• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4595849)   Today's Articles (2475)   Subscriber (49336)
For: Hekmat D, Bauer R, Neff V. Optimization of the microbial synthesis of dihydroxyacetone in a semi-continuous repeated-fed-batch process by in situ immobilization of Gluconobacter oxydans. Process Biochem 2007. [DOI: 10.1016/j.procbio.2006.07.026] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Number Cited by Other Article(s)
1
New perspectives into Gluconobacter-catalysed biotransformations. Biotechnol Adv 2023;65:108127. [PMID: 36924811 DOI: 10.1016/j.biotechadv.2023.108127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023]
2
Sen N, Mukherjee D, Singh KK, Saha S, Mayya A, Shenoy KT. Ultrasound Based Noninvasive Estimation of Mixing Time in a Vortex Reactor. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
3
Carvalho FM, Azevedo A, Ferreira MM, Mergulhão FJM, Gomes LC. Advances on Bacterial and Fungal Biofilms for the Production of Added-Value Compounds. BIOLOGY 2022;11:biology11081126. [PMID: 36009752 PMCID: PMC9405441 DOI: 10.3390/biology11081126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/24/2022]
4
Repeated production of 6-(N-hydroxyethyl)-amino-6-deoxy-α-L-sorbofuranose by immobilized Gluconobacter oxydans cells with a strategy of in situ exhaustive cell regeneration. Bioprocess Biosyst Eng 2020;43:1781-1789. [PMID: 32399751 DOI: 10.1007/s00449-020-02368-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 04/26/2020] [Indexed: 01/04/2023]
5
de la Morena S, Acedos MG, Santos VE, García-Ochoa F. Dihydroxyacetone production from glycerol using Gluconobacter oxydans: Study of medium composition and operational conditions in shaken flasks. Biotechnol Prog 2019;35:e2803. [PMID: 30840359 DOI: 10.1002/btpr.2803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/09/2019] [Accepted: 02/27/2019] [Indexed: 11/12/2022]
6
Valorization of Waste Glycerol to Dihydroxyacetone with Biocatalysts Obtained from Gluconobacter oxydans. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8122517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
7
Dodekatos G, Schünemann S, Tüysüz H. Recent Advances in Thermo-, Photo-, and Electrocatalytic Glycerol Oxidation. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01317] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
8
Poljungreed I, Boonyarattanakalin S. Low-cost biotransformation of glycerol to 1,3-dihydroxyacetone through Gluconobacter frateurii in medium with inorganic salts only. Lett Appl Microbiol 2018;67:39-46. [PMID: 29574796 DOI: 10.1111/lam.12881] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 03/08/2018] [Accepted: 03/09/2018] [Indexed: 11/28/2022]
9
Dikshit PK, Kharmawlong GJ, Moholkar VS. Investigations in sonication-induced intensification of crude glycerol fermentation to dihydroxyacetone by free and immobilized Gluconobacter oxydans. BIORESOURCE TECHNOLOGY 2018;256:302-311. [PMID: 29455098 DOI: 10.1016/j.biortech.2018.02.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 06/08/2023]
10
Dikshit PK, Padhi SK, Moholkar VS. Process optimization and analysis of product inhibition kinetics of crude glycerol fermentation for 1,3-Dihydroxyacetone production. BIORESOURCE TECHNOLOGY 2017;244:362-370. [PMID: 28780271 DOI: 10.1016/j.biortech.2017.07.136] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/21/2017] [Accepted: 07/22/2017] [Indexed: 06/07/2023]
11
Hu ZC, Tian SY, Ruan LJ, Zheng YG. Repeated biotransformation of glycerol to 1,3-dihydroxyacetone by immobilized cells of Gluconobacter oxydans with glycerol- and urea-feeding strategy in a bubble column bioreactor. BIORESOURCE TECHNOLOGY 2017;233:144-149. [PMID: 28279907 DOI: 10.1016/j.biortech.2017.02.096] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 06/06/2023]
