1
|
Yue X, van der Voort M, Steeneveld W, van Schaik G, Vernooij JCM, van Duijn L, Hogeveen H. The effect of new bovine viral diarrhea virus introduction on somatic cell count, calving interval, culling, and calf mortality of dairy herds in the Dutch bovine viral diarrhea virus-free program. J Dairy Sci 2021; 104:10217-10231. [PMID: 34147217 DOI: 10.3168/jds.2021-20216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/06/2021] [Indexed: 11/19/2022]
Abstract
Bovine viral diarrhea virus (BVDV) infection has a major effect on the health of cows and consequently on herd performance. Many countries have implemented control or eradication programs to mitigate BVDV infection and its negative effects. These negative effects of BVDV infection on dairy herds are well documented, but there is much less information about the effects of new introduction of BVDV on dairy herds already participating in a BVDV control program. The objective of our study was to investigate the effect of a new BVDV introduction in BVDV-free herds participating in the Dutch BVDV-free program on herd performance. Longitudinal herd-level surveillance data were combined with herd information data to create 4 unique data sets, including a monthly test-day somatic cell count (SCC) data set, annual calving interval (CIV) and culling risk (CR) data sets, and a quarterly calf mortality rate (CMR) data set. Each database contained 2 types of herds: herds that remained BVDV free during the whole study period (defined as free herds), and herds that lost their BVDV-free status during the study period (defined as breakdown herds). The date of losing the BVDV-free status was defined as breakdown date. To compare breakdown herds with free herds, a random breakdown date was artificially generated for free herds by simple random sampling from the distribution of the breakdown month of the breakdown herds. The SCC and CIV before and after a new introduction of BVDV were compared through linear mixed-effects models with a Gaussian distribution, and the CR and CMR were modeled using a negative binomial distribution in generalized linear mixed-effects models. The explanatory variables for all models included herd type, BVDV status, year, and a random herd effect. Herd size was included as an explanatory variable in the SCC, CIV, and CMR model. Season was included as an explanatory variable in the SCC and CMR model. Results showed that free herds have lower SCC, CR, CMR, and shorter CIV than the breakdown herds. Within the breakdown herds, the new BVDV introduction affected the SCC and CMR. In the year after BVDV introduction, the SCC was higher than that in the year before BVDV introduction, with a factor of 1.011 [2.5th to 97.5th percentile (95% PCTL): 1.002, 1.020]. Compared with the year before BVDV breakdown, the CMR in the year of breakdown and the year after breakdown was higher, with factors of 1.170 (95% PCTL: 1.120; 1.218) and 1.096 (95% PCTL: 1.048; 1.153), respectively. This study reveals that a new introduction of BVDV had a negative but on average relatively small effect on herd performance in herds participating in a BVDV control program.
Collapse
Affiliation(s)
- Xiaomei Yue
- Business Economics Group, Department of Social Sciences, Wageningen University, 6706 KN Wageningen, the Netherlands.
| | - Mariska van der Voort
- Business Economics Group, Department of Social Sciences, Wageningen University, 6706 KN Wageningen, the Netherlands
| | - Wilma Steeneveld
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Gerdien van Schaik
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands; Royal GD, PO Box 9, 7400 AA Deventer, the Netherlands
| | - Johannes C M Vernooij
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands
| | | | - Henk Hogeveen
- Business Economics Group, Department of Social Sciences, Wageningen University, 6706 KN Wageningen, the Netherlands
| |
Collapse
|
2
|
Fernández GA, Castro EF, Rosas RA, Fidalgo DM, Adler NS, Battini L, España de Marco MJ, Fabiani M, Bruno AM, Bollini M, Cavallaro LV. Design and Optimization of Quinazoline Derivatives: New Non-nucleoside Inhibitors of Bovine Viral Diarrhea Virus. Front Chem 2020; 8:590235. [PMID: 33425849 PMCID: PMC7793975 DOI: 10.3389/fchem.2020.590235] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/09/2020] [Indexed: 01/30/2023] Open
Abstract
Bovine viral diarrhea virus (BVDV) belongs to the Pestivirus genus (Flaviviridae). In spite of the availability of vaccines, the virus is still causing substantial financial losses to the livestock industry. In this context, the use of antiviral agents could be an alternative strategy to control and reduce viral infections. The viral RNA-dependent RNA polymerase (RdRp) is essential for the replication of the viral genome and constitutes an attractive target for the identification of antiviral compounds. In a previous work, we have identified potential molecules that dock into an allosteric binding pocket of BVDV RdRp via a structure-based virtual screening approach. One of them, N-(2-morpholinoethyl)-2-phenylquinazolin-4-amine [1, 50% effective concentration (EC50) = 9.7 ± 0.5 μM], was selected to perform different chemical modifications. Among 24 derivatives synthesized, eight of them showed considerable antiviral activity. Molecular modeling of the most active compounds showed that they bind to a pocket located in the fingers and thumb domains in BVDV RdRp, which is different from that identified for other non-nucleoside inhibitors (NNIs) such as thiosemicarbazone (TSC). We selected compound 2-[4-(2-phenylquinazolin-4-yl)piperazin-1-yl]ethanol (1.9; EC50 = 1.7 ± 0.4 μM) for further analysis. Compound 1.9 was found to inhibit the in vitro replication of TSC-resistant BVDV variants, which carry the N264D mutation in the RdRp. In addition, 1.9 presented adequate solubility in different media and a high-stability profile in murine and bovine plasma.
