1
|
Tuan TQ, Mawarda PC, Ali N, Curias A, Nguyen TPO, Khoa ND, Springael D. Niche-specification of aerobic 2,4-dichlorophenoxyacetic acid biodegradation by tfd-carrying bacteria in the rice paddy ecosystem. Front Microbiol 2024; 15:1425193. [PMID: 39247702 PMCID: PMC11377324 DOI: 10.3389/fmicb.2024.1425193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/05/2024] [Indexed: 09/10/2024] Open
Abstract
This study aimed for a better understanding of the niche specification of bacteria carrying the tfd-genes for aerobic 2,4-dichlorphenoxyacetic acid (2,4-D) degradation in the rice paddy ecosystem. To achieve this, a dedicated microcosm experiment was set up to mimic the rice paddy system, with and without 2,4-D addition, allowing spatial sampling of the different rice paddy compartments and niches, i.e., the main anaerobic bulk soil and the aerobic surface water, surface soil, root surface and rhizosphere compartments. No effect of 2,4-D on the growth and morphology of the rice plant was noted. 2,4-D removal was faster in the upper soil layers compared to the deeper layers and was more rapid after the second 2,4-D addition compared to the first. Moreover, higher relative abundances of the 2,4-D catabolic gene tfdA and of the mobile genetic elements IncP-1 and IS1071 reported to carry the tfd-genes, were observed in surface water and surface soil when 2,4-D was added. tfdA was also detected in the root surface and rhizosphere compartment but without response to 2,4-D addition. While analysis of the bacterial community composition using high-throughput 16S rRNA gene amplicon sequencing did not reveal expected tfd-carrying taxa, subtle community changes linked with 2,4-D treatment and the presence of the plant were observed. These findings suggest (i) that the surface soil and surface water are the primary and most favorable compartements/niches for tfd-mediated aerobic 2,4-D biodegradation and (ii) that the community structure in the 2,4-D treated rice paddy ecosystem is determined by a niche-dependent complex interplay between the effects of the plant and of 2,4-D.
Collapse
Affiliation(s)
- Tran Quoc Tuan
- Division of Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
- Department of Molecular Biology, Institute of Food and Biotechnology, Can Tho University, Can Tho, Vietnam
| | - Panji Cahya Mawarda
- Division of Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
- Research Center for Applied Microbiology, National Research and Innovation Agency Republic of Indonesia (BRIN), KST Samaun Sadikun, Bogor, Indonesia
| | - Norhan Ali
- Division of Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
| | - Arne Curias
- Division of Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
| | - Thi Phi Oanh Nguyen
- Department of Biology, College of Natural Sciences, Can Tho University, Can Tho, Vietnam
| | - Nguyen Dac Khoa
- Department of Molecular Biology, Institute of Food and Biotechnology, Can Tho University, Can Tho, Vietnam
| | - Dirk Springael
- Division of Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Stevenson Z, Tong H, Swanner ED. Insights on biotic and abiotic 2,4-dichlorophenoxyacetic acid degradation by anaerobic iron-cycling bacteria. JOURNAL OF ENVIRONMENTAL QUALITY 2023; 52:1092-1101. [PMID: 37689985 DOI: 10.1002/jeq2.20513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/29/2023] [Indexed: 09/11/2023]
Abstract
The use of the phenoxy herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) has been steadily increasing in recent years due to its selectivity against broad-leafed weeds and use on genetically modified crops resistant to 2,4-D. This increases the likelihood of 2,4-D persisting in agriculturally impacted soils, sediments, and aquatic systems. Aerobic microorganisms are capable of degrading 2,4-D enzymatically. Anaerobic degradation also occurs, though the enzymatic pathway is unclear. Iron-reducing bacteria (FeRB) have been hypothesized to augment anaerobic degradation through the production of a chemically reactive Fe(II) adsorbed to Fe(III) oxyhydroxides. To test whether this iron species can catalyze abiotic degradation of 2,4-D, an enrichment culture (BLA1) containing a photosynthetic Fe(II)-oxidizing bacterium (FeOB) "Candidatus Chlorobium masyuteum" and the FeRB "Candidatus Pseudopelobacter ferreus", both of which lacked known 2,4-D degradation genes was investigated. BLA1 produces Fe(II)-adsorbed to Fe(III) oxyhydroxides during alternating photoautotrophic iron oxidation and dark iron reduction (amended with acetate) cycles. No 2,4-D degradation occurred during iron oxidation by FeOB Ca. C. masyuteum or during iron reduction by FeRB Ca. P. ferreus under any incubation conditions tested (i.e., +/-Fe(II), +/-cells, and +/-light), or due to the presence of Fe(II) adsorbed to Fe(III) oxyhydroxides. Our results cast doubt on the hypothesis that the mineral-bound Fe(II) species augments the anaerobic degradation of 2,4-D in anoxic soils and waters by iron-cycling bacteria, and further justify the need to identify the genetic underpinnings of anaerobic 2,4-D degradation.
