (1) alter expression of genes involved in oxidative stress (GPX3A and SOD2), inflammation (IL-18 and IL-1β) and apoptosis (BCL2L13, CASPASE-3, and CASPASE-9), and (2) TSA-induced deacetylation altered transcription for angiogenesis (HIF-1α), apoptosis, and inflammation genes.
Collapse
Affiliation(s)
- Mohamed A. Hamid
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; (M.A.H.); (M.T.M.); (S.N.); (R.D.C.); (K.S.); (S.R.A.); (B.D.K.)
- Ophthalmology Department, Faculty of Medicine, Minia University, Minia 61111, Egypt
| | - M. Tarek Moustafa
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; (M.A.H.); (M.T.M.); (S.N.); (R.D.C.); (K.S.); (S.R.A.); (B.D.K.)
- Ophthalmology Department, Faculty of Medicine, Minia University, Minia 61111, Egypt
| | - Sonali Nashine
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; (M.A.H.); (M.T.M.); (S.N.); (R.D.C.); (K.S.); (S.R.A.); (B.D.K.)
| | - Rodrigo Donato Costa
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; (M.A.H.); (M.T.M.); (S.N.); (R.D.C.); (K.S.); (S.R.A.); (B.D.K.)
- Instituto Donato Oftalmologia, Poςos de Caldas, MG 37701-528, Brazil
| | - Kevin Schneider
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; (M.A.H.); (M.T.M.); (S.N.); (R.D.C.); (K.S.); (S.R.A.); (B.D.K.)
| | - Shari R. Atilano
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; (M.A.H.); (M.T.M.); (S.N.); (R.D.C.); (K.S.); (S.R.A.); (B.D.K.)
| | - Baruch D. Kuppermann
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; (M.A.H.); (M.T.M.); (S.N.); (R.D.C.); (K.S.); (S.R.A.); (B.D.K.)
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697, USA
| | - M. Cristina Kenney
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; (M.A.H.); (M.T.M.); (S.N.); (R.D.C.); (K.S.); (S.R.A.); (B.D.K.)
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA 92697, USA
- Correspondence: ; Tel.: +1-949-824-7603
| |
Collapse
|
27
|
Ragazzo M, Puleri G, Errichiello V, Manzo L, Luzzi L, Potenza S, Strafella C, Peconi C, Nicastro F, Caputo V, Giardina E. Evaluation of OpenArray™ as a Genotyping Method for Forensic DNA Phenotyping and Human Identification. Genes (Basel) 2021; 12:genes12020221. [PMID: 33546406 PMCID: PMC7913479 DOI: 10.3390/genes12020221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/21/2021] [Accepted: 02/01/2021] [Indexed: 12/16/2022] Open
Abstract
A custom plate of OpenArray™ technology was evaluated to test 60 single-nucleotide polymorphisms (SNPs) validated for the prediction of eye color, hair color, and skin pigmentation, and for personal identification. The SNPs were selected from already validated subsets (Hirisplex-s, Precision ID Identity SNP Panel, and ForenSeq DNA Signature Prep Kit). The concordance rate and call rate for every SNP were calculated by analyzing 314 sequenced DNA samples. The sensitivity of the assay was assessed by preparing a dilution series of 10.0, 5.0, 1.0, and 0.5 ng. The OpenArray™ platform obtained an average call rate of 96.9% and a concordance rate near 99.8%. Sensitivity testing performed on serial dilutions demonstrated that a sample with 0.5 ng of total input DNA can be correctly typed. The profiles of the 19 SNPs selected for human identification reached a random match probability (RMP) of, on average, 10−8. An analysis of 21 examples of biological evidence from 8 individuals, that generated single short tandem repeat profiles during the routine workflow, demonstrated the applicability of this technology in real cases. Seventeen samples were correctly typed, revealing a call rate higher than 90%. Accordingly, the phenotype prediction revealed the same accuracy described in the corresponding validation data. Despite the reduced discrimination power of this system compared to STR based kits, the OpenArray™ System can be used to exclude suspects and prioritize samples for downstream analyses, providing well-established information about the prediction of eye color, hair color, and skin pigmentation. More studies will be needed for further validation of this technology and to consider the opportunity to implement this custom array with more SNPs to obtain a lower RMP and to include markers for studies of ancestry and lineage.
Collapse
Affiliation(s)
- Michele Ragazzo
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy; (M.R.); (G.P.); (V.E.); (L.M.); (L.L.); (C.S.); (V.C.)
| | - Giulio Puleri
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy; (M.R.); (G.P.); (V.E.); (L.M.); (L.L.); (C.S.); (V.C.)
| | - Valeria Errichiello
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy; (M.R.); (G.P.); (V.E.); (L.M.); (L.L.); (C.S.); (V.C.)
| | - Laura Manzo
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy; (M.R.); (G.P.); (V.E.); (L.M.); (L.L.); (C.S.); (V.C.)
| | - Laura Luzzi
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy; (M.R.); (G.P.); (V.E.); (L.M.); (L.L.); (C.S.); (V.C.)
| | - Saverio Potenza
- Department of Biomedicine and Prevention, Section of Legal Medicine, Social Security and Forensic Toxicology, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Claudia Strafella
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy; (M.R.); (G.P.); (V.E.); (L.M.); (L.L.); (C.S.); (V.C.)
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy;
| | - Cristina Peconi
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy;
| | | | - Valerio Caputo
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy; (M.R.); (G.P.); (V.E.); (L.M.); (L.L.); (C.S.); (V.C.)
| | - Emiliano Giardina
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy; (M.R.); (G.P.); (V.E.); (L.M.); (L.L.); (C.S.); (V.C.)
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy;
- Correspondence:
| |
Collapse
|
28
|
Lambert V, Hansen S, Schoumacher M, Lecomte J, Leenders J, Hubert P, Herfs M, Blacher S, Carnet O, Yip C, Blaise P, Duchateau E, Locht B, Thys M, Cavalier E, Gothot A, Govaerts B, Rakic JM, Noel A, de Tullio P. Pyruvate dehydrogenase kinase/lactate axis: a therapeutic target for neovascular age-related macular degeneration identified by metabolomics. J Mol Med (Berl) 2020; 98:1737-1751. [PMID: 33079232 DOI: 10.1007/s00109-020-01994-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/22/2020] [Accepted: 10/13/2020] [Indexed: 12/19/2022]
Abstract
Neovascular age-related macular degeneration (nAMD) is the leading cause of blindness in aging populations. Here, we applied metabolomics to human sera of patients with nAMD during an active (exudative) phase of the pathology and found higher lactate levels and a shift in the lipoprotein profile (increased VLDL-LDL/HDL ratio). Similar metabolomics changes were detected in the sera of mice subjected to laser-induced choroidal neovascularization (CNV). In this experimental model, we provide evidence for two sites of lactate production: first, a local one in the injured eye, and second a systemic site associated with the recruitment of bone marrow-derived inflammatory cells. Mechanistically, lactate promotes the angiogenic response and M2-like macrophage accumulation in the eyes. The therapeutic potential of our findings is demonstrated by the pharmacological control of lactate levels through pyruvate dehydrogenase kinase (PDK) inhibition by dichloroacetic acid (DCA). Mice treated with DCA exhibited normalized lactate levels and lipoprotein profiles, and inhibited CNV formation. Collectively, our findings implicate the key role of the PDK/lactate axis in AMD pathogenesis and reveal that the regulation of PDK activity has potential therapeutic value in this ocular disease. The results indicate that the lipoprotein profile is a traceable pattern that is worth considering for patient follow-up. KEY MESSAGES: Lactate and lipoprotein profile are associated with the active phase of AMD and CNV development. Lactate is a relevant and functional metabolite correlated with AMD progression. Modulating lactate through pyruvate dehydrogenase kinase led to a decrease of CNV progression. Pyruvate dehydrogenase kinase is a new therapeutic target for neovascular AMD.
