1
|
Bariya AR, Rathod NB, Patel AS, Nayak JKB, Ranveer RC, Hashem A, Abd Allah EF, Ozogul F, Jambrak AR, Rocha JM. Recent developments in ultrasound approach for preservation of animal origin foods. ULTRASONICS SONOCHEMISTRY 2023; 101:106676. [PMID: 37939526 PMCID: PMC10656273 DOI: 10.1016/j.ultsonch.2023.106676] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
Ultrasound is a contemporary non-thermal technology that is currently being extensively evaluated for its potential to preserve highly perishable foods, while also contributing positively to the economy and environment. There has been a rise in the demand for food products that have undergone minimal processing or have been subjected to non-thermal techniques. Livestock-derived food products, such as meat, milk, eggs, and seafood, are widely recognized for their high nutritional value. These products are notably rich in proteins and quality fats, rendering them particularly vulnerable to oxidative and microbial spoilage. Ultrasound has exhibited significant antimicrobial properties, as well as the ability to deactivate enzymes and enhance mass transfer. The present review centers on the production and classification of ultrasound, as well as its recent implementation in the context of livestock-derived food products. The commercial applications, advantages, and limitations of the subject matter are also subject to scrutiny. The review indicated that ultrasound technology can be effectively utilized in food products derived from livestock, leading to favorable outcomes in terms of prolonging the shelf life of food while preserving its nutritional, functional, and sensory attributes. It is recommended that additional research be conducted to investigate the effects of ultrasound processing on nutrient bioavailability and extraction. The implementation of hurdle technology can effectively identify and mitigate the lower inactivation of certain microorganisms or vegetative cells.
Collapse
Affiliation(s)
- Akshay Rajendrabhai Bariya
- Department of Livestock Products Technology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, Gujarat, India.
| | - Nikheel Bhojraj Rathod
- Post Graduate Institute of Post-Harvest Technology & Management, Roha, Raigad, Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Maharashtra State, India.
| | - Ajay Sureshbhai Patel
- Department of Livestock Products Technology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, Gujarat, India
| | - Jitendra Kumar Bhogilal Nayak
- Department of Veterinary Public Health and Epidemiology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Anand, Gujarat, India
| | - Rahul Chudaman Ranveer
- Post Graduate Institute of Post-Harvest Technology & Management, Roha, Raigad, Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Maharashtra State, India.
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia.
| | - Elsayed Fathi Abd Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia.
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, 01330 Adana, Turkey; Biotechnology Research and Application Center, Cukurova University, 01330 Adana, Turkey.
| | - Anet Režek Jambrak
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia.
| | - João Miguel Rocha
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal; ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.
| |
Collapse
|
2
|
Abril B, Bou R, García-Pérez JV, Benedito J. Role of Enzymatic Reactions in Meat Processing and Use of Emerging Technologies for Process Intensification. Foods 2023; 12:foods12101940. [PMID: 37238758 DOI: 10.3390/foods12101940] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Meat processing involves different transformations in the animal muscle after slaughtering, which results in changes in tenderness, aroma and colour, determining the quality of the final meat product. Enzymatic glycolysis, proteolysis and lipolysis play a key role in the conversion of muscle into meat. The accurate control of enzymatic reactions in meat muscle is complicated due to the numerous influential factors, as well as its low reaction rate. Moreover, exogenous enzymes are also used in the meat industry to produce restructured products (transglutaminase), to obtain bioactive peptides (peptides with antioxidant, antihypertensive and gastrointestinal activity) and to promote meat tenderization (papain, bromelain, ficin, zingibain, cucumisin and actinidin). Emerging technologies, such as ultrasound (US), pulsed electric fields (PEF), moderate electric fields (MEF), high-pressure processing (HPP) or supercritical CO2 (SC-CO2), have been used to intensify enzymatic reactions in different food applications. This review aims to provide an overview of the enzymatic reactions taking place during the processing of meat products, how they could be intensified by using emerging technologies and envisage potential applications.