Collapse
Affiliation(s)
- Zackry Stevenson
- Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa, USA
| | - Hui Tong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, China
| | - Elizabeth D Swanner
- Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
3
|
Teixidó M, Charbonnet JA, LeFevre GH, Luthy RG, Sedlak DL. Use of pilot-scale geomedia-amended biofiltration system for removal of polar trace organic and inorganic contaminants from stormwater runoff. WATER RESEARCH 2022; 226:119246. [PMID: 36288663 DOI: 10.1016/j.watres.2022.119246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Stormwater runoff capture and groundwater recharge can provide a sustainable means of augmenting the local water resources in water-stressed cities while simultaneously mitigating flood risk, provided that these processes do not compromise groundwater quality. We developed and tested for one year an innovative pilot-scale stormwater treatment train that employs cost-effective engineered geomedia in a continuous-flow unit-process system to remove contaminants from urban runoff during aquifer recharge. The system consisted of an iron-enhanced sand filter for phosphate removal, a woodchip bioreactor for nitrate removal coupled to an aeration step, and columns packed with different configurations of biochar- and manganese oxide-containing sand to remove trace metals and persistent, mobile, and toxic trace organic contaminants. During conditioning with authentic stormwater runoff over an extended period (8 months), the woodchip bioreactor removed 98% of the influent nitrate (9 g-N m-3 d-1), while phosphate broke through the iron-enhanced sand filter. During the challenge test (4 months), geomedia removed more than 80% of the mass of metals and trace organic compounds. Column hydraulic performance was stable during the entire study, and the weathered biochar and manganese oxide were effective at removing trace organic contaminants and metals, respectively. Under conditions likely encountered in the field, sustained nutrient removal is probable, but polar organic compounds such as 2,4-D could breakthrough after about a decade for conditions at the study site.
Collapse
Affiliation(s)
- Marc Teixidó
- National Science Foundation Engineering Research Center, Re-Inventing the Nation's Urban Water Infrastructure (ReNUWIt), USA; Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720, USA; Department of Geosciences, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Catalonia 08034, Spain
| | - Joseph A Charbonnet
- National Science Foundation Engineering Research Center, Re-Inventing the Nation's Urban Water Infrastructure (ReNUWIt), USA; Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720, USA; Department of Civil, Construction and Environmental Engineering, Iowa State University, Ames, IA 50011, USA
| | - Gregory H LeFevre
- National Science Foundation Engineering Research Center, Re-Inventing the Nation's Urban Water Infrastructure (ReNUWIt), USA; Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305 USA; Department of Civil and Environmental Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Richard G Luthy
- National Science Foundation Engineering Research Center, Re-Inventing the Nation's Urban Water Infrastructure (ReNUWIt), USA; Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305 USA
| | - David L Sedlak
- National Science Foundation Engineering Research Center, Re-Inventing the Nation's Urban Water Infrastructure (ReNUWIt), USA; Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
4
|
Brucha G, Aldas-Vargas A, Ross Z, Peng P, Atashgahi S, Smidt H, Langenhoff A, Sutton NB. 2,4-Dichlorophenoxyacetic acid degradation in methanogenic mixed cultures obtained from Brazilian Amazonian soil samples. Biodegradation 2021; 32:419-433. [PMID: 33877512 PMCID: PMC8260542 DOI: 10.1007/s10532-021-09940-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 03/31/2021] [Indexed: 01/23/2023]
Abstract
2,4-Dichlorophenoxyacetic acid (2,4-D) is the third most applied pesticide in Brazil to control broadleaf weeds in crop cultivation and pastures. Due to 2,4-D's high mobility and long half-life under anoxic conditions, this herbicide has high probability for groundwater contamination. Bioremediation is an attractive solution for 2,4-D contaminated anoxic environments, but there is limited understanding of anaerobic 2,4-D biodegradation. In this study, methanogenic enrichment cultures were obtained from Amazonian top soil (0-40 cm) and deep soil (50 -80 cm below ground) that biotransform 2,4-D (5 µM) to 4-chlorophenol and phenol. When these cultures were transferred (10% v/v) to fresh medium containing 40 µM or 160 µM 2,4-D, the rate of 2,4-D degradation decreased, and biotransformation did not proceed beyond 4-chlorophenol and 2,4-dichlorophenol in the top and deep soil cultures, respectively. 16S rRNA gene sequencing and qPCR of a selection of microbes revealed no significant enrichment of known organohalide-respiring bacteria. Furthermore, a member of the genus Cryptanaerobacter was identified as possibly responsible for phenol conversion to benzoate in the top soil inoculated culture. Overall, these results demonstrate the effect of 2,4-D concentration on biodegradation and microbial community composition, which are both important factors when developing pesticide bioremediation technologies.
