1
|
Zhao H, Zhao S, Wang S, Liu Y. Human β-defensins: The multi-functional natural peptide. Biochem Pharmacol 2024; 227:116451. [PMID: 39059771 DOI: 10.1016/j.bcp.2024.116451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
The increasing threat of antibiotic resistance among pathogenic microorganisms and the urgent demand for new antibiotics require immediate attention. Antimicrobial peptides exhibit effectiveness against microorganisms, fungi, viruses, and protozoa. The discovery of human β-defensins represents a major milestone in biomedical research, opening new avenues for scientific investigation into the innate immune system and its resistance mechanisms against pathogenic microorganisms. Multiple defensins present a promising alternative in the context of antibiotic abuse. However, obstacles to the practical application of defensins as anti-infective therapies persist due to the unique properties of human β-defensins themselves and serious pharmacological and technical challenges. To overcome these challenges, diverse delivery vehicles have been developed and progressively improved for the conjugation or encapsulation of human β-defensins. This review briefly introduces the biology of human β-defensins, focusing on their multistage structure and diverse functions. It also discusses several heterologous systems for producing human β-defensins, various delivery systems created for these peptides, and patent applications related to their utilization, concluding with a summary of current challenges and potential solutions.
Collapse
Affiliation(s)
- Haile Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock Jointly Constructed by Ministry and Province, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia 010020, China
| | - Shuli Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock Jointly Constructed by Ministry and Province, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia 010020, China
| | - Simeng Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock Jointly Constructed by Ministry and Province, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia 010020, China
| | - Ying Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock Jointly Constructed by Ministry and Province, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia 010020, China.
| |
Collapse
|
2
|
Shen Q, Cui J, Wang Y, Hu ZC, Xue YP, Zheng YG. Identification of a novel growth-associated promoter for biphasic expression of heterogenous proteins in Pichia pastoris. Appl Environ Microbiol 2024; 90:e0174023. [PMID: 38193674 PMCID: PMC10880622 DOI: 10.1128/aem.01740-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024] Open
Abstract
Pichia pastoris (P. pastoris) is one of the most popular cell factories for expressing exogenous proteins and producing useful chemicals. The alcohol oxidase 1 promoter (PAOX1) is the most commonly used strong promoter in P. pastoris and has the characteristic of biphasic expression. However, the inducer for PAOX1, methanol, has toxicity and poses risks in industrial settings. In the present study, analyzing transcriptomic data of cells collected at different stages of growth found that the formate dehydrogenase (FDH) gene ranked 4960th in relative expression among 5032 genes during the early logarithmic growth phase but rose to the 10th and 1st during the middle and late logarithmic growth phases, respectively, displaying a strict biphasic expression characteristic. The unique transcriptional regulatory profile of the FDH gene prompted us to investigate the properties of its promoter (PFDH800). Under single-copy conditions, when a green fluorescent protein variant was used as the expression target, the PFDH800 achieved 119% and 69% of the activity of the glyceraldehyde-3-phosphate dehydrogenase promoter and PAOX1, respectively. After increasing the copy number of the expression cassette in the strain to approximately four copies, the expression level of GFPuv driven by PFDH800 increased to approximately 2.5 times that of the strain containing GFPuv driven by a single copy of PAOX1. Our PFDH800-based expression system exhibited precise biphasic expression, ease of construction, minimal impact on normal cellular metabolism, and high strength. Therefore, it has the potential to serve as a new expression system to replace the PAOX1 promoter.IMPORTANCEThe alcohol oxidase 1 promoter (PAOX1) expression system has the characteristics of biphasic expression and high expression levels, making it the most widely used promoter in the yeast Pichia pastoris. However, PAOX1 requires methanol induction, which can be toxic and poses a fire hazard in large quantities. Our research has found that the activity of PFDH800 is closely related to the growth state of cells and can achieve biphasic expression without the need for an inducer. Compared to other reported non-methanol-induced biphasic expression systems, the system based on the PFDH800 offers several advantages, including high expression levels, simple construction, minimal impact on cellular metabolism, no need for an inducer, and the ability to fine-tune expression.
Collapse
Affiliation(s)
- Qi Shen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Jie Cui
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Yang Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Zhong-Ce Hu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
3
|
Çobanoğlu Ş, Arslan E, Yazıcı A, Örtücü S. Expression of Human β-defensin 2 (hBD-2) in Pichia Pastoris and Investigation of Its Binding Efficiency with ACE-2. Protein J 2023; 42:399-407. [PMID: 37291459 PMCID: PMC10250178 DOI: 10.1007/s10930-023-10130-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
COVID-19 is a disease that have affected the entire world, and it continues to spread with new variants. A patient's innate immune system plays a critical role in the mild and severe transition of COVID-19. Antimicrobial peptides (AMPs), which are important components of the innate immune system, are potential molecules to fight pathogenic bacteria, fungi, and viruses. Human β-defensin 2 (hBD-2), a 41-amino-acid antimicrobial peptide, is one of the defensins inducibly expressed in the skin, lungs, and trachea in humans. In this study, it was aimed to investigate the interaction of hBD-2 produced recombinantly in Pichia pastoris with the human angiotensin-converting enzyme 2 (ACE-2) under in vitro conditions. First, hBD-2 was cloned in P. pastoris X-33 via the pPICZαA vector, a yeast expression platform, and its expression was confirmed by SDS-PAGE, western blotting, and qRT-PCR. Then, the interaction between recombinant hBD-2 and ACE-2 proteins was revealed by a pull-down assay. In light of these preliminary experiments, we suggest that the recombinantly produced hBD-2 may be protective against SARS-CoV-2 and be used as a supplement in treatment. However, current findings need to be supported by cell culture studies, toxicity analyses, and in vivo experiments.
Collapse
Affiliation(s)
- Şeymanur Çobanoğlu
- Faculty of Science, Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum, Turkey
- High Technology Research and Application Centre (YUTAM), Molecular Microbiology Laboratory, Erzurum Technical University, Erzurum, Turkey
| | - Elif Arslan
- Faculty of Science, Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum, Turkey
- High Technology Research and Application Centre (YUTAM), Molecular Microbiology Laboratory, Erzurum Technical University, Erzurum, Turkey
| | - Ayşenur Yazıcı
- Faculty of Science, Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum, Turkey.