Collapse
Affiliation(s)
- Gabriela A Fernández
- Laboratorio de Química Medicinal, Centro de Investigaciones en Bionanociencias (CIBION)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Eliana F Castro
- Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto de Virología e Innovaciones Tecnológicas, Instituto Nacional de Tecnología Agropecuaria, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rocío A Rosas
- Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra Virología, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Universidad de Buenos Aires, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Daniela M Fidalgo
- Laboratorio de Química Medicinal, Centro de Investigaciones en Bionanociencias (CIBION)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Natalia S Adler
- Laboratorio de Química Medicinal, Centro de Investigaciones en Bionanociencias (CIBION)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Leandro Battini
- Laboratorio de Química Medicinal, Centro de Investigaciones en Bionanociencias (CIBION)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Maria J España de Marco
- Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Matias Fabiani
- Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra Virología, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Universidad de Buenos Aires, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ana M Bruno
- Departamento de Química Orgánica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariela Bollini
- Laboratorio de Química Medicinal, Centro de Investigaciones en Bionanociencias (CIBION)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Lucia V Cavallaro
- Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra Virología, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
3
|
Castro EF, Casal JJ, de Marco MJE, Battini L, Fabiani M, Fernández GA, Bruno AM, Cavallaro LV, Bollini M. Identification of potent bovine viral diarrhea virus inhibitors by a structure-based virtual screening approach. Bioorg Med Chem Lett 2019; 29:262-266. [PMID: 30501966 DOI: 10.1016/j.bmcl.2018.11.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/08/2018] [Accepted: 11/21/2018] [Indexed: 10/27/2022]
Abstract
Bovine viral diarrhea virus (BVDV) is a pestivirus whose infection in cattle is globally distributed. The use of antivirals could complement vaccination as a tool of control and reduce economic losses. The RNA-dependent RNA polymerase (RdRp) of the virus is essential for its genome replication and constitutes an attractive target for the identification of antivirals. With the aim of obtaining selective BVDV inhibitors, the crystal structure of BVDV RdRp was used to perform a virtual screening. Approximately 15,000 small molecules from commercial and in-house databases were evaluated and several structurally different compounds were tested in vitro for antiviral activity. Interestingly, of twelve evaluated compounds, five were active and displayed EC50 values in the sub and low-micromolar range. Time of drug addition experiment and measured intracellular BVDV RNA showed that compound 7 act during RNA synthesis. Molecular Dynamics and MM/PBSA calculation were done to characterize the interaction of the most active compounds with RdRp, which will allow future ligand optimization. These studies highlight the use of in silico screening to identify a new class of BVDV inhibitors.