Collapse
Affiliation(s)
- Blanca Abril
- Department of Food Technology, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Ricard Bou
- Food Safety and Functionality Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA, Monells, Girona), 17121 Girona, Spain
| | - Jose V García-Pérez
- Department of Food Technology, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Jose Benedito
- Department of Food Technology, Universitat Politècnica de València, 46022 Valencia, Spain
| |
Collapse
|
3
|
Liang J, Bin Zulkifli MY, Yong J, Du Z, Ao Z, Rawal A, Scott JA, Harmer JR, Wang J, Liang K. Locking the Ultrasound-Induced Active Conformation of Metalloenzymes in Metal-Organic Frameworks. J Am Chem Soc 2022; 144:17865-17875. [PMID: 36075889 DOI: 10.1021/jacs.2c06471] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enhancing the enzymatic activity inside metal-organic frameworks (MOFs) is a critical challenge in chemical technology and bio-technology, which, if addressed, will broaden their scope in energy, food, environmental, and pharmaceutical industries. Here, we report a simple yet versatile and effective strategy to optimize biocatalytic activity by using MOFs to rapidly "lock" the ultrasound (US)-activated but more fragile conformation of metalloenzymes. The results demonstrate that up to 5.3-fold and 9.3-fold biocatalytic activity enhancement of the free and MOF-immobilized enzymes could be achieved compared to those without US pretreatment, respectively. Using horseradish peroxidase as a model, molecular dynamics simulation demonstrates that the improved activity of the enzyme is driven by an opened gate conformation of the heme active site, which allows more efficient substrate binding to the enzyme. The intact heme active site is confirmed by solid-state UV-vis and electron paramagnetic resonance, while the US-induced enzyme conformation change is confirmed by circular dichroism spectroscopy and Fourier-transform infrared spectroscopy. In addition, the improved activity of the biocomposites does not compromise their stability upon heating or exposure to organic solvent and a digestion cocktail. This rapid locking and immobilization strategy of the US-induced active enzyme conformation in MOFs gives rise to new possibilities for the exploitation of highly efficient biocatalysts for diverse applications.
Collapse
Affiliation(s)
- Jieying Liang
- School of Chemical Engineering and Australian Centre for NanoMedicine, The University of New South Wales, Sydney 2052, New South Wale, Australia
| | - Muhammad Yazid Bin Zulkifli
- School of Chemical Engineering and Australian Centre for NanoMedicine, The University of New South Wales, Sydney 2052, New South Wale, Australia
| | - Joel Yong
- School of Chemical Engineering and Australian Centre for NanoMedicine, The University of New South Wales, Sydney 2052, New South Wale, Australia.,Graduate School of Biomedical Engineering, The University of New South Wales, Sydney 2052, New South Wale, Australia
| | - Zeping Du
- School of Chemical Engineering and Australian Centre for NanoMedicine, The University of New South Wales, Sydney 2052, New South Wale, Australia
| | - Zhimin Ao
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai, 519087, China
| | - Aditya Rawal
- Nuclear Magnetic Resonance Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney 2052, New South Wale Australia
| | - Jason A Scott
- School of Chemical Engineering and Australian Centre for NanoMedicine, The University of New South Wales, Sydney 2052, New South Wale, Australia
| | - Jeffrey R Harmer
- Centre for Advanced Imaging, The University of Queensland, Brisbane 4072, Queensland Australia
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego, La Jolla 92093, California, United States
| | - Kang Liang
- School of Chemical Engineering and Australian Centre for NanoMedicine, The University of New South Wales, Sydney 2052, New South Wale, Australia.,Graduate School of Biomedical Engineering, The University of New South Wales, Sydney 2052, New South Wale, Australia
| |
Collapse
|
4
|
Sun P, Li C, Gong Y, Wang J, Xu Q. Process study of ceramic membrane-coupled mixed-cell fermentation for the production of adenine. Front Bioeng Biotechnol 2022; 10:969668. [PMID: 36032726 PMCID: PMC9399796 DOI: 10.3389/fbioe.2022.969668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022] Open
Abstract