Collapse
Affiliation(s)
- Gunther Brucha
- Environmental Technology, Wageningen University & Research, PO BOX 17, 6700 EV, Wageningen, The Netherlands
- Institute of Science and Technology, Universidade Federal de Alfenas, Alfenas, Brazil
| | - Andrea Aldas-Vargas
- Environmental Technology, Wageningen University & Research, PO BOX 17, 6700 EV, Wageningen, The Netherlands
| | - Zacchariah Ross
- Environmental Technology, Wageningen University & Research, PO BOX 17, 6700 EV, Wageningen, The Netherlands
| | - Peng Peng
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Siavash Atashgahi
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Alette Langenhoff
- Environmental Technology, Wageningen University & Research, PO BOX 17, 6700 EV, Wageningen, The Netherlands
| | - Nora B Sutton
- Environmental Technology, Wageningen University & Research, PO BOX 17, 6700 EV, Wageningen, The Netherlands.
| |
Collapse
|
5
|
Mar‐Pineda CG, Poggi‐Varaldo HM, Ponce‐Noyola MT, Estrada‐Bárcenas DA, Ríos‐Leal E, Esparza‐García FJ, Galíndez‐Mayer J, Rinderknecht‐Seijas NF. Effect of zero‐valent iron nanoparticles on the remediation of a clayish soil contaminated with γ‐hexachlorocyclohexane (lindane) in a bioelectrochemical slurry reactor. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Catherine G. Mar‐Pineda
- Environmental Biotechnology and Renewable Energies Group, Department of Biotechnology and Bioengineering CINVESTAV‐IPN Mexico City Mexico
| | - Héctor M. Poggi‐Varaldo
- Environmental Biotechnology and Renewable Energies Group, Department of Biotechnology and Bioengineering CINVESTAV‐IPN Mexico City Mexico
- Transdisciplinary Doctoral Program Science and Technology for Society CINVESTAV‐IPN Mexico City Mexico
| | | | | | - Elvira Ríos‐Leal
- Department of Biotechnology and Bioengineering CINVESTAV‐IPN Mexico City Mexico
| | | | - Juvencio Galíndez‐Mayer
- Department of Biochemical Engineering National School of Biological Sciences ENCB‐IPN Mexico City Mexico
| | - Noemí F. Rinderknecht‐Seijas
- Division of Basic Science School of Chemical Engineering and Extractive Industries ESIQIE‐IPN Mexico City Mexico
| |
Collapse
|
6
|
Rosado-Flores MF, González-Prieto JM, Mireles-Martínez M, Torres-Ortega JA, Rosas-García NM, Villegas-Mendoza JM. Identificación de microorganismos aislados de suelos agrícolas con capacidad de tolerar 2.4-D y malatión. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2020. [DOI: 10.22201/fesz.23958723e.2020.0.248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
En el presente estudio, se analizó la diversidad microbiana de los suelos agrícolas de las localidades de Río Bravo y la Estación Cuauhtémoc en el estado de Tamaulipas y en los límites de Dolores Hidalgo en el estado de Guanajuato. Los plaguicidas utilizados fueron 2,4-D y malatión, con los que se establecieron pruebas preselectivas para el aislamiento de los microorganismos y su tolerancia. Para la identificación de las bacterias se amplificó el gen 16S y para los hongos la región ITS. El género bacteriano Pseudomonas, así como el género fúngico Penicillium fueron los de mayor abundancia en las muestras analizadas. Los resultados indicaron que las cepas tolerantes fueron Pseudomonas aeruginosa, Stenotrophomonas pavanii y Acinetobacter lactucae creciendo a una concentración > 2.0 g L-1 de 2,4-D y > 1.0 g L-1 de malatión. Así como Fusarium sp., a 2.0 g L-1 de malatión y 0.9 g L-1 de 2,4-D y el hongo Talaromyces variabilis con un crecimiento a 3.1 g L-1 de malatión. Para el caso de S. pavanii, A. Lactucae y T. variabilis no existen reportes de tolerancia a los plaguicidas mencionados, sin embargo, en este trabajo se demuestra por primera vez que pueden ser utilizados en técnicas de biorremediación de suelos.