Collapse
Affiliation(s)
- Vincent Lambert
- Department of Ophthalmology, University Hospital of Liège, Liège, Belgium.,Laboratory of Tumor and Development Biology, GIGA, Université de Liège, Liège, Belgium
| | - Sylvain Hansen
- Laboratory of Tumor and Development Biology, GIGA, Université de Liège, Liège, Belgium
| | - Matthieu Schoumacher
- Center for Interdisciplinary Research on Medicines, Metabolomics Group, Université de Liège, Liège, Belgium
| | - Julie Lecomte
- Laboratory of Tumor and Development Biology, GIGA, Université de Liège, Liège, Belgium
| | - Justine Leenders
- Center for Interdisciplinary Research on Medicines, Metabolomics Group, Université de Liège, Liège, Belgium
| | - Pascale Hubert
- Laboratory of Experimental Pathology, GIGA, Université de Liège, avenue Hippocrate, Liège, Belgium
| | - Michael Herfs
- Laboratory of Experimental Pathology, GIGA, Université de Liège, avenue Hippocrate, Liège, Belgium
| | - Silvia Blacher
- Laboratory of Tumor and Development Biology, GIGA, Université de Liège, Liège, Belgium
| | - Oriane Carnet
- Laboratory of Tumor and Development Biology, GIGA, Université de Liège, Liège, Belgium
| | - Cassandre Yip
- Laboratory of Tumor and Development Biology, GIGA, Université de Liège, Liège, Belgium
| | - Pierre Blaise
- Department of Ophthalmology, University Hospital of Liège, Liège, Belgium
| | - Edouard Duchateau
- Department of Ophthalmology, University Hospital of Liège, Liège, Belgium
| | - Bénédicte Locht
- Department of Ophthalmology, University Hospital of Liège, Liège, Belgium
| | - Michèle Thys
- Department of Ophthalmology, University Hospital of Liège, Liège, Belgium
| | - Etienne Cavalier
- Department of Medical Chemistry, University Hospital of Liège, Liège, Belgium
| | - André Gothot
- Department of Hematology and Immuno-Hematology, University Hospital of Liège, Liège, Belgium
| | - Bernadette Govaerts
- Institute of Statistics Biostatistics and Actuarial Sciences, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Jean-Marie Rakic
- Department of Ophthalmology, University Hospital of Liège, Liège, Belgium
| | - Agnès Noel
- Laboratory of Tumor and Development Biology, GIGA, Université de Liège, Liège, Belgium
| | - Pascal de Tullio
- Center for Interdisciplinary Research on Medicines, Metabolomics Group, Université de Liège, Liège, Belgium.
| |
Collapse
|
29
|
Li X, He S, Zhao M. An Updated Review of the Epigenetic Mechanism Underlying the Pathogenesis of Age-related Macular Degeneration. Aging Dis 2020; 11:1219-1234. [PMID: 33014534 PMCID: PMC7505275 DOI: 10.14336/ad.2019.1126] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 11/26/2019] [Indexed: 12/27/2022] Open
Abstract
Epigenetics has been recognized to play an important role in physiological and pathological processes of the human body. Accumulating evidence has indicated that epigenetic mechanisms contribute to the pathogenesis of age-related macular degeneration (AMD). Although the susceptibility related to genetic variants has been revealed by genome-wide association studies, those genetic variants may predict AMD risk only in certain human populations. Other mechanisms, particularly those involving epigenetic factors, may play an important role in the pathogenesis of AMD. Therefore, we briefly summarize the most recent reports related to such epigenetic mechanisms, including DNA methylation, histone modification, and non-coding RNA, and the interplay of genetic and epigenetic factors in the pathogenesis of AMD.
Collapse
Affiliation(s)
- Xiaohua Li
- 1Henan Provincial People's Hospital, Zhengzhou, China.,2Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, China.,3People's Hospital of Zhengzhou University, Zhengzhou, China.,4People's Hospital of Henan University, Zhengzhou, China
| | - Shikun He
- 1Henan Provincial People's Hospital, Zhengzhou, China.,2Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, China.,3People's Hospital of Zhengzhou University, Zhengzhou, China.,4People's Hospital of Henan University, Zhengzhou, China.,5Departments of Pathology and Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.,6Ophthalmology Optometry Centre, Peking University People's Hospital, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
| | - Mingwei Zhao
- 6Ophthalmology Optometry Centre, Peking University People's Hospital, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
| |
Collapse
|
30
|
Peng W, Li JD, Zeng JJ, Zou XP, Tang D, Tang W, Rong MH, Li Y, Dai WB, Tang ZQ, Feng ZB, Chen G. Clinical value and potential mechanisms of COL8A1 upregulation in breast cancer: a comprehensive analysis. Cancer Cell Int 2020; 20:392. [PMID: 32818022 PMCID: PMC7427770 DOI: 10.1186/s12935-020-01465-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/29/2020] [Indexed: 12/24/2022] Open
Abstract
Background The situation faced by breast cancer patients, especially those with triple-negative breast cancer, is still grave. More effective therapeutic targets are needed to optimize the clinical management of breast cancer. Although collagen type VIII alpha 1 chain (COL8A1) has been shown to be downregulated in BRIP1-knockdown breast cancer cells, its clinical role in breast cancer remains unknown. Methods Gene microarrays and mRNA sequencing data were downloaded and integrated into larger matrices based on various platforms. Therefore, this is a multi-centered study, which contains 5048 breast cancer patients and 1161 controls. COL8A1 mRNA expression in breast cancer was compared between molecular subtypes. In-house immunohistochemistry staining was used to evaluate the protein expression of COL8A1 in breast cancer. A diagnostic test was performed to assess its clinical value. Furthermore, based on differentially expressed genes (DEGs) and co-expressed genes (CEGs) positively related to COL8A1, functional enrichment analyses were performed to explore the biological function and potential molecular mechanisms of COL8A1 underlying breast cancer. Results COL8A1 expression was higher in breast cancer patients than in control samples (standardized mean difference = 0.79; 95% confidence interval [CI] 0.55–1.03). Elevated expression was detected in various molecular subtypes of breast cancer. An area under a summary receiver operating characteristic curve of 0.80 (95% CI 0.76–0.83) with sensitivity of 0.77 (95% CI 0.69–0.83) and specificity of 0.70 (95% CI 0.61–0.78) showed moderate capacity of COL8A1 in distinguishing breast cancer patients from control samples. Worse overall survival was found in the higher than in the lower COL8A1 expression groups. Intersected DEGs and CEGs positively related to COL8A1 were significantly clustered in the proteoglycans in cancer and ECM-receptor interaction pathways. Conclusions Elevated COL8A1 may promote the migration of breast cancer by mediating the ECM-receptor interaction and synergistically interplaying with DEGs and its positively related CEGs independently of molecular subtypes. Several genes clustered in the proteoglycans in cancer pathway are potential targets for developing effective agents for triple-negative breast cancer.
Collapse
Affiliation(s)
- Wei Peng
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, NO.6, Shuangyong Road, Nanning, Guangxi 530021 People's Republic of China
| | - Jian-Di Li
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, NO.6, Shuangyong Road, Nanning, Guangxi 530021 People's Republic of China
| | - Jing-Jing Zeng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, NO.6, Shuangyong Road, Nanning, Guangxi 530021 People's Republic of China
| | - Xiao-Ping Zou
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, NO.6, Shuangyong Road, Nanning, Guangxi 530021 People's Republic of China
| | - Deng Tang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, NO.6, Shuangyong Road, Nanning, Guangxi 530021 People's Republic of China
| | - Wei Tang
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, NO.71, Hedi Road, Nanning, Guangxi 530021 People's Republic of China
| | - Min-Hua Rong
- Department of Research, Guangxi Medical University Cancer Hospital, NO.71, Hedi Road, Nanning, Guangxi 530021 People's Republic of China
| | - Ying Li
- Department of Pathology, Qinzhou First People's Hospital, NO.8, Ming Yang Street, Qinzhou, Guangxi 535001 People's Republic of China
| | - Wen-Bin Dai
- Department of Pathology, Liuzhou People's Hospital, NO.8, Wenchang Road, Chengzhong District, Liuzhou, Guangxi 545006 People's Republic of China
| | - Zhong-Qing Tang
- Department of Pathology, Wuzhou Workers' Hospital, The Seventh Affiliated Hospital of Guangxi Medical University, NO.1, Nansanxiang Gaodi Road, Wuzhou, 543000 People's Republic of China
| | - Zhen-Bo Feng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, NO.6, Shuangyong Road, Nanning, Guangxi 530021 People's Republic of China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, NO.6, Shuangyong Road, Nanning, Guangxi 530021 People's Republic of China
| |
Collapse
|
31
|
Sloan JL, Achilly NP, Arnold ML, Catlett JL, Blake T, Bishop K, Jones M, Harper U, English MA, Anderson S, Trivedi NS, Elkahloun A, Hoffmann V, Brooks BP, Sood R, Venditti CP. The vitamin B12 processing enzyme, mmachc, is essential for zebrafish survival, growth and retinal morphology. Hum Mol Genet 2020; 29:2109-2123. [PMID: 32186706 PMCID: PMC7399538 DOI: 10.1093/hmg/ddaa044] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/10/2020] [Accepted: 03/11/2020] [Indexed: 12/16/2022] Open
Abstract
Cobalamin C (cblC) deficiency, the most common inborn error of intracellular cobalamin metabolism, is caused by mutations in MMACHC, a gene responsible for the processing and intracellular trafficking of vitamin B12. This recessive disorder is characterized by a failure to metabolize cobalamin into adenosyl- and methylcobalamin, which results in the biochemical perturbations of methylmalonic acidemia, hyperhomocysteinemia and hypomethioninemia caused by the impaired activity of the downstream enzymes, methylmalonyl-CoA mutase and methionine synthase. Cobalamin C deficiency can be accompanied by a wide spectrum of clinical manifestations, including progressive blindness, and, in mice, manifests with very early embryonic lethality. Because zebrafish harbor a full complement of cobalamin metabolic enzymes, we used genome editing to study the loss of mmachc function and to develop the first viable animal model of cblC deficiency. mmachc mutants survived the embryonic period but perished in early juvenile life. The mutants displayed the metabolic and clinical features of cblC deficiency including methylmalonic acidemia, severe growth retardation and lethality. Morphologic and metabolic parameters improved when the mutants were raised in water supplemented with small molecules used to treat patients, including hydroxocobalamin, methylcobalamin, methionine and betaine. Furthermore, mmachc mutants bred to express rod and/or cone fluorescent reporters, manifested a retinopathy and thin optic nerves (ON). Expression analysis using whole eye mRNA revealed the dysregulation of genes involved in phototransduction and cholesterol metabolism. Zebrafish with mmachc deficiency recapitulate the several of the phenotypic and biochemical features of the human disorder, including ocular pathology, and show a response to established treatments.