In order to solve the problems of high complexity, many by-products, high pollution and difficult extraction of the existing adenine production process, in this study, ceramic membrane-coupled mixed cell fermentation was used to produce adenine while reducing the synthesis of by-products and simplifying the production process of adenine. Nucleoside hydrolase (encoded by the rihC gene) was used to produce adenine by coordinated fermentation with the adenosine-producing bacterium Bacillus Subtilis XGL. The adenosine hydrolase (AdHy)-expressing strain Escherichia coli BL21-AdHy was successfully employed and the highest activity of the crude enzyme solution was found by orthogonal experiments at 170 W power, 42% duty cycle, and 8 min of sonication. The highest AdHy activity was found after 18 h of induction incubation. E. coli BL21-AdHy was induced for 18 h and sonicated under the above ultrasonic conditions and the resulting crude enzyme solution was used for co-fermentation of the strain and enzyme. Moreover, 15% (v/v) of the AdHy crude enzyme solution was added to fermentation of B. subtilis XGL after 35 h. Finally, the whole fermentation system was dialyzed using coupled ceramic membranes for 45 and 75 h, followed by the addition of fresh medium. In contrast, the AdHy crude enzyme solution was added after 35, 65, and 90 h of B. subtilis fermentation, with three additions of 15, 15, and 10% of the B. subtilis XGL fermentation system. The process was validated in a 5 L fermenter and 14 ± 0.25 g/L of adenine was obtained, with no accumulation of adenosine and d-ribose as by-products. The enzymatic activity of the AdHy crude solution treated with ultrasound was greatly improved. It also reduced the cellular activity of E. coli BL21-AdHy and reduced effects on bacterial co-fermentation. Membrane-coupled dialysis solved the problem of decreased yield due to poor bacterial survival and decreased viability, and eliminated inhibition of the product synthesis pathway by adenosine. The batch addition of crude enzyme broth allowed the continuous conversion of adenosine to adenine. This production method provides the highest yield of biologically produced adenine reported to date, reduces the cost of adenine production, and has positive implications for the industrial production of adenine by fermentation. And it provides a reference for producing other high-value-added products made by fermentation.
Collapse
Affiliation(s)
- Pengjie Sun
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Changgeng Li
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yu Gong
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Jinduo Wang
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Qingyang Xu
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- *Correspondence: Qingyang Xu,
| |
Collapse
|
5
|
Recent Advances in the Application of Enzyme Processing Assisted by Ultrasound in Agri-Foods: A Review. Catalysts 2022. [DOI: 10.3390/catal12010107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The intensification of processes is essential for the sustainability of the biorefinery concept. Enzyme catalysis assisted by ultrasound (US) may offer interesting opportunities in the agri-food sector because the cavitation effect provided by this technology has been shown to improve the efficiency of the biocatalysts. This review presents the recent advances in this field, focused on three main applications: ultrasound-assisted enzymatic extractions (UAEE), US hydrolysis reactions, and synthesis reactions assisted by US for the manufacturing of agri-food produce and ingredients, enabling the upgrading of agro-industrial waste. Some theoretical and experimental aspects of US that must be considered are also reviewed. Ultrasonic intensity (UI) is the main parameter affecting the catalytic activity of enzymes, but a lack of standardization for its quantification makes it unsuitable to properly compare results. Applications of enzyme catalysis assisted by US in agri-foods have been mostly concentrated in UAEE of bioactive compounds. In second place, US hydrolysis reactions have been applied for juice and beverage manufacturing, with some interesting applications for producing bioactive peptides. In last place, a few efforts have been performed regarding synthesis reactions, mainly through trans and esterification to produce structured lipids and sugar esters, while incipient applications for the synthesis of oligosaccharides show promising results. In most cases, US has improved the reaction yield, but much information is lacking on how different sonication conditions affect kinetic parameters. Future research should be performed under a multidisciplinary approach for better comprehension of a very complex phenomenon that occurs in very short time periods.