- High Technology Research and Application Centre (YUTAM), Molecular Microbiology Laboratory, Erzurum Technical University, Erzurum, Turkey.
| | - Serkan Örtücü
- Faculty of Science, Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum, Turkey
- High Technology Research and Application Centre (YUTAM), Molecular Microbiology Laboratory, Erzurum Technical University, Erzurum, Turkey
- EcoTech Biotechnology, Ata Teknokent, Erzurum, Turkey
| |
Collapse
|
4
|
Wei DX, Zhang XW. Biosynthesis, Bioactivity, Biosafety and Applications of Antimicrobial Peptides for Human Health. BIOSAFETY AND HEALTH 2022. [DOI: 10.1016/j.bsheal.2022.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
5
|
Liu B, Liu GD, Guo HY, Zhu KC, Guo L, Zhang N, Liu BS, Jiang SG, Zhang DC. Characterization and functional analysis of liver-expressed antimicrobial peptide-2 (LEAP-2) from golden pompano Trachinotus ovatus (Linnaeus 1758). FISH & SHELLFISH IMMUNOLOGY 2020; 104:419-430. [PMID: 32562868 DOI: 10.1016/j.fsi.2020.06.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/06/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
The liver-expressed antimicrobial peptide-2 (LEAP-2) is an important component of the innate immune defense system and plays an important role in resisting the invasion of pathogenic microorganisms. In this study, LEAP-2 from golden pompano (Trachinotus ovatus) was characterized and its expression in response to Photobacterium damselae was investigated. The full-length LEAP-2 cDNA was 1758 bp, which comprised a 5'-UTR of 250 bp, an ORF of 321 bp, and a 3'-UTR of 1187 bp, encoding 106 amino acids. LEAP-2 consisted of a conserved saposin B domain and four conserved cysteines that formed two pairs of disulphide bonds. The genomic organization of LEAP-2 was also determined and shown to consisted of three introns and two exons. The predicted promoter region of ToLEAP-2 contained several putative transcription factor binding sites. Quantitative real-time (qRT-PCR) analysis indicated that LEAP-2 was ubiquitously expressed in all examined tissues, with higher mRNA levels observed in the muscle, liver, spleen, and kidney. After P. damselae stimulation, the expression level of LEAP-2 mRNA was significantly upregulated in various tissues of golden pompano. In addition, SDS-PAGE showed that the molecular mass of recombinant LEAP-2 expressed in pET-32a was approximately 23 kDa. The purified recombinant protein showed antibacterial activity against Gram-positive and Gram-negative bacteria. Luciferase reporters were constructed for five deletion fragments of different lengths from the promoter region (-1575 bp to +251 bp), and the results showed that L3 (-659 bp to +251 bp) presented the highest activity, and it was therefore defined as the core region of the LEAP-2 promoter. The seven predicted transcription factor binding sites were deleted by using PCR technology, and the results showed that the mutation of the USF transcription factor binding site caused the activity to significantly decrease. The results indicate that golden pompano LEAP-2 potentially exhibits antimicrobial effects in fish innate immunity.
Collapse
Affiliation(s)
- Bo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Guang-Dong Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Hua-Yang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Ke-Cheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Liang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Bao-Suo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Shi-Gui Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China
| | - Dian-Chang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China.
| |
Collapse
|
6
|
Efficient Soluble Expression and Purification of Recombinant Human Acidic Fibroblast Growth Factor from Escherichia coli via Fusion with a Novel Collagen-like Protein Scl2. Appl Biochem Biotechnol 2020; 191:1562-1579. [PMID: 32166590 DOI: 10.1007/s12010-020-03269-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/13/2020] [Indexed: 10/24/2022]
Abstract
Human acidic fibroblast growth factor (haFGF) is a multifunctional protein involved in regulating a wide range of cellular processes. As a potent therapeutic agent, it is highly desirable to produce recombinant haFGF (r-haFGF) at low cost. However, the complex structure and formation of aggregation confines its high-level soluble expression and functional form. Herein, to produce r-haFGF efficiently in E. coli, we devised a novel soluble expression and cost-effective purification approach based on fusion with Scl2-M (a novel modified collagen-like protein) for the first time. By using this strategy, more than 95% of the Scl2-M-haFGF fusion protein was highly expressed in soluble form and the expression level of targeted fusion protein in shake flasks and 5-L fermenter was 0.42 g/L and 2.28 g/L, respectively. Subsequently, the recombinant Scl2-M-haFGF was readily purified through a facile process of acid precipitation and subjected to enterokinase (EK) cleavage. After Scl2-M cleavage, tag-free r-haFGF was further purified using ion-exchange chromatography. The recovery rate of the whole purification process attained 34.2%. Furthermore, the resulting high-purity (96.0%) r-haFGF was prepared by freeze-drying as a final product, and its bioactivity was confirmed to potentiate the proliferation of L929 and BALB-3T3 fibroblasts. Overall, our developed method has the potential for the massive production of the r-haFGF in the future.
Collapse
|
7
|
Gene cloning, expression, purification and characterization of a sn-1,3 extracellular lipase from Aspergillus niger GZUF36. Journal of Food Science and Technology 2020; 57:2669-2680. [PMID: 32549617 DOI: 10.1007/s13197-020-04303-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/22/2020] [Accepted: 02/18/2020] [Indexed: 01/08/2023]
Abstract
Sn-1,3 extracellular Aspergillus niger GZUF36 lipase (EXANL1) has wide application potential in the food industry. However, the A. niger strain has defects such as easy degradation and instability in the expression of sn-1,3 lipase. To obtain a stable expression of this lipase and its subsequent enzymatic properties, the gene encoding EXANL1 was cloned and expressed in Escherichia coli BL21 (DE3) cells using pET-28a as the expression vector. The temperature-induced conditions were optimized, and we successfully achieved its active expression in E. coli. These conditions significantly influenced the active expression of EXANL1 (P < 0.05), and the highest enzyme activity of the supernatant of lysis cells expressed at 20 °C was at 7.02 ± 0.05 U/mL. The expressed recombinant EXANL1 was purified using Ni-NTA, showing an estimated relative molecular mass of 35 kDa. The recombinant EXANL1 exhibited maximum activity at 35 °C and pH 4.0, with a wide acid pH range. Thin-layer chromatography analysis showed that the enzyme displayed sn-1,3 positional selectivity toward triolein. The recombinant EXANL1 could maintain its relative activities (> 80%) after 24 h of incubation at pH 3-10, suggesting its suitability for a wide range of industrial applications. After comparing these properties with those of the other A. niger lipases, we found that some key amino acids may play a decisive role in enzymology. This work laid a foundation for the stable expression of the EXANL1 gene and its potential industrial application.