Collapse
Affiliation(s)
- Jennifer L Sloan
- Organic Acid Research Section, Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, 20892 USA
| | - Nathan P Achilly
- Organic Acid Research Section, Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, 20892 USA
| | - Madeline L Arnold
- Organic Acid Research Section, Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, 20892 USA
| | - Jerrel L Catlett
- Organic Acid Research Section, Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, 20892 USA
| | - Trevor Blake
- Zebrafish Core Facility, Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, 20892 USA
| | - Kevin Bishop
- Zebrafish Core Facility, Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, 20892 USA
| | - Marypat Jones
- Genomics Core, Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, Bethesda, MD, 20892 USA
| | - Ursula Harper
- Genomics Core, Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, Bethesda, MD, 20892 USA
| | - Milton A English
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, Bethesda, MD, 20892 USA
| | - Stacie Anderson
- Flow Cytometry, National Human Genome Research Institute, Bethesda, MD, 20892 USA
| | - Niraj S Trivedi
- Social Behavioral Research Branch, National Human Genome Research Institute, Bethesda, MD, 20892 USA
| | - Abdel Elkahloun
- Microarray Core, National Human Genome Research Institute, Bethesda, MD, 20892 USA
| | - Victoria Hoffmann
- Diagnostic and Research Services Branch, Division of Veterinary Resources, Office of the Director, National Institutes of Health, Bethesda, MD, 20892 USA
| | - Brian P Brooks
- Office of the Clinical Director, National Eye Institute, Bethesda, MD, 20892 USA
| | - Raman Sood
- Zebrafish Core Facility, Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, 20892 USA
| | - Charles P Venditti
- Organic Acid Research Section, Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, 20892 USA
| |
Collapse
|
32
|
Waksmunski AR, Grunin M, Kinzy TG, Igo RP, Haines JL, Cooke Bailey JN. Statistical driver genes as a means to uncover missing heritability for age-related macular degeneration. BMC Med Genomics 2020; 13:95. [PMID: 32631374 PMCID: PMC7336430 DOI: 10.1186/s12920-020-00747-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/22/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Age-related macular degeneration (AMD) is a progressive retinal disease contributing to blindness worldwide. Multiple estimates for AMD heritability (h2) exist; however, a substantial proportion of h2 is not attributable to known genomic loci. The International AMD Genomics Consortium (IAMDGC) gathered the largest dataset of advanced AMD (ADV) cases and controls available and identified 34 loci containing 52 independent risk variants defining known AMD h2. To better define AMD heterogeneity, we used Pathway Analysis by Randomization Incorporating Structure (PARIS) on the IAMDGC data and identified 8 statistical driver genes (SDGs), including 2 novel SDGs not discovered by the IAMDGC. We chose to further investigate these pathway-based risk genes and determine their contribution to ADV h2, as well as the differential ADV subtype h2. METHODS We performed genomic-relatedness-based restricted maximum-likelihood (GREML) analyses on ADV, geographic atrophy (GA), and choroidal neovascularization (CNV) subtypes to investigate the h2 of genotyped variants on the full DNA array chip, 34 risk loci (n = 2758 common variants), 52 variants from the IAMDGC 2016 GWAS, and the 8 SDGs, specifically the novel 2 SDGs, PPARA and PLCG2. RESULTS Via GREML, full chip h2 was 44.05% for ADV, 46.37% for GA, and 62.03% for CNV. The lead 52 variants' h2 (ADV: 14.52%, GA: 8.02%, CNV: 13.62%) and 34 loci h2 (ADV: 13.73%, GA: 8.81%, CNV: 12.89%) indicate that known variants contribute ~ 14% to ADV h2. SDG variants account for a small percentage of ADV, GA, and CNV heritability, but estimates based on the combination of SDGs and the 34 known loci are similar to those calculated for known loci alone. We identified modest epistatic interactions among variants in the 2 SDGs and the 52 IAMDGC variants, including modest interactions between variants in PPARA and PLCG2. CONCLUSIONS Pathway analyses, which leverage biological relationships among genes in a pathway, may be useful in identifying additional loci that contribute to the heritability of complex disorders in a non-additive manner. Heritability analyses of these loci, especially amongst disease subtypes, may provide clues to the importance of specific genes to the genetic architecture of AMD.
Collapse
Affiliation(s)
- Andrea R Waksmunski
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Michelle Grunin
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Tyler G Kinzy
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Robert P Igo
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Jonathan L Haines
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Jessica N Cooke Bailey
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
33
|
Wright C, Mazzucco AE, Becker SM, Sieving PA, Tumminia SJ. NEI-Supported Age-Related Macular Degeneration Research: Past, Present, and Future. Transl Vis Sci Technol 2020; 9:49. [PMID: 32832254 PMCID: PMC7414643 DOI: 10.1167/tvst.9.7.49] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/08/2020] [Indexed: 12/15/2022] Open
Abstract
Purpose To review past and current National Eye Institute (NEI)–supported age-related macular degeneration (AMD) activities and initiatives and preview upcoming coordinated efforts for studying AMD. Methods We conducted and summarized a portfolio analysis and literature review of NEI intramural and extramural AMD activities. Results The NEI supports a broad range of AMD research, both by individual independent investigators as well as through networks and consortia. The International AMD Genomics Consortium, Age-Related Eye Disease Study, Age-Related Eye Disease Study 2 (AREDS2), and Comparison of AMD Treatments Trial legacy work probed the complex genetics, clinical presentation, and standards of patient care, respectively. The NEI AMD Pathobiology Working Group identified gaps and opportunities for future research efforts. The AMD Ryan Initiative Study and clinical trials testing the efficacies of minocycline to modulate retinal microglia activity and induced pluripotent stem cells–derived retinal pigmented epithelium (RPE) patch implants to rescue photoreceptor cell death are among the future directions for NEI-supported AMD research. Finally, NEI commissioned the creation of AREDS2 participant-derived induced pluripotent stem cell (iPSC) lines linked to their associated genomic and phenotypic datasets. These datasets will also be linked to the data obtained using their associated iPSC-derived cells (RPE, retina, choroid) and made publicly available. Conclusions Investments by NEI for AMD research will continue to provide invaluable resources to investigators committed to addressing this complex blinding disease and other retinal degenerative diseases. Translational Relevance NEI now stands poised to expand the resources available to clinical investigators to uncover disease mechanisms and move experimental therapies into clinical trials.
Collapse
Affiliation(s)
- Charles Wright
- Division of Extramural Science Programs, National Eye Institute, Bethesda, MD, USA
| | - Anna E Mazzucco
- Immediate Office of the Director, National Institutes of Health, Bethesda, MD, USA
| | - Steven M Becker
- Office of the Director, National Eye Institute, Bethesda, MD, USA
| | - Paul A Sieving
- Previous Director, National Eye Institute, Bethesda, MD, USA.,Ophthalmology and Vision Science, University of California, Davis, Davis, CA, USA
| | - Santa J Tumminia
- Office of the Director, National Eye Institute, Bethesda, MD, USA
| |
Collapse
|
34
|
Sunaric Megevand G, Bron AM. Personalising surgical treatments for glaucoma patients. Prog Retin Eye Res 2020; 81:100879. [PMID: 32562883 DOI: 10.1016/j.preteyeres.2020.100879] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023]
Abstract
Surgical treatments for glaucoma have relied for decades on traditional filtering surgery such as trabeculectomy and, in more challenging cases, tubes. Antifibrotics were introduced to improve surgical success in patients at increased risk of failure but have been shown to be linked to a greater incidence of complications, some being potentially vision-threatening. As our understanding of glaucoma and its early diagnosis have improved, a more individualised management has been suggested. Recently the term "precision medicine" has emerged as a new concept of an individualised approach to disease management incorporating a wide range of individual data in the choice of therapeutic modalities. For glaucoma surgery, this involves evaluation of the right timing, individual risk factors, targeting the correct anatomical and functional outflow pathways and appropriate prevention of scarring. As a consequence, there is an obvious need for better knowledge of anatomical and functional pathways and for more individualised surgical approaches with new, less invasive and safer techniques allowing for earlier intervention. With the recent advent of minimally invasive glaucoma surgery (MIGS) a large number of novel devices have been introduced targeting potential new sites of the outflow pathway for lowering intraocular pressure (IOP). Their popularity is growing in view of the relative surgical simplicity and apparent lack of serious side effects. However, these new surgical techniques are still in an era of early experiences, short follow-up and lack of evidence of their superiority in safety and cost-effectiveness over the traditional methods. Each year several new devices are introduced while others are withdrawn from the market. Glaucoma continues to be the primary cause of irreversible blindness worldwide and access to safe and efficacious treatment is a serious problem, particularly in the emerging world where the burden of glaucoma-related blindness is important and concerning. Early diagnosis, individualised treatment and, very importantly, safe surgical management should be the hallmarks of glaucoma treatment. However, there is still need for a better understanding of the disease, its onset and progression, the functional and structural elements of the outflow pathways in relation to the new devices as well as their long-term IOP-lowering efficacy and safety. This review discusses current knowledge and the future need for personalised glaucoma surgery.