Collapse
|
6
|
Wang W, Gao YT, Wei JW, Chen YF, Liu QL, Liu HM. Optimization of Ultrasonic Cellulase-Assisted Extraction and Antioxidant Activity of Natural Polyphenols from Passion Fruit. Molecules 2021; 26:molecules26092494. [PMID: 33923350 PMCID: PMC8123174 DOI: 10.3390/molecules26092494] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 12/02/2022] Open
Abstract
In this paper, ultrasonic cellulase extraction (UCE) was applied to extract polyphenols from passion fruit. The extraction conditions for total phenol content (TPC) and antioxidant activity were optimized using response surface methodology (RSM) coupled with a Box-Behnken design (BBD). The results showed that the liquid-to-solid ratio (X2) was the most significant single factor and had a positive effect on all responses. The ANOVA analysis indicated quadratic models fitted well as TPC with R2 = 0.903, DPPH scavenging activity with R2 = 0.979, and ABTS scavenging activity with R2 = 0.981. The optimal extraction parameters of passion fruit were as follows: pH value of 5 at 30 °C for extraction temperature, 50:1 (w/v) liquid-to-solid ratio with extraction time for 47 min, the experimental values were found matched with those predicted. Infrared spectroscopy suggested that the extract contained the structure of polyphenols. Furthermore, three main polyphenols were identified and quantified by HPLC. The results showed the content of phenolic compounds and antioxidant activity of the optimized UCE were 1.5~2 times higher than that determined by the single extraction method and the Soxhlet extraction method, which indicates UCE is a competitive and effective extraction technique for natural passion fruit polyphenols.
Collapse
Affiliation(s)
- Wei Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (W.W.); (Y.-T.G.); (Y.-F.C.); (Q.-L.L.)
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai 201418, China;
| | - Yu-Ting Gao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (W.W.); (Y.-T.G.); (Y.-F.C.); (Q.-L.L.)
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai 201418, China;
| | - Ji-Wen Wei
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai 201418, China;
| | - Yin-Feng Chen
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (W.W.); (Y.-T.G.); (Y.-F.C.); (Q.-L.L.)
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai 201418, China;
| | - Qing-Lei Liu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (W.W.); (Y.-T.G.); (Y.-F.C.); (Q.-L.L.)
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai 201418, China;
| | - Hui-Min Liu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (W.W.); (Y.-T.G.); (Y.-F.C.); (Q.-L.L.)
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai 201418, China;
- Correspondence: ; Tel.: +86-186-1677-8997
| |
Collapse
|
7
|
Thermosonication parameter effects on physicochemical changes, microbial and enzymatic inactivation of fruit smoothie. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2020; 57:1680-1688. [PMID: 32327779 DOI: 10.1007/s13197-019-04201-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/25/2019] [Accepted: 12/09/2019] [Indexed: 10/25/2022]
Abstract
With the aim of developing a fruit-based beverage in products which are severely damaged by heat, a high-intensity ultrasound treatment combined with moderate heat treatment (called thermosonication) was applied. A fruit smoothie (mango, jackfruit and rice milk) was thermosonicated applying a Box-Benhken model with amplitude (70, 77.5 or 85%), time (15, 20 or 25 min) and temperature (40, 47.5 or 55 °C) as independent variables. From the obtained samples, microbiological (aerobic mesophilic and Enterobacteriaceae), physicochemical (pH, soluble solids and cloud index) and enzymatic analysis (polyphenol oxidase and pectin methylesterase) were carried out. Aerobic mesophiles and Enterobacteria inactivation in thermosonicated samples were 4.55 Log CFU/mL and 3.85 Log CFU/mL, respectively in most of the treatments applied, being influenced by linear terms of amplitude and temperature (p < 0.001). The cloud index was influenced by time term (p < 0.0001); meanwhile, interaction of amplitude * temperature (p < 0.01) and quadratic of time presented significant effect (p < 0.001) on polyphenol oxidase activity. Further, amplitude term had a significant effect (p < 0.001) on the decrease on pectin methylesterase enzymatic activity. The optimal process condition was 77.5% amplitude, 20 min and 47.5 °C. Thermosonication probed to be effective to control both enzymatic activities in treatments with high amplitudes combined with moderated temperature treatments. Based on this, the use of thermosonication is a viable alternative for fruit-based beverage preservation, that may employ perishable regional natural products offering them an added value.