12
Dikshit PK, Moholkar VS. Optimization of 1,3-dihydroxyacetone production from crude glycerol by immobilized Gluconobacter oxydans MTCC 904. BIORESOURCE TECHNOLOGY 2016;216:1058-1065. [PMID: 26873288 DOI: 10.1016/j.biortech.2016.01.100] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 01/24/2016] [Accepted: 01/25/2016] [Indexed: 06/05/2023]
13
Dikshit PK, Moholkar VS. Kinetic analysis of dihydroxyacetone production from crude glycerol by immobilized cells of Gluconobacter oxydans MTCC 904. BIORESOURCE TECHNOLOGY 2016;216:948-957. [PMID: 27343447 DOI: 10.1016/j.biortech.2016.06.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/11/2016] [Accepted: 06/13/2016] [Indexed: 06/06/2023]
14
Zhou X, Zhou X, Xu Y, Yu S. Improving the production yield and productivity of 1,3-dihydroxyacetone from glycerol fermentation using Gluconobacter oxydans NL71 in a compressed oxygen supply-sealed and stirred tank reactor (COS-SSTR). Bioprocess Biosyst Eng 2016;39:1315-8. [PMID: 27021347 DOI: 10.1007/s00449-016-1595-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 03/17/2016] [Indexed: 11/30/2022]
15
Simultaneous Bioconversion of Xylose and Glycerol to Xylonic Acid and 1,3-Dihydroxyacetone from the Mixture of Pre-Hydrolysates and Ethanol-Fermented Waste Liquid by Gluconobacter oxydans. Appl Biochem Biotechnol 2015;178:1-8. [PMID: 26378011 DOI: 10.1007/s12010-015-1853-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 09/10/2015] [Indexed: 10/23/2022]
16
Martínez-Gallegos JF, Burgos-Cara A, Caparrós-Salvador F, Luzón-González G, Fernández-Serrano M. Dihydroxyacetone crystallization: Process, environmental, health and safety criteria application for solvent selection. Chem Eng Sci 2015. [DOI: 10.1016/j.ces.2015.04.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
17
Liang X, Rahubadda A, Haynes BS, Montoya A. Kinetic Insights into the Hydrothermal Decomposition of Dihydroxyacetone: A Combined Experimental and Modeling Study. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b02311] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
18
Hara M, Nakajima K, Kamata K. Recent progress in the development of solid catalysts for biomass conversion into high value-added chemicals. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2015;16:034903. [PMID: 27877800 PMCID: PMC5099837 DOI: 10.1088/1468-6996/16/3/034903] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 04/14/2015] [Accepted: 04/14/2015] [Indexed: 05/15/2023]
19
Yamaguchi S, Motokura K, Sakamoto Y, Miyaji A, Baba T. Tin-catalyzed conversion of biomass-derived triose sugar and formaldehyde to α-hydroxy-γ-butyrolactone. Chem Commun (Camb) 2015;50:4600-2. [PMID: 24668044 DOI: 10.1039/c4cc00954a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
20
Wang X, Liang F, Huang C, Li Y, Chen B. Highly active tin(iv) phosphate phase transfer catalysts for the production of lactic acid from triose sugars. Catal Sci Technol 2015. [DOI: 10.1039/c5cy00647c] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
21
Gullo M, Verzelloni E, Canonico M. Aerobic submerged fermentation by acetic acid bacteria for vinegar production: Process and biotechnological aspects. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.07.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
22
Rocha-Martin J, Acosta A, Berenguer J, Guisan JM, Lopez-Gallego F. Selective oxidation of glycerol to 1,3-dihydroxyacetone by covalently immobilized glycerol dehydrogenases with higher stability and lower product inhibition. BIORESOURCE TECHNOLOGY 2014;170:445-453. [PMID: 25164336 DOI: 10.1016/j.biortech.2014.07.116] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/30/2014] [Accepted: 07/31/2014] [Indexed: 06/03/2023]