Collapse
|
8
|
Improving the heterologous expression of human β-defensin 2 (HBD2) using an experimental design. Protein Expr Purif 2019; 167:105539. [PMID: 31715251 DOI: 10.1016/j.pep.2019.105539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 11/22/2022]
Abstract
At present, expressing antimicrobial peptides in bacterial models is considered a routine lab bench work. However, low expression yields of these types of proteins are usually obtained. In this work, the antimicrobial peptide human β-defensin 2 (HBD2) was obtained in low expression yields in Escherichia coli BL21(DE3). To improve the expression yields of HBD2, some variables such as cell density, temperature, and length of induction, as well as the inducer concentration, were investigated using a 24-factorial design of experiments (DoE). This approach allowed us to identify the identification of critical variables (main effects and interactions among factors) affecting bacterial HBD2 expression. After the evaluation of 19 different combination, the best condition to express HBD2 had a pre-induction temperature of 37 °C, a cell density of 1.0 U (600 nm), an induction temperature of 20 °C and a 0.1 mM of gene expression inducer (IPTG) over four hours. Under such conditions, the expression yield of the HBD2 peptide was one order of magnitude higher than the peptide expression performed initially.
Collapse
|
9
|
Lopes C, dos Santos NV, Dupont J, Pedrolli DB, Valentini SR, Santos‐Ebinuma V, Pereira JFB. Improving the cost effectiveness of enhanced green fluorescent protein production using recombinantEscherichia coliBL21 (DE3): Decreasing the expression inducer concentration. Biotechnol Appl Biochem 2019; 66:527-536. [DOI: 10.1002/bab.1749] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/01/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Camila Lopes
- Department of Bioprocesses and BiotechnologySchool of Pharmaceutical Sciences, São Paulo State University (UNESP) Araraquara Brazil
| | - Nathalia Vieira dos Santos
- Department of Bioprocesses and BiotechnologySchool of Pharmaceutical Sciences, São Paulo State University (UNESP) Araraquara Brazil
| | - Jana Dupont
- Department of Bioprocesses and BiotechnologySchool of Pharmaceutical Sciences, São Paulo State University (UNESP) Araraquara Brazil
- Faculty of Bioscience EngineeringGent University Gent Belgium
| | - Danielle Biscaro Pedrolli
- Department of Bioprocesses and BiotechnologySchool of Pharmaceutical Sciences, São Paulo State University (UNESP) Araraquara Brazil
| | - Sandro Roberto Valentini
- Department of Biological SciencesSchool of Pharmaceutical Sciences, São Paulo State University (UNESP) Araraquara Brazil
| | - Valéria Santos‐Ebinuma
- Department of Bioprocesses and BiotechnologySchool of Pharmaceutical Sciences, São Paulo State University (UNESP) Araraquara Brazil
| | - Jorge Fernando Brandão Pereira
- Department of Bioprocesses and BiotechnologySchool of Pharmaceutical Sciences, São Paulo State University (UNESP) Araraquara Brazil
| |
Collapse
|
10
|
Tajbakhsh M, Akhavan MM, Fallah F, Karimi A. A Recombinant Snake Cathelicidin Derivative Peptide: Antibiofilm Properties and Expression in Escherichia coli. Biomolecules 2018; 8:E118. [PMID: 30360422 PMCID: PMC6315654 DOI: 10.3390/biom8040118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 10/14/2018] [Accepted: 10/17/2018] [Indexed: 12/17/2022] Open
Abstract
The emergence of antimicrobial resistance among pathogenic microorganisms has been led to an urgent need for antibiotic alternatives. Antimicrobial peptides (AMPs) have been introduced as promising therapeutic agents because of their remarkable potentials. A new modified cathelicidin-BF peptide (Cath-A) with 34 amino acid sequences, represents the potential antimicrobial effects against methicillin-resistant Staphylococcus aureus (MRSA) with slight hemolytic and cytotoxic activities on eukaryotic cells. In this study, the effects of Cath-A on Acinetobacter baumannii, and Pseudomonas aeruginosa isolated from medical instruments were studied. Cath-A inhibited the growth of bacterial cells in the range of 8⁻16 μg/mL and 16-≥256 μg/mL for A. baumannii and P. aeruginosa, respectively. The peptide significantly removed the established biofilms. To display a representative approach for the cost-effective constructions of peptides, the recombinant Cath-A was cloned in the expression vector pET-32a(+) and transformed to Escherichia coli BL21. The peptide was expressed with a thioredoxin (Trx) sequence in optimum conditions. The recombinant peptide was purified with a Ni2+ affinity chromatography and the mature peptide was released after removing the Trx fusion protein with enterokinase. The final concentration of the partially purified peptide was 17.6 mg/L of a bacterial culture which exhibited antimicrobial activities. The current expression and purification method displayed a fast and effective system to finally produce active Cath-A for further in-vitro study usage.
Collapse
Affiliation(s)
- Mercedeh Tajbakhsh
- Pediatric Infections Research Center (PIRC), Research Institute for Children Health, Shahid Beheshti University of Medical Sciences, Tehran 1546815514, Iran.
| | - Maziar Mohammad Akhavan
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1989934148, Iran.
| | - Fatemeh Fallah
- Pediatric Infections Research Center (PIRC), Research Institute for Children Health, Shahid Beheshti University of Medical Sciences, Tehran 1546815514, Iran.
| | - Abdollah Karimi
- Pediatric Infections Research Center (PIRC), Research Institute for Children Health, Shahid Beheshti University of Medical Sciences, Tehran 1546815514, Iran.
| |
Collapse
|
11
|
Mesa-Pereira B, Rea MC, Cotter PD, Hill C, Ross RP. Heterologous Expression of Biopreservative Bacteriocins With a View to Low Cost Production. Front Microbiol 2018; 9:1654. [PMID: 30093889 PMCID: PMC6070625 DOI: 10.3389/fmicb.2018.01654] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/02/2018] [Indexed: 02/04/2023] Open
Abstract
Bacteriocins, a heterogenous group of antibacterial ribosomally synthesized peptides, have potential as bio-preservatives in in a wide range of foods and as future therapeutics for the inhibition of antibiotic-resistant bacteria. While many bacteriocins have been characterized, several factors limit their production in large quantities, a requirement to make them commercially viable for food or pharma applications. The identification of new bacteriocins by database mining has been promising, but their potential is difficult to evaluate in the absence of suitable expression systems. E. coli has been used as a heterologous host to produce recombinant proteins for decades and has an extensive set of expression vectors and strains available. Here, we review the different expression systems for bacteriocin production using this host and identify the most important features to guarantee successful production of a range of bacteriocins.