Collapse
Affiliation(s)
- Eliana F Castro
- Cátedra de Virología, Departamento de Microbiología, Inmunología y Biotecnología, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113, Ciudad Autónoma de Buenos Aires, Argentina
| | - Juan J Casal
- Laboratorio de Química Medicinal, Centro de Investigaciones en Bionanociencias (CIBION)-CONICET, Ciudad de Buenos Aires, Argentina
| | - María J España de Marco
- Cátedra de Virología, Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113, Ciudad Autónoma de Buenos Aires, Argentina
| | - Leandro Battini
- Laboratorio de Química Medicinal, Centro de Investigaciones en Bionanociencias (CIBION)-CONICET, Ciudad de Buenos Aires, Argentina
| | - Matías Fabiani
- Cátedra de Virología, Departamento de Microbiología, Inmunología y Biotecnología, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113, Ciudad Autónoma de Buenos Aires, Argentina
| | - Gabriela A Fernández
- Laboratorio de Química Medicinal, Centro de Investigaciones en Bionanociencias (CIBION)-CONICET, Ciudad de Buenos Aires, Argentina
| | - Ana M Bruno
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Orgánica, Junín 956, C1113AAD, Ciudad Autónoma de Buenos Aires, Argentina
| | - Lucía V Cavallaro
- Cátedra de Virología, Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Mariela Bollini
- Laboratorio de Química Medicinal, Centro de Investigaciones en Bionanociencias (CIBION)-CONICET, Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
4
|
Herd-level risk factors for bovine viral diarrhea infection in cattle of Tamil Nadu. Trop Anim Health Prod 2018; 50:793-799. [DOI: 10.1007/s11250-017-1497-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 12/10/2017] [Indexed: 11/26/2022]
|
5
|
Yarnall MJ, Thrusfield MV. Engaging veterinarians and farmers in eradicating bovine viral diarrhoea: a systematic review of economic impact. Vet Rec 2017; 181:347. [PMID: 28851755 PMCID: PMC5738591 DOI: 10.1136/vr.104370] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 07/10/2017] [Accepted: 07/24/2017] [Indexed: 12/11/2022]
Abstract
Bovine viral diarrhoea (BVD) is a significant drain on efficient and successful cattle production in both dairy and beef systems around the world. Several countries have achieved eradication of this disease, but always through the motivation of stakeholders who accept the benefits of eradication. These include increased cattle welfare and fitness of cattle to withstand other diseases, and decreased costs of production, the latter resulting from both decreased costs spent on managing the disease and decreased losses. This paper provides a systematic review of 31 papers, published between 1991 and 2015, that address the economic impact of BVD. Each paper takes a different approach, in either beef or dairy production or both. However with the breadth of work collated, a stakeholder engaged in BVD eradication should find an economic figure of most relevance to them. The reported economic impact ranges from £0 to £552 per cow per year (£2370 including outliers). This range represents endemic or subclinical disease situations seen in herds with stable BVD virus infection, and epidemic or severe acute situations, most often seen in naïve herds. The outcome of infection is therefore dependent on the immune status of the animal and severity of the strain. The variations in figures for the economic impact of BVD relate to these immune and pathogenicity factors, along with the variety of impacts monitored.
Collapse
Affiliation(s)
- Matt J Yarnall
- Boehringer Ingelheim Animal Health, Ellesfield Avenue, Bracknell, RG12 8YS, UK, Bracknell, UK.,Division of Infection and Pathway Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, EH16 4SB, UK, Edinburgh, UK
| | - Michael V Thrusfield
- Veterinary Clinical Sciences, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
6
|
Bulk tank milk somatic cell counts in dairy herds with different bovine viral diarrhoea virus status in Poland. Prev Vet Med 2014; 116:183-7. [DOI: 10.1016/j.prevetmed.2014.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 05/12/2014] [Accepted: 06/15/2014] [Indexed: 01/02/2023]
|
7
|
Laureyns J, Piepers S, Ribbens S, Sarrazin S, De Vliegher S, Van Crombrugge JM, Dewulf J. Association between herd exposure to BVDV-infection and bulk milk somatic cell count of Flemish dairy farms. Prev Vet Med 2013; 109:148-51. [DOI: 10.1016/j.prevetmed.2012.09.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 09/18/2012] [Accepted: 09/20/2012] [Indexed: 10/27/2022]
|
8
|
Corbière F, Pouget C, Bernardin E, Brugidou R, Schelcher F. Short communication: Performance of a blocking antibody ELISA bulk-tank milk test for detection of dairy sheep flocks exposed to border disease virus. J Dairy Sci 2012; 95:6542-5. [DOI: 10.3168/jds.2012-5589] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 07/13/2012] [Indexed: 11/19/2022]
|
9
|
Carslake D, Grant W, Green LE, Cave J, Greaves J, Keeling M, McEldowney J, Weldegebriel H, Medley GF. Endemic cattle diseases: comparative epidemiology and governance. Philos Trans R Soc Lond B Biol Sci 2011; 366:1975-86. [PMID: 21624918 DOI: 10.1098/rstb.2010.0396] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cattle are infected by a community of endemic pathogens with different epidemiological properties that invoke different managerial and governmental responses. We present characteristics of pathogens that influence their ability to persist in the UK, and describe a qualitative framework of factors that influence the political response to a livestock disease. We develop simple transmission models for three pathogens (bovine viral diarrhoea virus, bovine herpesvirus and Mycobacterium avium spp. paratuberculosis) using observed cattle movements, and compare the outcomes to an extensive dataset. The results demonstrate that the epidemiology of the three pathogens is determined by different aspects of within- and between-farm processes, which has economic, legal and political implications for control. We consider how these pathogens, and Mycobacterium bovis (the agent of bovine tuberculosis), may be classified by the process by which they persist and by their political profile. We further consider the dynamic interaction of these classifications with pathogen prevalence and with the action taken by the government.