Collapse
|
7
|
A Comparison of the Microbial Community and Functional Genes Present in Free-Living and Soil Particle-Attached Bacteria from an Aerobic Bioslurry Reactor Treating High-Molecular-Weight PAHs. SUSTAINABILITY 2019. [DOI: 10.3390/su11041088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
High-molecular-weight (HMW) polycyclic aromatic hydrocarbons (PAHs) contaminate a wide range of ecosystems, including soils, groundwater, rivers and harbor sediments. The effective removal of HMW PAHs is a difficult challenge if a rapid remediation time and low economic cost are required. Bioremediation provides a cheap and eco-friendly cleanup strategy for the removal of HMW PAHs. Previous studies have focused on removal efficiency during PAHs bioremediation. In such studies, only limited research has targeted the bacterial communities and functional genes present in such bioremediation systems, specifically those of free-living (aqueous) bacteria and soil particle-attached bacteria present. In this study, a high-level of HMW PAH (1992 mg/kg pyrene) was bioremediated in an aerobic bioslurry reactor (ABR) for 42 days. The results showed a pseudo first order constant rate for pyrene biodegradation of 0.0696 day−1. The microbial communities forming free-living bacteria and soil-attached bacteria in the ABR were found to be different. An analysis of the aqueous samples identified free-living Mycobacterium spp., Pseudomonas putida, Rhodanobacter spp. and Burkholderia spp.; these organisms would seem to be involved in pyrene biodegradation. Various biointermediates, including phenanthrene, catechol, dibenzothiophene, 4,4′-bipyrimidine and cyclopentaphenanthrene, were identified and measured in the aqueous samples. When a similar approach was taken with the soil particle samples, most of the attached bacterial species did not seem to be involved in pyrene biodegradation. Furthermore, community level physiological profiling resulted in significantly different results for the aqueous and soil particle samples. Nevertheless, these two bacterial populations both showed positive signals for the presence of various dioxygenases, including PAHs-RHDα dioxygenases, riesk iron-sulfur motif dioxygenases and catechol 2,3-dioxygenases. The present findings provide a foundation that should help environmental engineers when designing future HMW PAH bioremediation systems that use the ABR approach.
Collapse
|
8
|
Ha DD. Anaerobic degradation of 2,4-dichlorophenoxyacetic acid by Thauera sp. DKT. Biodegradation 2018; 29:499-510. [PMID: 30105582 DOI: 10.1007/s10532-018-9848-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 08/09/2018] [Indexed: 10/28/2022]
Abstract
Thauera sp. strain DKT isolated from sediment utilized 2,4-dichlorophenoxyacetic acid (2,4D) and its relative compounds as sole carbon and energy sources under anaerobic conditions and used nitrate as an electron acceptor. The determination of 2,4D utilization at different concentrations showed that the utilization curve fitted well with the Edward model with the maximum degradation rate as 0.017 ± 0.002 mM/day. The supplementation of cosubstrates (glucose, acetate, sucrose, humate and succinate) increased the degradation rates of all tested chemical substrates in both liquid and sediment slurry media. Thauera sp. strain DKT transformed 2,4D to 2,4-dichlorophenol (2,4DCP) through reductive side-chain removal then dechlorinated 2,4DCP to 2-chlorophenol (2CP), 4-chlorophenol (4CP) and phenol before complete degradation. The relative degradation rates by the isolate in liquid media were: phenol > 2,4DCP > 2CP > 4CP > 2,4D ≈ 3CP. DKT augmentation in sediment slurry enhanced the degradation rates of 2,4D and chlorophenols. The anaerobic degradation rates in the slurry were significantly slower compared to the rates in liquid media.