Collapse
Affiliation(s)
- Gordana Sunaric Megevand
- Clinical Eye Research Centre Memorial Adolphe de Rothschild, Geneva, Switzerland; Centre Ophtalmologique de Florissant, Geneva, Switzerland.
| | - Alain M Bron
- Department of Ophthalmology, University Hospital, Dijon, France; Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, F-21000, Dijon, France
| |
Collapse
|
35
|
Strafella C, Caputo V, Galota RM, Campoli G, Bax C, Colantoni L, Minozzi G, Orsini C, Politano L, Tasca G, Novelli G, Ricci E, Giardina E, Cascella R. The variability of SMCHD1 gene in FSHD patients: evidence of new mutations. Hum Mol Genet 2020; 28:3912-3920. [PMID: 31600781 PMCID: PMC6969370 DOI: 10.1093/hmg/ddz239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 12/31/2022] Open
Abstract
In this study, we investigated the sequence of (Structural Maintenance of Chromosomes flexible Hinge Domain containing 1) SMCHD1 gene in a cohort of clinically defined FSHD (facioscapulohumeral muscular dystrophy) patients in order to assess the distribution of SMCHD1 variants, considering the D4Z4 fragment size in terms of repeated units (RUs; short fragment: 1–7 RU, borderline: 8-10RU and normal fragment: >11RU). The analysis of SMCHD1 revealed the presence of 82 variants scattered throughout the introns, exons and 3’untranslated region (3′UTR) of the gene. Among them, 64 were classified as benign polymorphisms and 6 as VUS (variants of uncertain significance). Interestingly, seven pathogenic/likely pathogenic variants were identified in patients carrying a borderline or normal D4Z4 fragment size, namely c.182_183dupGT (p.Q62Vfs*48), c.2129dupC (p.A711Cfs*11), c.3469G>T (p.G1157*), c.5150_5151delAA (p.K1717Rfs*16) and c.1131+2_1131+5delTAAG, c.3010A>T (p.K1004*), c.853G>C (p.G285R). All of them were predicted to disrupt the structure and conformation of SMCHD1, resulting in the loss of GHKL-ATPase and SMC hinge essential domains. These results are consistent with the FSHD symptomatology and the Clinical Severity Score (CSS) of patients. In addition, five variants (c.*1376A>C, rs7238459; c.*1579G>A, rs559994; c.*1397A>G, rs150573037; c.*1631C>T, rs193227855; c.*1889G>C, rs149259359) were identified in the 3′UTR region of SMCHD1, suggesting a possible miRNA-dependent regulatory effect on FSHD-related pathways. The present study highlights the clinical utility of next-generation sequencing (NGS) platforms for the molecular diagnosis of FSHD and the importance of integrating molecular findings and clinical data in order to improve the accuracy of genotype–phenotype correlations.
Collapse
Affiliation(s)
- Claudia Strafella
- Genomic Medicine Laboratory UILDM, Santa Lucia Foundation, Rome, 00142, Italy.,Department of Biomedicine and Prevention, Tor Vergata University, Rome, 00133, Italy
| | - Valerio Caputo
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, 00133, Italy
| | | | - Giulia Campoli
- Genomic Medicine Laboratory UILDM, Santa Lucia Foundation, Rome, 00142, Italy
| | - Cristina Bax
- Genomic Medicine Laboratory UILDM, Santa Lucia Foundation, Rome, 00142, Italy
| | - Luca Colantoni
- Genomic Medicine Laboratory UILDM, Santa Lucia Foundation, Rome, 00142, Italy
| | - Giulietta Minozzi
- Department of Veterinary Medicine (DIMEVET), University of Milan, Milan, 20100, Italy
| | - Chiara Orsini
- vCardiomyology and Medical Genetics, Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, 80131, Italy
| | - Luisa Politano
- vCardiomyology and Medical Genetics, Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, 80131, Italy
| | - Giorgio Tasca
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, 00168, Italy
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, 00133, Italy.,Neuromed Institute IRCCS, Pozzilli, 86077, Italy
| | - Enzo Ricci
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, 00168, Italy.,Istituto di Neurologia, Università Cattolica del Sacro Cuore, Rome, 00168, Italy
| | - Emiliano Giardina
- Genomic Medicine Laboratory UILDM, Santa Lucia Foundation, Rome, 00142, Italy.,Department of Biomedicine and Prevention, Tor Vergata University, Rome, 00133, Italy
| | - Raffaella Cascella
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, 00133, Italy.,Department of Biomedical Sciences, Catholic University Our Lady of Good Counsel, Tirana, 1000, Albania
| |
Collapse
|
36
|
Caputo V, Termine A, Strafella C, Giardina E, Cascella R. Shared (epi)genomic background connecting neurodegenerative diseases and type 2 diabetes. World J Diabetes 2020; 11:155-164. [PMID: 32477452 PMCID: PMC7243483 DOI: 10.4239/wjd.v11.i5.155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/10/2020] [Accepted: 03/22/2020] [Indexed: 02/05/2023] Open
Abstract
The progressive aging of populations has resulted in an increased prevalence of chronic pathologies, especially of metabolic, neurodegenerative and movement disorders. In particular, type 2 diabetes (T2D), Alzheimer’s disease (AD) and Parkinson’s disease (PD) are among the most prevalent age-related, multifactorial pathologies that deserve particular attention, given their dramatic impact on patient quality of life, their economic and social burden as well the etiopathogenetic mechanisms, which may overlap in some cases. Indeed, the existence of common triggering factors reflects the contribution of mutual genetic, epigenetic and environmental features in the etiopathogenetic mechanisms underlying T2D and AD/PD. On this subject, this review will summarize the shared (epi)genomic features that characterize these complex pathologies. In particular, genetic variants and gene expression profiles associated with T2D and AD/PD will be discussed as possible contributors to determine the susceptibility and progression to these disorders. Moreover, potential shared epigenetic modifications and factors among T2D, AD and PD will also be illustrated. Overall, this review shows that findings from genomic studies still deserves further research to evaluate and identify genetic factors that directly contribute to the shared etiopathogenesis. Moreover, a common epigenetic background still needs to be investigated and characterized. The evidences discussed in this review underline the importance of integrating large-scale (epi)genomic data with additional molecular information and clinical and social background in order to finely dissect the complex etiopathogenic networks that build up the “disease interactome” characterizing T2D, AD and PD.
Collapse
Affiliation(s)
- Valerio Caputo
- Department of Biomedicine and Prevention, Tor Vergata University, Rome 00133, Italy
- Molecular Genetics Laboratory UILDM, Santa Lucia Foundation, Rome 00142, Italy
| | - Andrea Termine
- Molecular Genetics Laboratory UILDM, Santa Lucia Foundation, Rome 00142, Italy
- Experimental and Behavioral Neurophysiology Laboratory, Santa Lucia Foundation, Rome 00142, Italy
| | - Claudia Strafella
- Molecular Genetics Laboratory UILDM, Santa Lucia Foundation, Rome 00142, Italy
- Department of Biomedicine and Prevention, Tor Vergata University, Rome 00133, Italy
| | - Emiliano Giardina
- Molecular Genetics Laboratory UILDM, Santa Lucia Foundation, Rome 00142, Italy
- Department of Biomedicine and Prevention, Tor Vergata University, Rome 00133, Italy
| | - Raffaella Cascella
- Department of Biomedicine and Prevention, Tor Vergata University, Rome 00133, Italy
- Department of Biomedical Sciences, Catholic University Our Lady of Good Counsel, Tirana 1000, Albania
| |
Collapse
|
37
|
Maroñas O, García-Quintanilla L, Luaces-Rodríguez A, Fernández-Ferreiro A, Latorre-Pellicer A, Abraldes MJ, Lamas MJ, Carracedo A. Anti-VEGF Treatment and Response in Age-related Macular Degeneration: Disease's Susceptibility, Pharmacogenetics and Pharmacokinetics. Curr Med Chem 2020; 27:549-569. [PMID: 31296152 DOI: 10.2174/0929867326666190711105325] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 06/03/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023]
Abstract
The current review is focussing different factors that contribute and directly correlate to the onset and progression of Age-related Macular Degeneration (AMD). In particular, the susceptibility to AMD due to genetic and non-genetic factors and the establishment of risk scores, based on the analysis of different genes to measure the risk of developing the disease. A correlation with the actual therapeutic landscape to treat AMD patients from the point of view of pharmacokinetics and pharmacogenetics is also exposed. Treatments commonly used, as well as different regimes of administration, will be especially important in trying to classify individuals as "responders" and "non-responders". Analysis of different genes correlated with drug response and also the emerging field of microRNAs (miRNAs) as possible biomarkers for early AMD detection and response will be also reviewed. This article aims to provide the reader a review of different publications correlated with AMD from the molecular and kinetic point of view as well as its commonly used treatments, major pitfalls and future directions that, to our knowledge, could be interesting to assess and follow in order to develop a personalized medicine model for AMD.