Collapse
|
8
|
Bresolin D, Hawerroth B, de Oliveira Romera C, Sayer C, de Araújo PHH, de Oliveira D. Immobilization of lipase Eversa Transform 2.0 on poly(urea-urethane) nanoparticles obtained using a biopolyol from enzymatic glycerolysis. Bioprocess Biosyst Eng 2020; 43:1279-1286. [PMID: 32189054 DOI: 10.1007/s00449-020-02324-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/04/2020] [Indexed: 12/20/2022]
Abstract
In this work, the free lipase Eversa® Transform 2.0 was used as a catalyst for enzymatic glycerolysis reaction in a solvent-free system. The product was evaluated by nuclear magnetic resonance (1H NMR) and showed high conversion related to hydroxyl groups. In sequence, the product of the glycerolysis was used as stabilizer and biopolyol for the synthesis of poly(urea-urethane) nanoparticles (PUU NPs) aqueous dispersion by the miniemulsion polymerization technique, without the use of a further surfactant in the system. Reactions resulted in stable dispersions of PUU NPs with an average diameter of 190 nm. After, the formation of the PUU NPs in the presence of concentrated lipase Eversa® Transform 2.0 was studied, aiming the lipase immobilization on the NP surface, and a stable enzymatic derivative with diameters around 231 nm was obtained. The hydrolytic enzymatic activity was determined using ρ-nitrophenyl palmitate (ρ-NPP) and the immobilization was confirmed by morphological analysis using transmission electron microscopy and fluorescence microscopy.
Collapse
Affiliation(s)
- Daniela Bresolin
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, P.O. Box 476, Florianopolis, SC, 88040-900, Brazil
| | - Beatriz Hawerroth
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, P.O. Box 476, Florianopolis, SC, 88040-900, Brazil
| | - Cristian de Oliveira Romera
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, P.O. Box 476, Florianopolis, SC, 88040-900, Brazil
| | - Claudia Sayer
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, P.O. Box 476, Florianopolis, SC, 88040-900, Brazil
| | - Pedro Henrique Hermes de Araújo
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, P.O. Box 476, Florianopolis, SC, 88040-900, Brazil
| | - Débora de Oliveira
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, P.O. Box 476, Florianopolis, SC, 88040-900, Brazil.
| |
Collapse
|
9
|
MORIOKA LRI, VIANA CDS, ALVES ÉDP, PAIÃO FG, TAKIHARA AM, KAKUNO ASS, SUGUIMOTO HH. Concentrated beta-galactosidase and cell permeabilization from Saccharomyces fragilis IZ 275 for beta-galactosidase activity in the hydrolysis of lactose. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1590/fst.06017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Rico-Rodríguez F, Serrato JC, Montilla A, Villamiel M. Impact of ultrasound on galactooligosaccharides and gluconic acid production throughout a multienzymatic system. ULTRASONICS SONOCHEMISTRY 2018; 44:177-183. [PMID: 29680601 DOI: 10.1016/j.ultsonch.2018.02.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/30/2018] [Accepted: 02/10/2018] [Indexed: 06/08/2023]
Abstract
Galactooligosaccharides (GOS), recognised prebiotic, can be industrially produced from lactose and commercial β-galactosidase (β-gal) from Kluyveromyces lactis. Residual lactose and glucose limit GOS applications. To handle this problem, a multienzymatic system, with β-gal and glucose oxidase (Gox), was proposed to reduce glucose content in reaction media through its oxidation to gluconic acid (GA). Besides, ultrasound (US) probe effect over the multienzymatic system to produce GOS and GA has been evaluated. A production around 40% of GOS was found in all treatments after the first hour of reaction. However, glucose consumption and GA production was significantly higher (P < 0.05) for sequential reaction assisted by US, obtaining the best production of GOS (49%) and GA (28%) after 2 h of reaction. The conformational and residual activity changes of enzymes under US conditions were also evaluated, Gox being positively affected whereas in β-gal hardly any change was found.