Collapse
Affiliation(s)
- Duc Danh Ha
- Dong Thap University, Cao Lanh City, Dong Thap Province, Vietnam.
| |
Collapse
|
9
|
Yang Z, Xu X, Dai M, Wang L, Shi X, Guo R. Combination of bioaugmentation and biostimulation for remediation of paddy soil contaminated with 2,4-dichlorophenoxyacetic acid. JOURNAL OF HAZARDOUS MATERIALS 2018; 353:490-495. [PMID: 29705662 DOI: 10.1016/j.jhazmat.2018.04.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/19/2018] [Accepted: 04/21/2018] [Indexed: 06/08/2023]
Abstract
The batch and fed-batch tests were performed to evaluate the efficiency of bioaugmentation in combination with biostimulation for remediation of paddy soil contaminated with 2,4-dichlorophenoxyacetic acid (2,4-D). 2,4-D degrading enrichments were used for bioaugmentation, and effluents prepared through biological hydrogen production process were used as substrate for biostimulation. The batch tests indicated that 2,4-D degradation depended on the enrichment/substrate ratio (E/S), where E/S of 0.03 showed an excellent performance. The fed-batch tests showed that biostimulation only led to an improvement in 2,4-D degradation, while the pattern of repeated augmentation of enrichments (FRA) together with biostimulation obviously improved degradation of 2,4-D, 2-chlorophenol (2-CP) and phenol. DNA-sequencing approach showed that the FRA pattern altered the bacterial community composition, and high removal of 2,4-D, 2-CP and phenol may be attributed to the acclimation and persistence of Thauera. The findings demonstrated the importance of the FRA pattern on remediation of paddy soil contaminated with 2,4-D.
Collapse
Affiliation(s)
- Zhiman Yang
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province 266101, PR China
| | - Xiaohui Xu
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province 266101, PR China
| | - Meng Dai
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province 266101, PR China
| | - Lin Wang
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province 266101, PR China
| | - Xiaoshuang Shi
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province 266101, PR China
| | - Rongbo Guo
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province 266101, PR China.
| |
Collapse
|
10
|
Yang Z, Shi X, Dai M, Wang L, Xu X, Guo R. Promoting degradation of 2,4-dichlorophenoxyacetic acid with fermentative effluents from hydrogen-producing reactor. CHEMOSPHERE 2018; 201:859-863. [PMID: 29567469 DOI: 10.1016/j.chemosphere.2018.03.072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 02/27/2018] [Accepted: 03/11/2018] [Indexed: 06/08/2023]
Abstract
This research aims to identifying the potential effect of using a hydrogen-producing reactor's effluent as an enrichment amendment for enhancing the degradation rates of 2,4-dichlorophenoxyacetic acid (2,4-D) during the bioremediation of contaminated paddy soils. The results showed that addition of the effluents to 2,4-D- degrading enrichment culture enhanced (up to 1.3-fold) the degradation rate constant of 2,4-D. The enhancement effect most probably resulted from the co-metabolic degradation of 2,4-D facilitated by volatile fatty acids (e.g., acetate, propionate, and butyrate) in the effluents which served as the beneficial substrates. Results from DNA sequencing analysis showed that the effluent additions shifted the bacterial community composition in the enrichment culture. Dechloromonas and Clostridium were two dominant bacterial genera involved in 2,4-D degradation. The findings will make a substantial contribution to remediation of soils contaminated with 2,4-D.