Collapse
Affiliation(s)
- Olalla Maroñas
- Grupo de Medicina Xenomica, Centro Nacional de Genotipado (CEGEN-PRB3), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Laura García-Quintanilla
- Servicio de Farmacia, Xerencia de Xestión Integrada de Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
| | - Andrea Luaces-Rodríguez
- Departamento de Farmacia e Tecnoloxia Farmaceutica e Instituto de Farmacia Industrial, Facultade de Farmacia, Universidade de Santiago de Compostela, Spain.,Grupo de Farmacoloxia Clínica, Instituto de Investigacion en Salud de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Anxo Fernández-Ferreiro
- Departamento de Farmacia e Tecnoloxia Farmaceutica e Instituto de Farmacia Industrial, Facultade de Farmacia, Universidade de Santiago de Compostela, Spain.,Grupo de Farmacoloxia Clínica, Instituto de Investigacion en Salud de Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Departamento de Farmacia, Hospital Clínico Universitario de Santiago de Compostela (SERGAS) (CHUS), Santiago de Compostela, Spain
| | - Ana Latorre-Pellicer
- Unidad de Genetica Clínica y Genomica Funcional, Departamento de Farmacologia-Fisiología, Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain
| | - Maximino J Abraldes
- Servicio de Oftalmoloxía, Xerencia de Xestion Integrada de Santiago de Compostela, Santiago de Compostela, Spain.,Departamento de Ciruxía e Especialidades Médico- Quirúrxicas, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - María J Lamas
- Grupo de Farmacoloxia Clínica, Instituto de Investigacion en Salud de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Angel Carracedo
- Grupo de Medicina Xenomica, Centro Nacional de Genotipado (CEGEN-PRB3), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, CIBER de Enfermedades Raras (CIBERER), Santiago de Compostela, Spain.,Fundación Pública Galega de Medicina Xenómica, SERGAS, Santiago de Compostela, Spain
| |
Collapse
|
38
|
Caputo V, Strafella C, Termine A, Campione E, Bianchi L, Novelli G, Giardina E, Cascella R. RNAseq-Based Prioritization Revealed COL6A5, COL8A1, COL10A1 and MIR146A as Common and Differential Susceptibility Biomarkers for Psoriasis and Psoriatic Arthritis: Confirmation from Genotyping Analysis of 1417 Italian Subjects. Int J Mol Sci 2020; 21:ijms21082740. [PMID: 32326527 PMCID: PMC7215451 DOI: 10.3390/ijms21082740] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 12/29/2022] Open
Abstract
Psoriasis (Ps) and Psoriatic Arthritis (PsA) are characterized by a multifactorial etiology, involving genetic and environmental factors. The present study aimed to investigate polymorphisms (SNPs) within genes involved in extracellular matrix and cell homeostasis and microRNA genes as susceptibility biomarkers for Ps and PsA. Bioinformatic analysis on public RNA-seq data allowed for selection of rs12488457 (A/C, COL6A5), rs13081855 (G/T, COL8A1), rs3812111 (A/T, COL10A1) and rs2910164 (C/G, MIR146A) as candidate biomarkers. These polymorphisms were analyzed by Real-Time PCR in a cohort of 1417 Italian patients (393 Ps, 424 PsA, 600 controls). Statistical and bioinformatic tools were utilized for assessing the genetic association and predicting the effects of the selected SNPs. rs12488457, rs13081855 and rs2910164 were significantly associated with both Ps (p = 1.39 × 10−8, p = 4.52 × 10−4, p = 0.04, respectively) and PsA (p = 5.12 × 10−5, p = 1.19 × 10−6, p = 0.01, respectively). rs3812111, instead, was associated only with PsA (p = 0.005). Bioinformatic analysis revealed common and differential biological pathways involved in Ps and PsA. COL6A5 and COL8A1 take part in the proliferation and angiogenic pathways which are altered in Ps/PsA and contribute to inflammation together with MIR146A. On the other hand, the exclusive association of COL10A1 with PsA highlighted the specific involvement of bone metabolism in PsA.
Collapse
Affiliation(s)
- Valerio Caputo
- Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy; (V.C.); (C.S.); (G.N.); (E.G.)
- Genomic Medicine Laboratory UILDM, Santa Lucia Foundation, 00179 Rome, Italy;
| | - Claudia Strafella
- Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy; (V.C.); (C.S.); (G.N.); (E.G.)
- Genomic Medicine Laboratory UILDM, Santa Lucia Foundation, 00179 Rome, Italy;
| | - Andrea Termine
- Genomic Medicine Laboratory UILDM, Santa Lucia Foundation, 00179 Rome, Italy;
| | - Elena Campione
- Dermatologic Clinic, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (E.C.); (L.B.)
| | - Luca Bianchi
- Dermatologic Clinic, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (E.C.); (L.B.)
| | - Giuseppe Novelli
- Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy; (V.C.); (C.S.); (G.N.); (E.G.)
- Neuromed Institute IRCCS, 86077 Pozzilli, Italy
| | - Emiliano Giardina
- Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy; (V.C.); (C.S.); (G.N.); (E.G.)
- Genomic Medicine Laboratory UILDM, Santa Lucia Foundation, 00179 Rome, Italy;
| | - Raffaella Cascella
- Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy; (V.C.); (C.S.); (G.N.); (E.G.)
- Department of Biomedical Sciences, Catholic University Our Lady of Good Counsel, 1000 Tirana, Albania
- Correspondence:
| |
Collapse
|
39
|
Santiago AR, Madeira MH, Boia R, Aires ID, Rodrigues-Neves AC, Santos PF, Ambrósio AF. Keep an eye on adenosine: Its role in retinal inflammation. Pharmacol Ther 2020; 210:107513. [PMID: 32109489 DOI: 10.1016/j.pharmthera.2020.107513] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adenosine is an endogenous purine nucleoside ubiquitously distributed throughout the body that interacts with G protein-coupled receptors, classified in four subtypes: A1R, A2AR, A2BR and A3R. Among the plethora of functions of adenosine, it has been increasingly recognized as a key mediator of the immune response. Neuroinflammation is a feature of chronic neurodegenerative diseases and contributes to the pathophysiology of several retinal degenerative diseases. Animal models of retinal diseases are helping to elucidate the regulatory roles of adenosine receptors in the development and progression of those diseases. Mounting evidence demonstrates that the adenosinergic system is altered in the retina during pathological conditions, compromising retinal physiology. This review focuses on the roles played by adenosine and the elements of the adenosinergic system (receptors, enzymes, transporters) in the neuroinflammatory processes occurring in the retina. An improved understanding of the molecular and cellular mechanisms of the signalling pathways mediated by adenosine underlying the onset and progression of retinal diseases will pave the way towards the identification of new therapeutic approaches.
Collapse
Affiliation(s)
- Ana Raquel Santiago
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, 3000-548 Coimbra, Portugal.
| | - Maria H Madeira
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, 3000-548 Coimbra, Portugal
| | - Raquel Boia
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Inês Dinis Aires
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Catarina Rodrigues-Neves
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Paulo Fernando Santos
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - António Francisco Ambrósio
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, 3000-548 Coimbra, Portugal.
| |
Collapse
|
40
|
Novelli G, Biancolella M, Latini A, Spallone A, Borgiani P, Papaluca M. Precision Medicine in Non-Communicable Diseases. High Throughput 2020; 9:ht9010003. [PMID: 32046063 PMCID: PMC7151056 DOI: 10.3390/ht9010003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/31/2019] [Accepted: 02/04/2020] [Indexed: 12/18/2022] Open
Abstract
The increase in life expectancy during the 20th century ranks as one of society's greatest achievements, with massive growth in the numbers and proportion of the elderly, virtually occurring in every country of the world. The burden of chronic diseases is one of the main consequences of this phenomenon, severely hampering the quality of life of elderly people and challenging the efficiency and sustainability of healthcare systems. Non-communicable diseases (NCDs) are considered a global emergency responsible for over 70% of deaths worldwide. NCDs are also the basis for complex and multifactorial diseases such as hypertension, diabetes, and obesity. The epidemics of NCDs are a consequence of a complex interaction between health, economic growth, and development. This interaction includes the individual genome, the microbiome, the metabolome, the immune status, and environmental factors such as nutritional and chemical exposure. To counteract NCDs, it is therefore essential to develop an innovative, personalized, preventative, early care model through the integration of different molecular profiles of individuals to identify both the critical biomarkers of NCD susceptibility and to discover novel therapeutic targets.
Collapse
Affiliation(s)
- Giuseppe Novelli
- Department of Biomedicine & Prevention, Genetics Unit, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.L.); (P.B.)