Collapse
Affiliation(s)
- Fabián Rico-Rodríguez
- Departamento de Ingeniería Química y Ambiental, Facultad de Ingeniería, Universidad Nacional de Colombia Sede Bogotá, Carrera 30 N° 45-03, Bogotá, Colombia
| | - Juan Carlos Serrato
- Departamento de Ingeniería Química y Ambiental, Facultad de Ingeniería, Universidad Nacional de Colombia Sede Bogotá, Carrera 30 N° 45-03, Bogotá, Colombia
| | - Antonia Montilla
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM) CEI (CSIC+UAM), Nicolás Cabrera, 9. Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Mar Villamiel
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM) CEI (CSIC+UAM), Nicolás Cabrera, 9. Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
11
|
Comparison of conventional heat treatment with selected non-thermal technologies for the inactivation of the commercial protease Protamex™. FOOD AND BIOPRODUCTS PROCESSING 2017. [DOI: 10.1016/j.fbp.2017.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Ultrasound assisted intensification of enzyme activity and its properties: a mini-review. World J Microbiol Biotechnol 2017; 33:170. [PMID: 28831716 DOI: 10.1007/s11274-017-2322-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/15/2017] [Indexed: 12/21/2022]
Abstract
Over the last decade, ultrasound technique has emerged as the potential technology which shows large applications in food and biotechnology processes. Earlier, ultrasound has been employed as a method of enzyme inactivation but recently, it has been found that ultrasound does not inactivate all enzymes, particularly, under mild conditions. It has been shown that the use of ultrasonic treatment at appropriate frequencies and intensity levels can lead to enhanced enzyme activity due to favourable conformational changes in protein molecules without altering its structural integrity. The present review article gives an overview of influence of ultrasound irradiation parameters (intensity, duty cycle and frequency) and enzyme related factors (enzyme concentration, temperature and pH) on the catalytic activity of enzyme during ultrasound treatment. Also, it includes the effect of ultrasound on thermal kinetic parameters and Michaelis-Menten kinetic parameters (km and Vmax) of enzymes. Further, in this review, the physical and chemical effects of ultrasound on enzyme have been correlated with thermodynamic parameters (enthalpy and entropy). Various techniques used for investigating the conformation changes in enzyme after sonication have been highlighted. At the end, different techniques of immobilization for ultrasound treated enzyme have been summarized.
Collapse
|
13
|
BOSSO A, MORIOKA LRI, SANTOS LFD, SUGUIMOTO HH. Lactose hydrolysis potential and thermal stability of commercial β-galactosidase in UHT and skimmed milk. FOOD SCIENCE AND TECHNOLOGY 2016. [DOI: 10.1590/1678-457x.0085] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Das B, Roy AP, Bhattacharjee S, Chakraborty S, Bhattacharjee C. Lactose hydrolysis by β-galactosidase enzyme: optimization using response surface methodology. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 121:244-252. [PMID: 25842188 DOI: 10.1016/j.ecoenv.2015.03.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/13/2015] [Accepted: 03/23/2015] [Indexed: 06/04/2023]
Abstract
In the present study, it was aimed to optimize the process of lactose hydrolysis using free and immobilized β-galactosidase to produce glucose and galactose. Response surface methodology (RSM) by central composite design (CCD) was employed to optimize the degree of hydrolysis by varying three parameters, temperature (15-45°C), solution pH (5-9) and β-galactosidase enzyme concentration (2-8mg/mL) for free mode of analysis and sodium alginate concentration (2-4%), calcium chloride concentration (3-6%) and enzyme concentration (2-8mg/mL) for immobilized process. Based on plots and variance analysis, the optimum operational conditions for maximizing lactose hydrolysis were found to be temperature (35.5°C), pH (6.7) and enzyme concentration (6.7mg/mL) in free mode and sodium alginate concentration (3%), calcium chloride concentration (5.9%) and enzyme concentration (5.2mg/mL) in immobilized mode.