Collapse
Affiliation(s)
- Zhiman Yang
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, PR China
| | - Xiaoshuang Shi
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, PR China
| | - Meng Dai
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, PR China
| | - Lin Wang
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, PR China
| | - Xiaohui Xu
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, PR China
| | - Rongbo Guo
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, PR China.
| |
Collapse
|
11
|
Pino-Herrera DO, Pechaud Y, Huguenot D, Esposito G, van Hullebusch ED, Oturan MA. Removal mechanisms in aerobic slurry bioreactors for remediation of soils and sediments polluted with hydrophobic organic compounds: An overview. JOURNAL OF HAZARDOUS MATERIALS 2017; 339:427-449. [PMID: 28715703 DOI: 10.1016/j.jhazmat.2017.06.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/04/2017] [Accepted: 06/06/2017] [Indexed: 06/07/2023]
Abstract
Hydrophobic organic compound (HOC)-contaminated soils are a great environmental and public health concern nowadays. Further research is necessary to develop environmental friendly biotechnologies that allows public and private sectors to implement efficient and adaptable treatment approaches. Aerobic soil-slurry bioreactor technology has emerged as an effective and feasible technique with a high remediation potential, especially for silt and clay soil fractions, which often contain the highest pollutant concentration levels and are usually difficult to remove by implementing conventional methods. However, the mechanisms involved in the HOC removal in bioslurry reactor are still not completely understood. Gas-liquid and solid-liquid mass transfer, mass transport and biodegradation phenomena are the main known processes taking place in slurry bioreactors. This review compiles the most up-to-date information available about these phenomena and tries to link them, enlightening the possible interactions between parameters. It gathers the basic information needed to understand the complex bioremediation technology and raises awareness of some considerations that should be made.
Collapse
Affiliation(s)
- Douglas O Pino-Herrera
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (EA 4508), UPEM, Marne-la-Vallée, 77454, France
| | - Yoan Pechaud
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (EA 4508), UPEM, Marne-la-Vallée, 77454, France.
| | - David Huguenot
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (EA 4508), UPEM, Marne-la-Vallée, 77454, France
| | - Giovanni Esposito
- University of Cassino and Southern Lazio, Department of Civil Engineering, Via di Biasio, 43, Cassino, 03043 FR, Italy
| | - Eric D van Hullebusch
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (EA 4508), UPEM, Marne-la-Vallée, 77454, France; IHE Delft Institute for Water Education, Department of Environmental Engineering and Water Technology, Westvest 7, 2611 AX Delft, The Netherlands
| | - Mehmet A Oturan
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (EA 4508), UPEM, Marne-la-Vallée, 77454, France
| |
Collapse
|
12
|
Yang Z, Xu X, Dai M, Wang L, Shi X, Guo R. Rapid degradation of 2,4-dichlorophenoxyacetic acid facilitated by acetate under methanogenic condition. BIORESOURCE TECHNOLOGY 2017; 232:146-151. [PMID: 28219052 DOI: 10.1016/j.biortech.2017.01.069] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 01/19/2017] [Accepted: 01/22/2017] [Indexed: 06/06/2023]
Abstract
Acetate can be used as an electron donor to stimulate 2,4-dichlorophenoxyacetic acid (2,4-D), which has not been determined under methanogenic condition. This study applied high-throughput sequencing and methanogenic inhibition approaches to investigate the 2,4-D degradation process using the enrichments obtained from paddy soil. Acetate addition significantly promoted 2,4-D degradation, which was 5-fold higher than in the acetate-unsupplemented enrichments in terms of the 2,4-D degradation rate constant. Dechloromonas and Pseudomonas were the dominant 2,4-D degraders. Methanogenic inhibition experiments indicated that the 2,4-D degradation was independent of methanogenesis. It was proposed that the accelerated 2,4-D degradation in the acetate-supplemented enrichment involved an unusual interaction, where members of the acetate oxidizers primarily oxidized acetate and produced H2. H2 was utilized by the 2,4-D degraders to degrade 2,4-D, but also partially consumed by the hydrogenotrophic methanogens to produce methane. The findings presented here provide a new strategy for the remediation of 2,4-D-polluted soils.