- IRCCS Neuromed, 86077 Pozzilli (IS), Italy
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV 89557, USA
- Correspondence: ; Tel.: +39-0620-900-668
| | | | - Andrea Latini
- Department of Biomedicine & Prevention, Genetics Unit, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.L.); (P.B.)
| | - Aldo Spallone
- Department of Neurology and Neurosurgery, Peoples’ Friendship University of Russia (RUDN University), Moscow 117198, Russia;
| | - Paola Borgiani
- Department of Biomedicine & Prevention, Genetics Unit, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.L.); (P.B.)
| | - Marisa Papaluca
- Imperial College, Faculty of Medicine, School of Public Health, SW7 2AZ London, UK;
| |
Collapse
|
41
|
Chen X, Sun R, Yang D, Jiang C, Liu Q. LINC00167 Regulates RPE Differentiation by Targeting the miR-203a-3p/SOCS3 Axis. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:1015-1026. [PMID: 32044724 PMCID: PMC7015824 DOI: 10.1016/j.omtn.2019.12.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/23/2019] [Accepted: 12/29/2019] [Indexed: 12/11/2022]
Abstract
Increasing evidence has indicated that long non-coding RNAs (lncRNAs) play significant roles in various diseases; however, their roles in age-related macular degeneration (AMD) remain unclear. Dedifferentiation and dysfunction of retinal pigment epithelium (RPE) cells have been shown to contribute to AMD etiology in several studies. Herein, we found that lncRNA LINC00167 was downregulated in RPE-choroid samples of AMD patients and dysfunctional RPE cells, and it was consistently upregulated along with RPE differentiation. In vitro study indicated that reduced endogenous LINC00167 expression resulted in RPE dedifferentiation, which was typified by attenuated expression of RPE markers, reduced vascular endothelial growth factor A secretion, accumulation of mitochondrial reactive oxygen species, and interrupted phagocytic ability. Mechanistically, LINC00167 functioned as a sponge for microRNA miR-203a-3p to restore the expression of the suppressor of cytokine signaling 3 (SOCS3), which further inhibited the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway. Taken together, our study demonstrated that LINC00167 showed a protective role in AMD by maintaining RPE differentiation through the LINC00167/miR-203a-3p/SOCS3 axis and might be a potential therapeutic target for AMD.
Collapse
Affiliation(s)
- Xue Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Ruxu Sun
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Daidi Yang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Chao Jiang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Qinghuai Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
42
|
Associations of microRNAs, Angiogenesis-Regulating Factors and CFH Y402H Polymorphism-An Attempt to Search for Systemic Biomarkers in Age-Related Macular Degeneration. Int J Mol Sci 2019; 20:ijms20225750. [PMID: 31731799 PMCID: PMC6887747 DOI: 10.3390/ijms20225750] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 01/13/2023] Open
Abstract
Age-related macular degeneration (AMD) remains the leading cause of blindness in elderly people, but the pathophysiology of this disease is still largely unknown. We investigated the systemic expression of angiogenesis-regulating growth factors and selected miRNAs known to regulate angiogenesis in AMD patients. We also focused on possible correlations of their expression with the presence of CFH Y402H or ARMS A69S risk variants. A total of 354 AMD patients and 121 controls were enrolled in this study. The levels of angiogenesis-regulating factors were analyzed in plasma samples using Luminex technology. The expression of selected miRNAs was analyzed in peripheral blood plasma using real-time qPCR. The genetic analysis was performed with an Illumina NextSeq500 system. AMD was an independent factor associated with lower levels of angiogenin (β = −0.29, p < 0.001), endostatin (β = −0.18, p < 0.001), FGF-basic (β = −0.18, p < 0.001), PlGF (β = −0.24, p < 0.001), miRNA-21-3p (β = −0.13, p = 0.01) and miRNA-155-5p (β = −0.16, p = 0.002); and with higher levels of FGF-acidic (β = 0.11, p = 0.03), miRNA-23a-3p (β = 0.17, p < 0.001), miRNA-126-5p (β = 0.13, p = 0.009), miRNA-16-5p (β = 0.40, p < 0.001), miRNA-17-3p (β = 0.13, p = 0.01), miRNA-17-5p (β = 0.17, p < 0.001), miRNA-223-3p (β = 0.15, p = 0.004), and miRNA-93 (β = 0.11, p = 0.04). The expression of analyzed miRNA molecules significantly correlated with the levels of tested angiogenesis-regulating factors and clinical parameters in AMD patients, whereas such correlations were not observed in controls. We also found an association between the CFH Y402H polymorphism and miRNA profiles, whereby TT homozygotes showed evidently higher expression of miRNA-16-5p than CC homozygotes or TC heterozygotes (p = 0.0007). Our results suggest that the balance between systemic pro- and anti-angiogenic factors and miRNAs is vital in multifactorial AMD pathogenesis.
Collapse
|
43
|
Blasiak J, Watala C, Tuuminen R, Kivinen N, Koskela A, Uusitalo-Järvinen H, Tuulonen A, Winiarczyk M, Mackiewicz J, Zmorzyński S, Filip A, Kaarniranta K. Expression of VEGFA-regulating miRNAs and mortality in wet AMD. J Cell Mol Med 2019; 23:8464-8471. [PMID: 31633290 PMCID: PMC6850949 DOI: 10.1111/jcmm.14731] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/12/2019] [Accepted: 09/23/2019] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs) regulate gene expression; many of them act in the retinal pigment epithelium (RPE), and RPE degeneration is known to be a critical factor in age‐related macular degeneration (AMD). Repeated injections with anti‐VEGFA (vascular endothelial growth factor A) are the only effective therapy in wet AMD. We investigated the correlation between the expression of 18 miRNAs involved in the regulation of the VEGFA gene in serum of 76 wet AMD patients and 70 controls. Efficacy of anti‐VEGFA treatment was evaluated by counting the number of injections delivered up to 12 years. In addition, we compared the relative numbers of deaths in patient with AMD and control groups. We observed a decreased expression of miR‐34‐5p, miR‐126‐3p, miR‐145‐5p and miR‐205‐5p in wet AMD patients as compared with controls. These miRNAs are involved in the regulation of angiogenesis, cytoprotection and protein clearance. No miRNA was significantly correlated with the treatment outcome. Wet AMD patients had greater mortality than controls, and their survival was inversely associated with the number of anti‐VEGFA injections per year. No association was observed between miRNA expression and mortality. Our study emphasizes the need to clarify the role of miRNA regulation in AMD pathogenesis.
Collapse
Affiliation(s)
- Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Cezary Watala
- Department of Haemostatic Disorders, Medical University, Lodz, Poland
| | - Raimo Tuuminen
- Helsinki Retina Research Group, University of Helsinki, Helsinki, Finland.,Department of Ophthalmology, Kymenlaakso Central Hospital, Kotka, Finland
| | - Niko Kivinen
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland
| | - Ali Koskela
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland
| | | | - Anja Tuulonen
- Department of Ophthalmology, Tampere University Hospital, Tampere, Finland
| | - Mateusz Winiarczyk
- Department of Vitreoretinal Surgery, Medical University of Lublin, Lublin, Poland
| | - Jerzy Mackiewicz
- Department of Vitreoretinal Surgery, Medical University of Lublin, Lublin, Poland
| | - Szymon Zmorzyński
- Department of Cancer Genetics, Medical University of Lublin, Lublin, Poland
| | - Agata Filip
- Department of Cancer Genetics, Medical University of Lublin, Lublin, Poland
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland.,Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
44
|
Liutkeviciene R, Vilkeviciute A, Gedvilaite G, Kaikaryte K, Kriauciuniene L. Haplotypes of HTRA1 rs1120638, TIMP3 rs9621532, VEGFA rs833068, CFI rs10033900, ERCC6 rs3793784, and KCTD10 rs56209061 Gene Polymorphisms in Age-Related Macular Degeneration. DISEASE MARKERS 2019; 2019:9602949. [PMID: 31583032 PMCID: PMC6754896 DOI: 10.1155/2019/9602949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/30/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND To determine the impact of HTRA1 rs1120638, TIMP3 rs9621532, VEGFA rs833068, CFI rs10033900, ERCC6 rs3793784, and KCTD10 rs56209061 genotypes on the development of age-related macular degeneration (AMD) in the Lithuanian population. METHODS A total of 916 subjects were examined: 309 patients with early AMD, 301 patients with exudative AMD, and 306 healthy controls. The genotyping of HTRA1 rs11200638, TIMP3 rs9621532, VEGFA rs833068, CFI rs10033900, ERCC6 rs3793784, and KCTD10 rs56209061 was carried out using the RT-PCR method. RESULTS Our study showed that single-nucleotide polymorphisms rs3793784 and rs11200638 were associated with increased odds of early and exudative AMD, and the variant in KCTD10 (rs56209061) was found to be associated with decreased odds of early and exudative AMD development after adjustments for age and gender in early AMD analysis and after adjustments only for age in exudative AMD. The haplotype containing two minor alleles C-A and the G-A haplotype in rs3793784-rs11200638 were statistically significantly associated with an increased risk of exudative AMD development after adjustment for age, while the G-G haplotype showed a protective role against early and exudative AMD and the haplotype C-G in rs3793784-rs11200638 was associated with a decreased risk only of exudative AMD development. CONCLUSIONS Our study identified two markers, rs11200638 and rs3793784, as risk factors for early and exudative AMD, and one marker, rs56209061, as a protective factor for early and exudative AMD development. The haplotypes constructed of rs3793784-rs11200638 were found to be associated with AMD development, as well.