Collapse
Affiliation(s)
- Beatriz Mesa-Pereira
- Teagasc Food Research Centre, Teagasc Moorepark, Fermoy, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Mary C Rea
- Teagasc Food Research Centre, Teagasc Moorepark, Fermoy, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre, Teagasc Moorepark, Fermoy, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - R Paul Ross
- Teagasc Food Research Centre, Teagasc Moorepark, Fermoy, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland.,College of Science Engineering and Food Science, University College Cork, Cork, Ireland
| |
Collapse
|
12
|
Choi TJ, Geletu TT. High level expression and purification of recombinant flounder growth hormone in E. coli. J Genet Eng Biotechnol 2018; 16:347-355. [PMID: 30733745 PMCID: PMC6353774 DOI: 10.1016/j.jgeb.2018.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/21/2018] [Accepted: 03/13/2018] [Indexed: 02/07/2023]
Abstract
Recombinant flounder growth hormone was overproduced in E. coli by using codon optimized synthetic gene and optimized expression conditions for high level production. The gene was cloned into PET-28a expression vector and transformed into E. coli BL21 (DE3). Induction at lower temperature, lower IPTG concentrations and richer growth media during expression resulted in increased expression level. The protein expression profile was analyzed by SDS-PAGE, the authenticity was confirmed by western blotting and the concentration was determined by Bradford assay. In addition, several attempts were made to produce soluble product and all resulted in insoluble product. The overexpressed protein was efficiently purified from inclusion bodies by moderate speed centrifugation after cell lysis. Among the solubilization buffers examined, buffer with 1% N-lauroylsarcosine in the presence of reducing agent DTT at alkaline pH resulted in efficient solubilization and recovery. The denaturant was removed by filtration and dialysis. The amount of the growth hormone recovered was significantly higher than previous reports that expressed native growth hormone genes in E. coli. The methodology adapted in this study, can be used to produce flounder growth hormone at large scale level so that it can be used in aquaculture. This approach may also apply to other proteins if high level expression and efficient purification is sought in E. coli.
Collapse
Key Words
- DTT, dithiothreitol
- Expression
- Growth hormone
- IPTG, isopropyl β-D-1-thiogalactopyranoside
- Kan, kanamycin
- Purification
- Recombinant
- SDS-PAGE, sodium dodecyl sulfate- polyacrylamide gel electrophoresis
- TEMED, tetramethylethylenediamine
- bp, base pair
- cDNA, complementary DNA
- fGH, flounder growth hormone
- kDa, kilo Dalton
- kb, kilo base
Collapse
Affiliation(s)
- Tae-Jin Choi
- Pukyong National University, Department of Microbiology, Busan 608-737, Republic of Korea
| | - Temesgen Tola Geletu
- Haramaya University, School of Biological Sciences and Biotechnology, Dire Dawa 138, Ethiopia
- Corresponding author at: P.O. Box, 81, Dire Dawa, Ethiopia.
| |
Collapse
|
13
|
Optimization of culturing conditions of recombined Escherichia coli to produce umami octopeptide-containing protein. Food Chem 2017; 227:78-84. [PMID: 28274461 DOI: 10.1016/j.foodchem.2017.01.096] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/17/2016] [Accepted: 01/17/2017] [Indexed: 12/24/2022]
Abstract
Using synthesized peptides to verify the taste of natural peptides was probably the leading cause for tasting disputes regarding umami peptides. A novel method was developed to prepare the natural peptide which could be used to verify the taste of umami peptide. A controversial octopeptide was selected and gene engineering was used to structure its Escherichia coli. expressing vector. A response surface method was adopted to optimize the expression conditions of the recombinant protein. The results of SDS-PAGE for the recombinant protein indicated that the recombinant expression system was successfully structured. The fitting results of the response surface experiment showed that the OD600 value was the key factor which influenced the expression of the recombinant protein. The optimal culturing process conditions predicted with the fitting model were an OD600 value of 0.5, an IPTG concentration of 0.6mM, a culturing temperature of 28.75°C and a culturing time of 5h.
Collapse
|
14
|
Soleyman MR, Khalili M, Khansarinejad B, Baazm M. High-level Expression and Purification of Active Human FGF-2 in Escherichia coli by Codon and Culture Condition Optimization. IRANIAN RED CRESCENT MEDICAL JOURNAL 2016; 18:e21615. [PMID: 27175305 PMCID: PMC4863364 DOI: 10.5812/ircmj.21615] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 07/30/2014] [Accepted: 08/20/2014] [Indexed: 12/19/2022]
Abstract
BACKGROUND Basic fibroblast growth factor (bFGF) is a member of a highly conserved superfamily of proteins that are involved in cell proliferation, differentiation, and migration. OBJECTIVES The objective of this study was to overexpress and purify the high-level active human bFGF in Escherichia coli (E. coli). MATERIALS AND METHODS This experimental study was conducted in the Islamic Republic of Iran. After codon optimization and gene synthesis, the optimized FGF-2 gene was subcloned into plasmid pET-32a. pET32-FGF-2 was transformed into E. coli BL21 for expression. The cultivation parameters were optimized to produce a high yield of FGF-2. RESULTS The optimal conditions were determined as follows: cultivation at 37°C in TB medium, with 1 mM isopropyl-β-D-thiogalactopyranoside (IPTG), followed by post-induction expression for 6 h. Under the abovementioned conditions, the expression volumetric productivity of FGF-2 reached 1.48 g/L. CONCLUSIONS A fusion tag from the pET32 expression plasmid permits the recovery of the recombinant fusion FGF-2 from E. coli, without affecting its biological activity.
Collapse
Affiliation(s)
- Mohammad Reza Soleyman
- Department of Biotechnology, School of Medicine, Arak University of Medical Sciences, Arak, IR Iran
| | - Mostafa Khalili
- Department of Biotechnology, School of Medicine, Arak University of Medical Sciences, Arak, IR Iran
| | - Behzad Khansarinejad
- Department of Microbilogy and Immunology, School of Medicine, Arak University of Medical Sciences, Arak, IR Iran
| | - Maryam Baazm
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak, IR Iran
| |
Collapse
|
15
|
The recombinant expression and activity detection of MAF-1 fusion protein. Sci Rep 2015; 5:14716. [PMID: 26423137 PMCID: PMC4589688 DOI: 10.1038/srep14716] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 09/02/2015] [Indexed: 11/08/2022] Open
Abstract
This study establishes the recombinant expression system of MAF-1 (Musca domestica antifungal peptide-1) and demonstrates the antifungal activity of the expression product and shows the relationship between biological activity and structure. The gene segments on mature peptide part of MAF-1 were cloned, based on the primers designed according to the cDNA sequence of MAF-1. We constructed the recombinant prokaryotic expression plasmid using prokaryotic expression vector (pET-28a(+)) and converted it to the competent cell of BL21(DE3) to gain recombinant MAF-1 fusion protein with His tag sequence through purifying affinity chromatographic column of Ni-NTA. To conduct the Western Blotting test, recombinant MAF-1 fusion protein was used to produce the polyclonal antibody of rat. The antifungal activity of the expression product was detected using Candida albicans (ATCC10231) as the indicator. The MAF-1 recombinant fusion protein was purified to exhibit obvious antifungal activity, which lays the foundation for the further study of MAF-1 biological activity, the relationship between structure and function, as well as control of gene expression.