Collapse
Affiliation(s)
- Zhiman Yang
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province 266101, PR China
| | - Xiaohui Xu
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province 266101, PR China
| | - Meng Dai
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province 266101, PR China
| | - Lin Wang
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province 266101, PR China
| | - Xiaoshuang Shi
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province 266101, PR China
| | - Rongbo Guo
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province 266101, PR China.
| |
Collapse
|
13
|
Souza F, Sáez C, Lanza M, Cañizares P, Rodrigo M. Removal of chlorsulfuron and 2,4-D from spiked soil using reversible electrokinetic adsorption barriers. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.01.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Souza F, Saéz C, Lanza M, Cañizares P, Rodrigo M. The effect of the sp3/sp2 carbon ratio on the electrochemical oxidation of 2,4-D with p-Si BDD anodes. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2015.11.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Kuppusamy S, Palanisami T, Megharaj M, Venkateswarlu K, Naidu R. Ex-Situ Remediation Technologies for Environmental Pollutants: A Critical Perspective. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 236:117-192. [PMID: 26423074 DOI: 10.1007/978-3-319-20013-2_2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Pollution and the global health impacts from toxic environmental pollutants are presently of great concern. At present, more than 100 million people are at risk from exposure to a plethora of toxic organic and inorganic pollutants. This review is an exploration of the ex-situ technologies for cleaning-up the contaminated soil, groundwater and air emissions, highlighting their principles, advantages, deficiencies and the knowledge gaps. Challenges and strategies for removing different types of contaminants, mainly heavy metals and priority organic pollutants, are also described.
Collapse
Affiliation(s)
- Saranya Kuppusamy
- CERAR-Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA, 5095, Australia
- CRC CARE-Cooperative Research Centre for Contamination Assessment and Remediation of Environment, 486, Salisbury South, SA, 5106, Australia
| | - Thavamani Palanisami
- CRC CARE-Cooperative Research Centre for Contamination Assessment and Remediation of Environment, 486, Salisbury South, SA, 5106, Australia
- GIER- Global Institute for Environmental Research, Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Mallavarapu Megharaj
- CRC CARE-Cooperative Research Centre for Contamination Assessment and Remediation of Environment, 486, Salisbury South, SA, 5106, Australia.
- GIER- Global Institute for Environmental Research, Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW, 2308, Australia.
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapur, 515055, India
| | - Ravi Naidu
- CRC CARE-Cooperative Research Centre for Contamination Assessment and Remediation of Environment, 486, Salisbury South, SA, 5106, Australia
- GIER- Global Institute for Environmental Research, Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
16
|
Rodrigo MA, Oturan N, Oturan MA. Electrochemically Assisted Remediation of Pesticides in Soils and Water: A Review. Chem Rev 2014; 114:8720-45. [DOI: 10.1021/cr500077e] [Citation(s) in RCA: 380] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- M. A. Rodrigo
- Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, University of Castilla La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain
| | - N. Oturan
- Laboratoire
de Géomatériaux et Environnement (LGE), Université Paris Est, 5 bd Descartes, 77454 Marne la Vallée Cedex 2, France
| | - M. A. Oturan
- Laboratoire
de Géomatériaux et Environnement (LGE), Université Paris Est, 5 bd Descartes, 77454 Marne la Vallée Cedex 2, France
| |
Collapse
|
17
|
Slurry bioreactors with simultaneous electron acceptors for bioremediation of an agricultural soil polluted with lindane. Process Biochem 2012. [DOI: 10.1016/j.procbio.2011.10.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Badawi HM. Molecular structure and vibrational assignments of 2,4-dichlorophenoxyacetic acid herbicide. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2010; 77:24-27. [PMID: 20537580 DOI: 10.1016/j.saa.2010.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2010] [Revised: 03/28/2010] [Accepted: 04/08/2010] [Indexed: 05/29/2023]
Abstract
The structural stability of 2,4-dichlorophenoxyacetic acid was investigated by the DFT-B3LYP and the ab initio MP2 calculations with the 6-311G** basis set. From the calculations at both levels of theory the Cgcpp structure was predicted to be the lowest energy minimum for the acid. The DFT and the MP2 levels disagreed about the nature of the second stable structure of 2,4-dichlorophenoxyacetic acid. At the DFT-B3LYP level of calculation the planar Tttp (transoid O=C-O-H) and the non-planar Tgcpp (cisoid O=C-O-H) forms were predicted to be 0.7 and 1.5 kcal/mol, respectively higher in energy than the Cgcpp conformation. At the MP2 level the two high energy Tttp and Tgcpp forms were predicted to be 2.7 and 1.4 kcal/mol, respectively higher in energy than the ground state Cgcpp structure. The Tgcpp form was adopted as the second possible structure of 2,4-dichlorophenoxyacetic acid on the basis of the fact that the Møller-Plesset calculations account better than the DFT ones for the non-bonding Ocdots, three dots, centeredH interactions. The vibrational frequencies of the lowest energy Cgcpp conformer were computed at the B3LYP level of theory and tentative vibrational assignments were provided on the basis of normal coordinate analysis and experimental infrared and Raman data.