Collapse
Affiliation(s)
- David Carslake
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry CV4 7AL, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Barkema HW, Green MJ, Bradley AJ, Zadoks RN. Invited review: The role of contagious disease in udder health. J Dairy Sci 2009; 92:4717-29. [PMID: 19762787 DOI: 10.3168/jds.2009-2347] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Contagious diseases are a threat to animal health and productivity, both nationally and at the farm level. This makes implementation of biosecurity measures to prevent their introduction and spread within countries and farms a necessity. Mastitis is the most common and costly contagious disease affecting dairy farms in the western world. The major mastitis pathogens are endemic in most countries, and biosecurity measures to prevent introduction and transmission must therefore be implemented at farm level. The 40-yr-old mastitis control plan remains a solid foundation to prevent the spread of contagious intramammary infections. Contagious diseases that do not affect the mammary gland directly may have an indirect effect on mastitis. This is true for list A diseases such as foot and mouth disease, for which biosecurity measures may need to be taken at national level, and for other infections with nonmastitis pathogens such as bovine viral diarrhea virus and Mycobacterium avium ssp. paratuberculosis. Maintaining a closed herd decreases the risk of introduction of pathogens that affect udder health directly or indirectly. If animals are purchased, their udder health history should be evaluated and they should be examined and tested for contagious diseases. Transmission of infections by and to humans and nonbovine animals may occur. Contact with visitors and nonbovine animals should therefore be minimized. Because of globalization and heightened consumer awareness, the importance of biosecurity now supersedes individual farms, and increased pressure to control transmission of contagious diseases can be expected at industry or government levels in western countries and elsewhere.
Collapse
Affiliation(s)
- H W Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
11
|
Berriatua E, Barandika JF, Aduriz G, Hurtado A, Estévez L, Atxaerandio R, García-Pérez AL. Flock-prevalence of border disease virus infection in Basque dairy-sheep estimated by bulk-tank milk analysis. Vet Microbiol 2006; 118:37-46. [PMID: 16979308 DOI: 10.1016/j.vetmic.2006.06.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2006] [Revised: 06/13/2006] [Accepted: 06/16/2006] [Indexed: 11/22/2022]
Abstract
Bulk-tank milk (BTM) samples from 154 sheep flocks were used to estimate BDV prevalence in the Basque Country in Spain using an ELISA and a RT-PCR test. The proportion of antibody-positive flocks was 68% but varied significantly between provinces and was 93% in Araba and 54-55% in Bizkaia and Gipuzkoa. Most ELISA-positive flocks had very low antibody inhibition percentage (AIP) indicating high seroprevalence and recent BDV exposure. However, only 9% flocks were PCR-positive suggesting few infected ewes were being milked at the time of sampling. Phylogenetic analysis of the 5' NCR sequences of BDV from seven infected flocks showed that all except one clustered within the group formed by BDV type C strains from a previous study in the region, whereas the remaining isolate was closest to BDV type A. These results suggest that BDV strains in most Basque flocks have a common origin and differences in prevalence between provinces are associated to recent events affecting BDV spread such as use of communal pastures and sheep trading. The widespread distribution of BDV in the region, advocates for the implementation of BDV control strategies and highlights the potential risk of sheep as a pestivirus reservoir for other species.
Collapse
Affiliation(s)
- E Berriatua
- Department of Animal Health, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Berreaga 1, 48160 Derio, Bizkaia, Spain
| | | | | | | | | | | | | |
Collapse
|