Collapse
Affiliation(s)
- Bipasha Das
- Chemical Engineering Department, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Ananda Prasad Roy
- Chemical Engineering Department, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Sangita Bhattacharjee
- Chemical Engineering Department, Heritage Institute of Technology, Kolkata 700107, West Bengal, India.
| | - Sudip Chakraborty
- Department of Chemical Engineering and Materials, University of Calabria, Cubo-44A, 87036 Rende, CS, Italy
| | | |
Collapse
|
15
|
Islam MN, Zhang M, Adhikari B. The Inactivation of Enzymes by Ultrasound—A Review of Potential Mechanisms. FOOD REVIEWS INTERNATIONAL 2013. [DOI: 10.1080/87559129.2013.853772] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
AKGÜL FATMABETÜL, DEMIRHAN ELÇIN, ÖZBEK BELMA. A Modelling study on skimmed milk lactose hydrolysis and β-galactosidase stability using three reactor types. INT J DAIRY TECHNOL 2012. [DOI: 10.1111/j.1471-0307.2012.00828.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Kwiatkowska B, Bennett J, Akunna J, Walker GM, Bremner DH. Stimulation of bioprocesses by ultrasound. Biotechnol Adv 2011; 29:768-80. [DOI: 10.1016/j.biotechadv.2011.06.005] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 06/09/2011] [Accepted: 06/09/2011] [Indexed: 11/25/2022]
|
18
|
Badarinath V, Halami PM. Purification of New β-Galactosidase fromEnterococcus faeciumMTCC 5153 with Transgalactosylation Activity. FOOD BIOTECHNOL 2011. [DOI: 10.1080/08905436.2011.590766] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Modelling as a tool of enzyme reaction engineering for enzyme reactor development. Appl Microbiol Biotechnol 2011; 91:845-56. [DOI: 10.1007/s00253-011-3414-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 05/24/2011] [Accepted: 05/24/2011] [Indexed: 11/25/2022]
|
20
|
|
21
|
|
22
|
Song C, Liu GL, Xu JL, Chi ZM. Purification and characterization of extracellular β-galactosidase from the psychrotolerant yeast Guehomyces pullulans 17-1 isolated from sea sediment in Antarctica. Process Biochem 2010. [DOI: 10.1016/j.procbio.2010.02.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
β-Galactosidase production by the psychrotolerant yeast Guehomyces pullulans 17-1 isolated from sea sediment in Antarctica and lactose hydrolysis. Bioprocess Biosyst Eng 2010; 33:1025-31. [DOI: 10.1007/s00449-010-0427-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 04/05/2010] [Indexed: 10/19/2022]
|
24
|
|
25
|
|
26
|
Demirhan E, Özbek B. A MODELING STUDY ON HYDROLYSIS OF LACTOSE RECOVERED FROM WHEY AND β-GALACTOSIDASE STABILITY UNDER SONIC TREATMENT. CHEM ENG COMMUN 2009. [DOI: 10.1080/00986440802589529] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
The effect of ultrasound in combination with thermal treatment on the germinated barley’s alpha-amylase activity. KOREAN J CHEM ENG 2008. [DOI: 10.1007/s11814-008-0087-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|