Collapse
Affiliation(s)
- Hassan M Badawi
- Department of Chemistry, King Fahd University of Peteroleum & Minerals, Dhahran 31261, Saudi Arabia.
| |
Collapse
|
19
|
|
20
|
Kavamura VN, Esposito E. Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotechnol Adv 2010; 28:61-9. [PMID: 19778598 DOI: 10.1016/j.biotechadv.2009.09.002] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 09/14/2009] [Accepted: 09/15/2009] [Indexed: 10/20/2022]
|
21
|
Robles-González IV, Fava F, Poggi-Varaldo HM. A review on slurry bioreactors for bioremediation of soils and sediments. Microb Cell Fact 2008; 7:5. [PMID: 18312630 PMCID: PMC2292675 DOI: 10.1186/1475-2859-7-5] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 02/29/2008] [Indexed: 11/16/2022] Open
Abstract
The aim of this work is to present a critical review on slurry bioreactors (SB) and their application to bioremediation of soils and sediments polluted with recalcitrant and toxic compounds. The scope of the review encompasses the following subjects: (i) process fundamentals of SB and analysis of advantages and disadvantages; (ii) the most recent applications of SB to laboratory scale and commercial scale soil bioremediation, with a focus on pesticides, explosives, polynuclear aromatic hydrocarbons, and chlorinated organic pollutants; (iii) trends on the use of surfactants to improve availability of contaminants and supplementation with degradable carbon sources to enhance cometabolism of pollutants; (iv) recent findings on the utilization of electron acceptors other than oxygen; (v) bioaugmentation and advances made on characterization of microbial communities of SB; (vi) developments on ecotoxicity assays aimed at evaluating bioremediation efficiency of the process.From this review it can be concluded that SB is an effective ad situ and ex situ technology that can be used for bioremediation of problematic sites, such as those characterized by soils with high contents of clay and organic matter, by pollutants that are recalcitrant, toxic, and display hysteretic behavior, or when bioremediation should be accomplished in short times under the pressure and monitoring of environmental agencies and regulators. SB technology allows for the convenient manipulation and control of several environmental parameters that could lead to enhanced and faster treatment of polluted soils: nutrient N, P and organic carbon source (biostimulation), inocula (bioaugmentation), increased availability of pollutants by use of surfactants or inducing biosurfactant production inside the SB, etc. An interesting emerging area is the use of SB with simultaneous electron acceptors, which has demonstrated its usefulness for the bioremediation of soils polluted with hydrocarbons and some organochlorinated compounds. Characterization studies of microbial communities of SB are still in the early stages, in spite of their significance for improving reactor operation and design optimization.We have identified the following niches of research needs for SB in the near and mid term future, inter alia: (i) application of SB with sequential and simultaneous electron acceptors to soils polluted with contaminants other than hydrocarbons (i.e., pesticides, explosives, etc.), (ii) evaluation of the technical feasibility of triphasic SB that use innocuous solvents to help desorbing pollutants strongly attached to soils, and in turn, to enhance their biodegradation, (iii) gaining deeper insight of microbial communities present in SB with the intensified application of molecular biology tools such as PCR-DGGE, PCR-TGGE, ARDRA, etc., (iv) development of more representative ecotoxicological assays to better assess the effectiveness of a given bioremediation process.
Collapse
Affiliation(s)
- Ireri V Robles-González
- CINVESTAV-IPN, Environmental Biotechnology R&D Group, Dept. Biotechnology and Bioengineering, México D.F., México
| | - Fabio Fava
- Alma Mater Studiorum-University of Bologna; Faculty of Engineering, Viale Risorgimento, 2. 40136. Bologna, Italy
| | - Héctor M Poggi-Varaldo
- CINVESTAV-IPN, Environmental Biotechnology R&D Group, Dept. Biotechnology and Bioengineering, México D.F., México
| |
Collapse
|