Collapse
|
16
|
Guo W, Chen B, Shan J, Rong Y, Wang C, Cai J, Huang L, Xu Z, Cen P. Efficient soluble expression of two copies of EMP1 connected in series in Escherichia coli, with enhanced EPO activity. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Morowvat MH, Babaeipour V, Rajabi Memari H, Vahidi H. Optimization of Fermentation Conditions for Recombinant Human Interferon Beta Production by Escherichia coli Using the Response Surface Methodology. Jundishapur J Microbiol 2015; 8:e16236. [PMID: 26034535 PMCID: PMC4449858 DOI: 10.5812/jjm.8(4)2015.16236] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 07/20/2014] [Accepted: 08/06/2014] [Indexed: 02/03/2023] Open
Abstract
Background: The periplasmic overexpression of recombinant human interferon beta (rhIFN-β)-1b using a synthetic gene in Escherichia coli BL21 (DE3) was optimized in shake flasks using Response Surface Methodology (RSM) based on the Box-Behnken Design (BBD). Objectives: This study aimed to predict and develop the optimal fermentation conditions for periplasmic expression of rhIFN-β-1b in shake flasks whilst keeping the acetate excretion as the lowest amount and exploit the best results condition for rhIFN-β in a bench top bioreactor. Materials and Methods: The process variables studied were the concentration of glucose as carbon source, cell density prior the induction (OD 600 nm) and induction temperature. Ultimately, a three-factor three-level BBD was employed during the optimization process. The rhIFN-β production and the acetate excretion served as the evaluated responses. Results: The proposed optimum fermentation condition consisted of 7.81 g L-1 glucose, OD 600 nm prior induction 1.66 and induction temperature of 30.27°C. The model prediction of 0.267 g L-1 of rhIFN-β and 0.961 g L-1 of acetate at the optimum conditions was verified experimentally as 0.255 g L-1 and 0.981 g L-1 of acetate. This agreement between the predicted and observed values confirmed the precision of the applied method to predict the optimum conditions. Conclusions: It can be concluded that the RSM is an effective method for the optimization of recombinant protein expression using synthetic genes in E. coli.
Collapse
Affiliation(s)
- Mohammad Hossein Morowvat
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Valiollah Babaeipour
- Biochemical Engineering Group, Biotechnology Research Center, Malek-Ashtar University of Technology, Tehran, IR Iran
- Department of Bioscience Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, IR Iran
- Corresponding author: Valiollah Babaeipour, Department of Bioscience Engineering, Faculty of New Sciences and Technologies, University of Tehran, P. O. Box 14395-1374, Tehran, IR Iran. Tel/Fax: +98-2122974614, E-mail: .
| | - Hamid Rajabi Memari
- Department of Agronomy and Plant Breeding, College of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, IR Iran
| | - Hossein Vahidi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| |
Collapse
|
18
|
Corrales-Garcia L, Ortiz E, Castañeda-Delgado J, Rivas-Santiago B, Corzo G. Bacterial expression and antibiotic activities of recombinant variants of human β-defensins on pathogenic bacteria and M. tuberculosis. Protein Expr Purif 2013; 89:33-43. [PMID: 23459290 DOI: 10.1016/j.pep.2013.02.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 02/16/2013] [Accepted: 02/18/2013] [Indexed: 11/26/2022]
Abstract
Five variants of human β-defensins (HBDs) were expressed in Escherichia coli using two vector systems (pET28a(+) and pQE30) with inducible expression by IPTG. The last vector has not been previously reported as an expression system for HBDs. The recombinant peptides were different in their lengths and overall charge. The HBDs were expressed as soluble or insoluble proteins depending on the expression system used, and the final protein yields ranged from 0.5 to 1.6 mg of peptide/g of wet weight cells, with purities higher than 90%. The recombinant HBDs demonstrated a direct correlation between antimicrobial activity and the number of basic charged residues; that is, their antimicrobial activity was as follows: HBD3-M-HBD2 > HBD3 = HBD3-M = HB2-KLK > HBD2 when assayed against E. coli, Staphylococcus aureus and Pseudomonas aeruginosa. Interestingly, HBD2 had the best antimicrobial activity against the Mycobacterium tuberculosis strain H37Rv (1.5 μM) and the heterologous tandem peptide, HBD3-M-HBD2, had the best minimal inhibitory concentration (MIC) value (2.7 μM) against a multidrug resistance strain (MDR) of M. tuberculosis, demonstrating the feasibility of the use of HBDs against pathogenic M. tuberculosis reported to be resistant to commercial antibiotics.
Collapse
Affiliation(s)
- Ligia Corrales-Garcia
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 61500, Mexico
| | | | | | | | | |
Collapse
|
19
|
Chen H, Tian F, Li S, Xie Y, Zhang H, Chen W. Cloning and heterologous expression of a bacteriocin sakacin P from Lactobacillus sakei in Escherichia coli. Appl Microbiol Biotechnol 2012; 94:1061-8. [DOI: 10.1007/s00253-012-3872-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Revised: 12/14/2011] [Accepted: 12/26/2011] [Indexed: 10/14/2022]
|
20
|
Zhang D, Wei P, Fan L, Lian J, Huang L, Cai J, Xu Z. High-level soluble expression of hIGF-1 fusion protein in recombinant Escherichia coli. Process Biochem 2010. [DOI: 10.1016/j.procbio.2010.05.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Bryksa BC, Horimoto Y, Yada RY. Rational redesign of porcine pepsinogen containing an antimicrobial peptide. Protein Eng Des Sel 2010; 23:711-9. [PMID: 20601363 DOI: 10.1093/protein/gzq039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A novel strategy for the controlled release and localization of bioactive peptides within digestive and immunity-related enzymes was developed. The N-terminus of porcine pepsinogen A was fused to the basic amino acid-rich region of bovine lactoferricin B termed 'tLfcB', a cationic antimicrobial/anticancer peptide. Recombinant tLfcB-porcine pepsinogen A was expressed in soluble form in Escherichia coli as a thioredoxin (Trx) fusion protein. Thioredoxin-tLfcB-porcine pepsinogen A was found to activate autocatalytically under acidic conditions. Recombinant pepsin A derived from the activation of the fusion protein had a catalytic rate and substrate affinity similar to that derived from the recombinant thioredoxin-porcine pepsinogen A control. Pepsin-treated thioredoxin-tLfcB-porcine pepsinogen A yielded increased antimicrobial activity against the Gram-negative bacteria E.coli relative to control suggesting that a second function (antimicrobial activity) was successfully engineered into a functional peptidase. The novel design strategy described herein presents a potential strategy for targeted delivery of antimicrobial or therapeutic peptides in transgenic organisms via re-engineering native proteins critical to plant and animal defense mechanisms.