Collapse
Affiliation(s)
- Rasa Liutkeviciene
- Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, Eiveniu 2, Kaunas LT-50161, Lithuania
| | - Alvita Vilkeviciute
- Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, Eiveniu 2, Kaunas LT-50161, Lithuania
| | - Greta Gedvilaite
- Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, Eiveniu 2, Kaunas LT-50161, Lithuania
| | - Kriste Kaikaryte
- Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, Eiveniu 2, Kaunas LT-50161, Lithuania
| | - Loresa Kriauciuniene
- Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, Eiveniu 2, Kaunas LT-50161, Lithuania
| |
Collapse
|
45
|
Aloe G, De Sanctis CM, Strafella C, Cascella R, Missiroli F, Cesareo M, Giardina E, Ricci F. Bilateral Retinal Angiomatous Proliferation in a Variant of Retinitis Pigmentosa. Case Rep Ophthalmol Med 2019; 2019:8547962. [PMID: 31467752 PMCID: PMC6699319 DOI: 10.1155/2019/8547962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/27/2019] [Accepted: 07/17/2019] [Indexed: 01/23/2023] Open
Abstract
PURPOSE To describe the first case of bilateral retinal angiomatous proliferation (RAP) in a patient with a variant of retinitis pigmentosa (RP). CASE REPORT An 85-year-old man with RP presented with visual acuity decrease and metamorphopsia in the left eye (LE). Fundus examination revealed typical signs of RP in both eyes, associated with intraretinal macular hemorrhage in the LE. Multimodal imaging, using Colour fundus Photography, Fluorescein (FA), and Indocyanine Green Angiography (ICGA) as well as Spectral-Domain Optical Coherence Tomography (SD-OCT) and Optical Coherence Tomography Angiography (OCTA), revealed a type 3 neovascular lesion in the involved eye. Genetic testing (NGS analysis) was performed to search for genetic variants correlated with the disease phenotype displayed by the patient. The patient was treated with intravitreal injections of bevacizumab, according to a fixed protocol of bimonthly injections plus a booster dose at second month. After 9 months, he was referred for visual acuity decrease and metamorphopsia in the fellow eye, where SD-OCT/OCTA showed a type 3 neovascular lesion in the right eye (RE). He was scheduled for intravitreal injections of bevacizumab. In both eyes, treatment with intravitreal bevacizumab was successful.
Collapse
Affiliation(s)
- G. Aloe
- Unit Retinal Pathology PTV Foundation, Tor Vergata University, Rome, Italy
| | - C. M. De Sanctis
- Unit Retinal Pathology PTV Foundation, Tor Vergata University, Rome, Italy
| | - C. Strafella
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
- Molecular Genetics Laboratory UILDM, Santa Lucia Foundation, Rome, Italy
| | - R. Cascella
- Molecular Genetics Laboratory UILDM, Santa Lucia Foundation, Rome, Italy
- Department of Biomedical Sciences, Catholic University Our Lady of Good Counsel, Tirana, Albania
| | - F. Missiroli
- Unit Retinal Pathology PTV Foundation, Tor Vergata University, Rome, Italy
| | - M. Cesareo
- Unit Retinal Pathology PTV Foundation, Tor Vergata University, Rome, Italy
| | - E. Giardina
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
- Molecular Genetics Laboratory UILDM, Santa Lucia Foundation, Rome, Italy
| | - F. Ricci
- Unit Retinal Pathology PTV Foundation, Tor Vergata University, Rome, Italy
| |
Collapse
|
46
|
Hallak JA, de Sisternes L, Osborne A, Yaspan B, Rubin DL, Leng T. Imaging, Genetic, and Demographic Factors Associated With Conversion to Neovascular Age-Related Macular Degeneration: Secondary Analysis of a Randomized Clinical Trial. JAMA Ophthalmol 2019; 137:738-744. [PMID: 31021381 PMCID: PMC6487912 DOI: 10.1001/jamaophthalmol.2019.0868] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 02/13/2019] [Indexed: 12/22/2022]
Abstract
Importance Risk factors associated with the development of neovascular age-related macular degeneration (AMD) have been identified. However, population size and methods to integrate imaging, genetic, and demographic factors associated with conversion to neovascular AMD are limited, specifically when treatment is administered in 1 eye. Objective To determine the imaging, genetic, and demographic factors associated with conversion from nonneovascular to neovascular AMD in fellow eyes. Design, Setting, and Participants This post hoc secondary analysis of the 24-month phase 3 multicenter, double-masked, active treatment-controlled HARBOR trial included 686 fellow eyes with nonneovascular AMD at baseline. Imaging features describing the presence, number, extent, density, and relative reflectivity of drusen were automatically extracted from spectral-domain optical coherence tomography scans. Genetic analysis included 34 single-nucleotide polymorphisms. Least absolute shrinkage and selection operator regression was performed to narrow imaging features. Survival analysis and Cox proportional hazards regression were performed to determine the association of the selected imaging features and genetic and demographic factors with conversion to neovascular AMD. Data were collected from November 2016 through October 2017 and analyzed from October 2017 through October 2018. Exposure Nonneovascular AMD in the fellow eye. Main Outcomes and Measures Features associated with conversion to neovascular AMD. Hazard ratios (HRs) and their 95% CIs were calculated. Results Among the 686 fellow eyes included in the analysis (406 [59.2%] women; mean [SD] age, 78.12 [8.28] years), 154 (22.4%) converted to neovascular AMD. Female sex was significantly associated with conversion to neovascular AMD (HR, 1.57; 95% CI, 1.11-2.20; P = .009). After controlling for demographic and treatment effects, drusen area within 3 mm of the fovea (HR, 1.45; 95% CI, 1.24-1.69; HR for 1-SD increase, 1.36 [95% CI, 1.20-1.54]) and mean drusen reflectivity (HR, 3.97; 95% CI, 1.11-14.18; HR for 1-SD increase, 1.32 [95% CI, 1.02-1.71]) were significantly associated with conversion to neovascular AMD. In addition, 1 genetic variant (rs61941274) was found to be associated with conversion to neovascular AMD. Conclusions and Relevance Two imaging features (total en face area of drusen restricted to a circular area 3 mm from the fovea and mean drusen reflectivity) and 1 genetic variant (ACAD10 locus) were associated with conversion to neovascular AMD. Drusen characteristics may be associated with conversion to neovascular AMD despite treatment in 1 eye. Trial Registration ClinicalTrials.gov identifier: NCT00891735.
Collapse
Affiliation(s)
- Joelle A. Hallak
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago
| | | | | | | | - Daniel L. Rubin
- Department of Biomedical Data Science, Radiology, and Medicine (Biomedical Informatics), Stanford University School of Medicine, Stanford, California
| | - Theodore Leng
- Byers Eye Institute at Stanford, Stanford School of Medicine, Palo Alto, California
| |
Collapse
|
47
|
Strafella C, Campoli G, Galota RM, Caputo V, Pagliaroli G, Carboni S, Zampatti S, Peconi C, Mela J, Sancricca C, Primiano G, Minozzi G, Servidei S, Cascella R, Giardina E. Limb-Girdle Muscular Dystrophies (LGMDs): The Clinical Application of NGS Analysis, a Family Case Report. Front Neurol 2019; 10:619. [PMID: 31263448 PMCID: PMC6585112 DOI: 10.3389/fneur.2019.00619] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022] Open
Abstract
The diagnosis of LGMD2A (calpainopathy) can be challenging due to genetic heterogeneity and to high similarity with other LGMDs or neuromuscular disorders. In this setting, NGS panels are highly recommended to perform differential diagnosis, identify new causative mutations and enable genotype-phenotype correlations. In this manuscript, the case of a patient affected by LGMD2A is reported, for which the application of a defined custom designed NGS panel allowed to confirm the diagnosis of calpainopathy linked with two heterozygous variants in CAPN3, namely c.550delA and c.1813G>C. The first variant has been extensively described in relation to calpainopathy. The second variant c.1813G>C, instead, is novel and has been predicted to be probably damaging. In addition, NGS analysis on the proband revealed a heterozygous variant (c.550C>T) in the LMNA gene, which is associated with dilated cardiomyopathy. The variant is novel and has been predicted to be deleterious by subsequent bioinformatic analysis. Successively, segregation analysis was performed on family members. Interestingly, none of them showed neuromuscular symptoms but the mother was diagnosed with bradycardia and syncopal episodes and showed a positive family history for cardiomyopathy. The segregation analysis reported that the proband inherited the c.1813G>C (CAPN3) from the father who was a healthy carrier. The mother was positive for c.550delA (CAPN3) and c.550C>T (LMNA), suggesting thereby a possible genetic explanation for her cardiovascular problems. Segregation analysis, therefore, confirmed the inheritance pattern of the variants carried by the proband and highlighted a familiarity for cardiomyopathy which should not be neglected. The NGS analysis was further performed on the partner of the proband, to estimate the reproductive risk of the couple. The partner was negative to NGS screening, suggesting thereby a low risk to have an affected child with calpainopathy and 50% probability to inherit the LMNA variant. This case report showed the clinical utility of the NGS panel in providing accurate LGMD2A diagnosis and identifying complex phenotypes originating from mutations in multiple genes. However, NGS results should always be accomplished by a dedicated genetic counseling, not only to evaluate the recurrence and reproductive risks but also to uncover unexpected findings which can be clinically significant.