Collapse
Affiliation(s)
- Brian C Bryksa
- Department of Food Science, University of Guelph, Guelph, ON, Canada N1G 2W1
| | | | | |
Collapse
|
22
|
Corrales-Garcia LL, Possani LD, Corzo G. Expression systems of human β-defensins: vectors, purification and biological activities. Amino Acids 2010; 40:5-13. [DOI: 10.1007/s00726-010-0493-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 01/19/2010] [Indexed: 01/19/2023]
|
23
|
Optimal production of a novel endo-acting β-1,4-xylanase cloned from Saccharophagus degradans 2-40 into Escherichia coli BL21(DE3). N Biotechnol 2009; 26:157-64. [DOI: 10.1016/j.nbt.2009.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 07/02/2009] [Accepted: 07/17/2009] [Indexed: 11/21/2022]
|
24
|
Li JF, Zhang J, Song R, Zhang JX, Shen Y, Zhang SQ. Production of a cytotoxic cationic antibacterial peptide in Escherichia coli using SUMO fusion partner. Appl Microbiol Biotechnol 2009; 84:383-8. [PMID: 19582446 DOI: 10.1007/s00253-009-2109-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 06/18/2009] [Accepted: 06/21/2009] [Indexed: 11/30/2022]
Abstract
Antibacterial peptide CM4 (ABP-CM4) is a small cationic peptide with broad-spectrum activities against bacteria, fungi, and tumor cells, which may possibly be used as an antimicrobial agent. We report here the application of small ubiquitin-related modifier (SUMO) fusion technology to the expression and purification of cationic antibacterial peptide ABP-CM4. The fusion protein expressed in a soluble form was purified to a purity of 90% by Ni-IDA chromatography and 112 mg protein of interest was obtained per liter of fermentation culture. After the SUMO-CM4 fusion protein was cleaved by the SUMO protease at 30 degrees C for 1 h, the cleaved sample was re-applied to a Ni-IDA. Finally, about 24 mg recombinant CM4 was obtained from 1 l fermentation culture with no less than 96% purity and the recombinant CM4 had similar antimicrobial properties to the synthetic CM4. Thus, the SUMO-mediated peptide expression and purification system potentially could be employed for the production of recombinant cytotoxic peptides.
Collapse
Affiliation(s)
- Jian Feng Li
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Science College, Nanjing Normal University, Nanjing, 210046, People's Republic of China
| | | | | | | | | | | |
Collapse
|
25
|
Lian J, Ding S, Cai J, Zhang D, Xu Z, Wang X. Improving aquaporin Z expression in Escherichia coli by fusion partners and subsequent condition optimization. Appl Microbiol Biotechnol 2009; 82:463-470. [PMID: 19005651 DOI: 10.1007/s00253-008-1774-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 10/26/2008] [Accepted: 10/27/2008] [Indexed: 11/29/2022]
Abstract
Aquaporin Z (AqpZ), a typical orthodox aquaporin with six transmembrane domains, was expressed as a fusion protein with TrxA in E. coli in our previous work. In the present study, three fusion partners (DsbA, GST and MBP) were employed to improve the expression level of this channel protein in E. coli. The result showed that, compared with the expression level of TrxA-AqpZ, five- to 40-fold increase in the productivity of AqpZ with fusion proteins was achieved by employing these different fusion partners, and MBP was the most efficient fusion partner to increase the expression level. By using E. coli C43 (DE3)/pMAL-AqpZ, the effects of different expression conditions were investigated systematically to improve the expression level of MBP-AqpZ in E. coli. The high productivity of MBP-AqpZ (200 mg/l) was achieved under optimized conditions. The present work provides a novel approach to improve the expression level of membrane proteins in E. coli.
Collapse
Affiliation(s)
- Jiazhang Lian
- Institute of Bioengineering, Department of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou, 310027, China
| | | | | | | | | | | |
Collapse
|
26
|
Wang Y, Jiang Y, Yang D, Li W, Gong T, Feng Y, Jiang Z, Li M. Purification and characterization of novel antifungal peptide, mouse beta defensin-1, in Escherichia coli. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-9956-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Guo C, Diao H, Lian Y, Yu H, Gao H, Zhang Y, Lin D. Recombinant expression and characterization of an epididymis-specific antimicrobial peptide BIN1b/SPAG11E. J Biotechnol 2009; 139:33-7. [DOI: 10.1016/j.jbiotec.2008.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 10/01/2008] [Accepted: 10/01/2008] [Indexed: 10/21/2022]
|
28
|
Escherichia coli expression and purification of four antimicrobial peptides fused to a family 3 carbohydrate-binding module (CBM) from Clostridium thermocellum. Protein Expr Purif 2008; 59:161-8. [DOI: 10.1016/j.pep.2008.01.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 01/24/2008] [Accepted: 01/28/2008] [Indexed: 11/19/2022]
|
29
|
|
30
|
Lin GZ, Lian YJ, Ryu JH, Sung MK, Park JS, Park HJ, Park BK, Shin JS, Lee MS, Cheon CI. Expression and purification of His-tagged flavonol synthase of Camellia sinensis from Escherichia coli. Protein Expr Purif 2007; 55:287-92. [PMID: 17629496 DOI: 10.1016/j.pep.2007.05.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 05/21/2007] [Accepted: 05/22/2007] [Indexed: 11/30/2022]
Abstract
Flavonols, a class of bioactive polyphenols present in plants, are the products of flavonol desaturation catalyzed by flavonol synthase (FLS). We cloned the cDNA coding for the enzyme FLS from Camellia sinensis (CsFLS) by end-to-end PCR followed by 5'- and 3'-RACE. The putative CsFLS had 333 amino acid residues, displayed identities to the FLSs of Arabidopsis and Ginkgo of 53% and 52.5%, respectively, and contained several conserved elements found in the 2-oxoglutarate-Fe(II)-dioxygenase superfamily. The cDNA of CsFLS was subcloned into pET28a(+) and introduced into Escherichia coli (BL21-CodonPlus-RIL). Induction with 0.1mM IPTG at low temperature (20 degrees C) led to higher amounts of CsFLS in the soluble fraction than induction at 30 degrees C. The enzyme aggregated into inclusion bodies could be rescued by denaturation with 6M urea and purification with a His. Bind purification kit. The purified protein was desalted by Amicon Ultra-15 centrifugal filter unit, and the His-tag was removed with thrombin. The finally purified protein was assayed with dihydroquercetin as substrate and the products were analyzed by HPLC. The addition of FeSO(4) to the buffers used in the CsFLS purification significantly increased the recovery of active enzyme. The CsFLS obtained in this study was found to have higher specific activity and lower K(m) than previously reported FLSs.
Collapse
Affiliation(s)
- Guang-Zhe Lin
- Department of Biological Science, Sookmyung Women's University, Hyochangwon-gil 52, Yongsan-gu, Seoul 140-742, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Zhou QF, Luo XG, Ye L, Xi T. High-level production of a novel antimicrobial peptide perinerin in Escherichia coli by fusion expression. Curr Microbiol 2007; 54:366-70. [PMID: 17486407 DOI: 10.1007/s00284-006-0466-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2006] [Accepted: 01/01/2007] [Indexed: 11/30/2022]
Abstract
Perinerin is a small antimicrobial peptide (AMP) isolated from an Asian marine clamworm, Perinereis aibuhitensis Grube. It shows marked activity in vitro against both Gram-negative and Gram-positive bacteria. To obtain it in large amounts, the coding sequence of perinerin was cloned into pET32a(+) vector and expression as a Trx fusion protein in Escherichia coli. The soluble fusion protein collected from the supernatant of the cell lyste was separated by Ni(2+)-chelating chromatography. The purified protein was then cleaved by Factor Xa protease to release mature perinerin. Final purification was achieved by ion-exchange chromatography. Recombinant perinerin exhibited a similar antimicrobial activity to the native perinerin. These works might provide a significant foundation for the following research on the action of mechanism of marine AMPs.
Collapse
Affiliation(s)
- Qing-Feng Zhou
- Department of Marine Biochemistry Engineer, School of Life Science and Technology China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | | | | | | |
Collapse
|
32
|
Huang L, Xu Z, Zhong Z, Peng L, Chen H, Cen P. Enhanced Expression and Primary Purification of Soluble HBD3 Fusion Protein in Escherichia coli. Appl Biochem Biotechnol 2007; 142:139-47. [DOI: 10.1007/s12010-007-0009-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2005] [Revised: 03/13/2006] [Accepted: 04/25/2006] [Indexed: 11/25/2022]
|
33
|
Chen J, Lu Y, Xu Z, Cen P, Fang X. Efficient expression and primary purification of 6-his tagged human Fas ligand in Dictyostelium discoideum. Biotechnol Lett 2007; 29:859-63. [PMID: 17351714 DOI: 10.1007/s10529-007-9341-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 01/16/2007] [Accepted: 01/29/2007] [Indexed: 11/25/2022]
Abstract
Human Fas ligand (hFasL) is a member of the tumor necrosis factor (TNF) family with many medical interests. To produce this protein efficiently, an improved vector which could express the recombinant hFasL protein with a 6-his tag at its C-terminal was constructed. The new vector was transformed into Dictyostelium discoideum AX3 which then produced 157 microg hFasL l(-1). Using one-step Ni-affinity chromatography, it was purified with a recovery of 92% and purity of 91%.
Collapse
Affiliation(s)
- Jie Chen
- Department of Chemical Engineering and Bioengineering, Zhejiang University, Hangzhou, PR China
| | | | | | | | | |
Collapse
|
34
|
Chen H, Fan L, Xu Z, Yin X, Cen P. Efficient production of soluble human beta-defensin-3–4 fusion proteins in Escherichia coli cell-free system. Process Biochem 2007. [DOI: 10.1016/j.procbio.2006.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
35
|
Islam RS, Tisi D, Levy MS, Lye GJ. Framework for the Rapid Optimization of Soluble Protein Expression inEscherichia coliCombining Microscale Experiments and Statistical Experimental Design. Biotechnol Prog 2007. [DOI: 10.1002/bp070059a] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
36
|
Huang L, Wang J, Zhong Z, Peng L, Chen H, Xu Z, Cen P. Production of bioactive human beta-defensin-3 in Escherichia coli by soluble fusion expression. Biotechnol Lett 2006; 28:627-32. [PMID: 16642299 DOI: 10.1007/s10529-006-0024-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Accepted: 01/27/2006] [Indexed: 01/01/2023]
Abstract
A codon optimized mature human beta-defensin-3 gene (smHBD3) was synthesized and fused with TrxA to construct pET32-smHBD3 vector, which was transformed into E. coli BL21(DE3) and cultured in MBL medium. The volumetric productivity of fusion protein reached 0.99 g fusion protein l(-1), i.e. 0.21 g mature HBD3 l(-1). Ninety-six percentage of the fusion protein was in a soluble form and constituted about 45% of the total soluble protein. After cell disruption, the soluble fusion protein was separated by affinity chromatography and cleaved by enterokinase, and then the mature HBD3 was purified by cationic ion exchange chromatography. The overall recovery ratio of HBD3 was 43%. The purified mature HBD3 demonstrated antimicrobial activity against E. coli.
Collapse
Affiliation(s)
- Lei Huang
- Institute of Bioengineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | |
Collapse
|
37
|
Vásquez-Bahena J, Vega-Estrada J, Santiago-Hernández J, Ortega-López J, Flores-Cotera L, Montes-Horcasitas M, Hidalgo-Lara M. Expression and improved production of the soluble extracellular invertase from Zymomonas mobilis in Escherichia coli. Enzyme Microb Technol 2006. [DOI: 10.1016/j.enzmictec.2005.11.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
38
|
Xu Z, Jing K, Liu Y, Cen P. High-level expression of recombinant glucose dehydrogenase and its application in NADPH regeneration. J Ind Microbiol Biotechnol 2006; 34:83-90. [PMID: 16941118 DOI: 10.1007/s10295-006-0168-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2005] [Accepted: 07/15/2006] [Indexed: 10/24/2022]
Abstract
Two glucose dehydrogenase (E.C. 1.1.1.47) genes, gdh223 and gdh151, were cloned from Bacillus megaterium AS1.223 and AS1.151, and were inserted into pQE30 to construct the expression vectors, pQE30-gdh223 and pQE30-gdh151, respectively. The transformant Escherichia coli M15 with pQE30-gdh223 gave a much higher glucose dehydrogenase activity than that with the plasmid pQE30-gdh151. Thus it was used to optimize the expression of glucose dehydrogenase. An proximately tenfold increase in GDH activity was achieved by the optimization of culture and induction conditions, and the highest productivity of glucose dehydrogenase (58.7 U/ml) was attained. The recombinant glucose dehydrogenase produced by E. coli M15 (pQE30-gdh223) was then used to regenerate NADPH. NADPH was efficiently regenerated in vivo and in vitro when 0.1 M glucose was supplemented concomitantly in the reaction system. Finally, this coenzyme-regenerating system was coupled with a NADPH-dependent bioreduction for efficient synthesis of ethyl (R)-4-chloro-3-hydroxybutanoate from ethyl 4-chloro-3-oxobutanoate.