Collapse
Affiliation(s)
- Claudia Strafella
- Molecular Genetics Laboratory Unione Italiana Lotta Distrofia Muscolare (UILDM), Santa Lucia Foundation, Rome, Italy.,Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Giulia Campoli
- Molecular Genetics Laboratory Unione Italiana Lotta Distrofia Muscolare (UILDM), Santa Lucia Foundation, Rome, Italy
| | - Rosaria Maria Galota
- Molecular Genetics Laboratory Unione Italiana Lotta Distrofia Muscolare (UILDM), Santa Lucia Foundation, Rome, Italy
| | - Valerio Caputo
- Molecular Genetics Laboratory Unione Italiana Lotta Distrofia Muscolare (UILDM), Santa Lucia Foundation, Rome, Italy.,Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Giulia Pagliaroli
- Molecular Genetics Laboratory Unione Italiana Lotta Distrofia Muscolare (UILDM), Santa Lucia Foundation, Rome, Italy
| | - Stefania Carboni
- Molecular Genetics Laboratory Unione Italiana Lotta Distrofia Muscolare (UILDM), Santa Lucia Foundation, Rome, Italy
| | - Stefania Zampatti
- Molecular Genetics Laboratory Unione Italiana Lotta Distrofia Muscolare (UILDM), Santa Lucia Foundation, Rome, Italy
| | - Cristina Peconi
- Molecular Genetics Laboratory Unione Italiana Lotta Distrofia Muscolare (UILDM), Santa Lucia Foundation, Rome, Italy
| | - Julia Mela
- Molecular Genetics Laboratory Unione Italiana Lotta Distrofia Muscolare (UILDM), Santa Lucia Foundation, Rome, Italy
| | - Cristina Sancricca
- Fondazione Policlinico Universitario A. Gemelli IRCCS, UOC Neurofisiopatologia, Rome, Italy.,Unione Italiana Lotta Distrofia Muscolare (UILDM), Sezione Laziale, Rome, Italy
| | - Guido Primiano
- Fondazione Policlinico Universitario A. Gemelli IRCCS, UOC Neurofisiopatologia, Rome, Italy
| | - Giulietta Minozzi
- Department of Veterinary Medicine, University of Milan, Milan, Italy
| | - Serenella Servidei
- Fondazione Policlinico Universitario A. Gemelli IRCCS, UOC Neurofisiopatologia, Rome, Italy
| | - Raffaella Cascella
- Molecular Genetics Laboratory Unione Italiana Lotta Distrofia Muscolare (UILDM), Santa Lucia Foundation, Rome, Italy.,Department of Biomedical Sciences, Catholic University Our Lady of Good Counsel, Tirana, Albania
| | - Emiliano Giardina
- Molecular Genetics Laboratory Unione Italiana Lotta Distrofia Muscolare (UILDM), Santa Lucia Foundation, Rome, Italy.,Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| |
Collapse
|
48
|
Atopic Eczema: Genetic Analysis of COL6A5, COL8A1, and COL10A1 in Mediterranean Populations. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3457898. [PMID: 31275967 PMCID: PMC6582825 DOI: 10.1155/2019/3457898] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/20/2019] [Indexed: 12/29/2022]
Abstract
To date, the genes associated with susceptibility to Atopic Eczema (AE) are mainly implicated in immunity, inflammation, and maintenance of skin barrier. Little is known about the possible relationship between genes modulating Extra-Cellular Matrix (ECM) and AE etiopathogenesis. In this regard, the primary objective of the present study has been the investigation of susceptibility biomarkers localized within genes encoding collagen proteins. Several studies have shown that polymorphisms within the genes encoding such proteins may generate abnormal connective tissues, making them more susceptible to mechanical stress, loss of epidermal integrity, and aging. We therefore decided to investigate three polymorphisms located in COL6A5, COL8A1, and COL10A1 as potential susceptibility biomarkers for AE in a cohort of 1470 subjects of Mediterranean origin. The genes of interest have been selected considering that the ECM and immune/inflammatory response are strongly dysregulated in AE and other complex disorders. The study confirmed that the susceptibility to AE depends on a complex interaction between latitude, geographical localization, and the differential distribution of genetic variants among populations exposed to similar environmental factors.
Collapse
|
49
|
The Interplay between miRNA-Related Variants and Age-Related Macular Degeneration: EVIDENCE of Association of MIR146A and MIR27A. Int J Mol Sci 2019; 20:ijms20071578. [PMID: 30934838 PMCID: PMC6480223 DOI: 10.3390/ijms20071578] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 02/07/2023] Open
Abstract
The complex interplay among genetic, epigenetic, and environmental variables is the basis for the multifactorial origin of age-related macular degeneration (AMD). Previous results highlighted that single nucleotide polymorphisms (SNPs) of CFH, ARMS2, IL-8, TIMP3, SLC16A8, RAD51B, VEGFA, and COL8A1 were significantly associated with the risk of AMD in the Italian population. Given these data, this study aimed to investigate the impact of SNPs in genes coding for MIR146A, MIR31, MIR23A, MIR27A, MIR20A, and MIR150 on their susceptibility to AMD. Nine-hundred and seventy-six patients with exudative AMD and 1000 controls were subjected to an epigenotyping analysis through real-time PCR and direct sequencing. Biostatistical and bioinformatic analysis was performed to evaluate the association with susceptibility to AMD. These analyses reported that the SNPs rs11671784 (MIR27A, G/A) and rs2910164 (MIR146A, C/G) were significantly associated with AMD risk. Interestingly, the bioinformatic analysis showed that MIR27A and MIR146A take part in the angiogenic and inflammatory pathways underlying AMD etiopathogenesis. Thus, polymorphisms within the pre-miRNA sequences are likely to affect their functional activity, especially the interaction with specific targets. Therefore, our study represents a step forward in the comprehension of the mechanisms leading to AMD onset and progression, which certainly include the involvement of epigenetic modifications.
Collapse
|
50
|
Majewska M, Lipka A, Paukszto L, Jastrzebski JP, Szeszko K, Gowkielewicz M, Lepiarczyk E, Jozwik M, Majewski MK. Placenta Transcriptome Profiling in Intrauterine Growth Restriction (IUGR). Int J Mol Sci 2019; 20:E1510. [PMID: 30917529 PMCID: PMC6471577 DOI: 10.3390/ijms20061510] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/22/2019] [Accepted: 03/24/2019] [Indexed: 12/14/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is a serious pathological complication associated with compromised fetal development during pregnancy. The aim of the study was to broaden knowledge about the transcriptomic complexity of the human placenta by identifying genes potentially involved in IUGR pathophysiology. RNA-Seq data were used to profile protein-coding genes, detect alternative splicing events (AS), single nucleotide variant (SNV) calling, and RNA editing sites prediction in IUGR-affected placental transcriptome. The applied methodology enabled detection of 37,501 transcriptionally active regions and the selection of 28 differentially-expressed genes (DEGs), among them 10 were upregulated and 18 downregulated in IUGR-affected placentas. Functional enrichment annotation indicated that most of the DEGs were implicated in the processes of inflammation and immune disorders related to IUGR and preeclampsia. Additionally, we revealed that some genes (S100A13, GPR126, CTRP1, and TFPI) involved in the alternation of splicing events were mainly implicated in angiogenic-related processes. Significant SNVs were overlapped with 6533 transcripts and assigned to 2386 coding sequence (CDS), 1528 introns, 345 5' untranslated region (UTR), 1260 3'UTR, 918 non-coding RNA (ncRNA), and 10 intergenic regions. Within CDS regions, 543 missense substitutions with functional effects were recognized. Two known mutations (rs4575, synonymous; rs3817, on the downstream region) were detected within the range of AS and DEG candidates: PA28β and PINLYP, respectively. Novel genes that are dysregulated in IUGR were detected in the current research. Investigating genes underlying the IUGR is crucial for identification of mechanisms regulating placental development during a complicated pregnancy.
Collapse
Affiliation(s)
- Marta Majewska
- Department of Human Physiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska Str 30, 10-082 Olsztyn, Poland.
| | - Aleksandra Lipka
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Niepodleglosci Str 44, 10-045 Olsztyn, Poland.
| | - Lukasz Paukszto
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str 1A, 10-719 Olsztyn-Kortowo, Poland.
| | - Jan Pawel Jastrzebski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str 1A, 10-719 Olsztyn-Kortowo, Poland.
| | - Karol Szeszko
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str 1A, 10-719 Olsztyn-Kortowo, Poland.
| | - Marek Gowkielewicz
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Niepodleglosci Str 44, 10-045 Olsztyn, Poland.
| | - Ewa Lepiarczyk
- Department of Human Physiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska Str 30, 10-082 Olsztyn, Poland.
| | - Marcin Jozwik
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Niepodleglosci Str 44, 10-045 Olsztyn, Poland.
| | - Mariusz Krzysztof Majewski
- Department of Human Physiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska Str 30, 10-082 Olsztyn, Poland.
| |
Collapse
|