Collapse
Affiliation(s)
- Zhinan Xu
- Department of Chemical Engineering and Bioengineering, Institute of Bioengineering, Zhejiang University, Hangzhou, 310027, Zhejiang Province, PR China.
| | | | | | | |
Collapse
|
39
|
Chen H, Xu Z, Peng L, Fang X, Yin X, Xu N, Cen P. Recent advances in the research and development of human defensins. Peptides 2006; 27:931-40. [PMID: 16226346 DOI: 10.1016/j.peptides.2005.08.018] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Revised: 08/28/2005] [Accepted: 08/31/2005] [Indexed: 01/03/2023]
Abstract
Human defensins are a family of cationic antimicrobial peptides with molecular weights of 4-5 kDa, containing a conserved six disulphide-linked cysteine motif. During the last two decades a series of endogenous alpha- and beta-human defensins were discovered. They exhibit a broad range of antimicrobial properties and are thought to be ideal therapeutic agents because of their potential ability to circumvent the problems of acquired resistance often observed with other antimicrobial therapies. Because of their appealing medical and pharmaceutical potential there has been an emphasis on human defensins in medical and molecular biology research in recent years. This paper aims to present a comprehensive review of recent advances in the study of human defensins including their discovery, classification, molecular properties, expression, mechanisms of action and potential medical applications. In addition, the advances in producing human defensins via genetic engineered cells are summarized from research works in our group (besides host cells including E. coli, B. subtilis and yeast systems, the cell-free protein synthesis system was also employed to express human beta-defensin-2) along with other related published works. The present challenges and prospects for the potential application of human defensins are also discussed.
Collapse
Affiliation(s)
- Haiqin Chen
- Institute of Bioengineering, Department of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou 310027, PR China
| | | | | | | | | | | | | |
Collapse
|
40
|
Cipáková I, Gasperík J, Hostinová E. Expression and purification of human antimicrobial peptide, dermcidin, in Escherichia coli. Protein Expr Purif 2006; 45:269-74. [PMID: 16125410 DOI: 10.1016/j.pep.2005.07.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Revised: 06/28/2005] [Accepted: 07/07/2005] [Indexed: 11/23/2022]
Abstract
Human dermcidin, an anionic antimicrobial peptide expressed in the pons of the brain and the sweat glands, displays antimicrobial activity against pathogenic microorganisms such as Staphylococcus aureus and Candida albicans. Here, we describe the recombinant production of a 48 amino acid dermcidin variant with C-terminal homoserine lactone (DCD-1Hsl). Dermcidin coding sequence was cloned downstream of a 125 amino acid ketosteroid isomerase gene and upstream of a His6Tag sequence in pET-31b(+) vector and transformed into Escherichia coli. The fusion protein was expressed in the form of inclusion bodies, purified on His Bind Resin, and cleaved by CNBr to release recombinant DCD-1Hsl. Purification of rDCD-1Hsl was achieved by solid-phase extraction that yielded milligram amounts of peptide with more than 95% purity. Recombinant peptide showed antimicrobial activities against E. coli ML-35p, Salmonella typhimurium 5156, Listeria monocytogenes 264, S. aureus 29/58 (clinical isolate), and C. albicans K2 (clinical strain). The application of this expression/purification approach represents a fast and efficient method to prepare milligram quantities of dermcidin in its biologically active form.
Collapse
|
41
|
Xu Z, Zhong Z, Huang L, Peng L, Wang F, Cen P. High-level production of bioactive human beta-defensin-4 in Escherichia coli by soluble fusion expression. Appl Microbiol Biotechnol 2006; 72:471-9. [PMID: 16437202 DOI: 10.1007/s00253-005-0287-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2005] [Revised: 11/29/2005] [Accepted: 12/01/2005] [Indexed: 11/26/2022]
Abstract
Human beta-defensin-4 (hBD4) is a cationic 50-amino acid antimicrobial peptide with three conserved cysteine disulfide bonds. It exhibits a broad antimicrobial spectrum. This study describes the synthesis of hBD4 gene, the heterologous fusion expression of the peptide in Escherichia coli, and the bioactive assay of released hBD4. A PCR-based gene SOEing (splicing by overlap extension) synthesis method was used in the synthesis of the hBD4 gene with optimized codons. By constructing the expression plasmid (pET32-smhBD4), high concentration of soluble hBD4 fusion protein (1.9 g/l) can be obtained in E. coli. Further optimization studies showed that the expression system was very efficient to produce soluble target protein, and the solubility of the target protein could attain more than 99% even when the culture temperature was as high as 37 degrees C. The highest productivity (2.68 g/l) of the hBD4 fusion protein was achieved by cultivating the E. coli (pET32-smhBD4) in MBL medium at 34 degrees C, inducing the culture at the mid-exponential phase with 0.4-mM isopropyl beta-D-galactopyranoside (IPTG), and collecting the broth after 6-h expression. The soluble target protein accounted for 64.6% of the total soluble proteins, and the mature hBD4 expression level was stoichiometrically estimated to be 0.689 g/l. This fusion protein was then purified and cleaved to get the mature hBD4 peptide that showed antimicrobial activity against E. coli and Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Zhinan Xu
- Institute of Bioengineering, Department of Chemical Engineering and Bioengineering, Zhejiang University (Yuquan campus), Hangzhou, 310027 Zhejiang, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
42
|
Zhong Z, Xu Z, Peng L, Huang L, Fang X, Cen P. Tandem repeat mhBD2 gene enhance the soluble fusion expression of hBD2 in Escherichia coli. Appl Microbiol Biotechnol 2005; 71:661-7. [PMID: 16322988 DOI: 10.1007/s00253-005-0212-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2005] [Revised: 10/05/2005] [Accepted: 10/10/2005] [Indexed: 10/25/2022]
Abstract
Human beta-defensin-2 (hBD2) is a cysteine-rich cationic antimicrobial peptide with low molecular weight that exhibits a broad range of antimicrobial activity. To improve the expression level of hBD2 in Escherichia coli, tandem repeats of mature hBD2 gene were constructed and expressed as fusion proteins (TrxA-nmhBD2, n = 1, 2, 4, 8) by constructing the vectors of pET32-nsmhBD2 (n = 1, 2, 4, 8). The results showed that the tandem repeats of mhBD2 gene were highly expressed in our constructed system. Comparing the expression levels of soluble mhBD2, BL21(DE3)/pET32-2smhBD2 was selected as an ideal recombinant strain for mature hBD2 production. Under the optimized conditions of cultivation and isopropylthiogalactoside (IPTG) induction, the maximum expression level of soluble mature hBD2 (0.76 g/l) with the highest percentage of fusion protein in soluble proteins (62.2%) was obtained in the present work, which was the highest yield of hBD2 reported so far.
Collapse
Affiliation(s)
- Zhixia Zhong
- Institute of Bioengineering, Department of Chemical Engineering and Bioengineering, Zhejiang University, Hangzhou 310027, PR China
| | | | | | | | | | | |
Collapse
|