23
Schrewe M, Julsing MK, Bühler B, Schmid A. Whole-cell biocatalysis for selective and productive C-O functional group introduction and modification. Chem Soc Rev 2014;42:6346-77. [PMID: 23475180 DOI: 10.1039/c3cs60011d] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
24
Perni S, Hackett L, Goss RJM, Simmons MJ, Overton TW. Optimisation of engineered Escherichia coli biofilms for enzymatic biosynthesis of l-halotryptophans. AMB Express 2013;3:66. [PMID: 24188712 PMCID: PMC3843566 DOI: 10.1186/2191-0855-3-66] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 10/19/2013] [Indexed: 11/10/2022]  Open
25
Efficient production of l-sorbose from d-sorbitol by whole cell immobilization of Gluconobacter oxydans WSH-003. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.06.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
26
Simon J, Olsson JV, Kim H, Tenney IF, Waymouth RM. Semicrystalline Dihydroxyacetone Copolymers Derived from Glycerol. Macromolecules 2012. [DOI: 10.1021/ma302311h] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
27
Grey C, Viloria-Cols M, Jungvid H, Adlercreutz P. Process development of oxygen-demanding reactions utilizing a simple design with parallel glass tube reactors – Evaluated usingGluconobacter oxydans(DSM 24525). BIOCATAL BIOTRANSFOR 2012. [DOI: 10.3109/10242422.2012.740019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
28
Production of dihydroxyacetone from an aqueous solution of glycerol in the reaction catalyzed by an immobilized cell preparation of acetic acid bacteria Gluconobacter oxydans ATCC 621. Eur Food Res Technol 2012. [DOI: 10.1007/s00217-012-1846-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
29
Halan B, Buehler K, Schmid A. Biofilms as living catalysts in continuous chemical syntheses. Trends Biotechnol 2012;30:453-65. [PMID: 22704028 DOI: 10.1016/j.tibtech.2012.05.003] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Revised: 04/04/2012] [Accepted: 05/08/2012] [Indexed: 12/11/2022]
30
Zheng Z, Luo M, Yu J, Wang J, Ji J. Novel Process for 1,3-Dihydroxyacetone Production from Glycerol. 1. Technological Feasibility Study and Process Design. Ind Eng Chem Res 2012. [DOI: 10.1021/ie201710h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
31
Winn M, Foulkes JM, Perni S, Simmons MJH, Overton TW, Goss RJM. Biofilms and their engineered counterparts: A new generation of immobilised biocatalysts. Catal Sci Technol 2012. [DOI: 10.1039/c2cy20085f] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
32
Hu ZC, Liu ZQ, Xu JM, Zheng YG, Shen YC. IMPROVEMENT OF 1,3-DIHYDROXYACETONE PRODUCTION FROMGluconobacter oxydansBY ION BEAM IMPLANTATION. Prep Biochem Biotechnol 2012;42:15-28. [DOI: 10.1080/10826068.2011.563400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
33
Zheng M, Zhang S. Immobilization of glycerol dehydrogenase on magnetic silica nanoparticles for conversion of glycerol to value-added 1,3-dihydroxyacetone. BIOCATAL BIOTRANSFOR 2011. [DOI: 10.3109/10242422.2011.631212] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
34
Hu ZC, Zheng YG. Enhancement of 1,3-Dihydroxyacetone Production by a UV-induced Mutant of Gluconobacter oxydans with DO Control Strategy. Appl Biochem Biotechnol 2011;165:1152-60. [DOI: 10.1007/s12010-011-9332-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 07/27/2011] [Indexed: 10/17/2022]
35
Hu ZC, Zheng YG, Shen YC. Use of glycerol for producing 1,3-dihydroxyacetone by Gluconobacter oxydans in an airlift bioreactor. BIORESOURCE TECHNOLOGY 2011;102:7177-7182. [PMID: 21592784 DOI: 10.1016/j.biortech.2011.04.078] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 04/23/2011] [Accepted: 04/23/2011] [Indexed: 05/30/2023]
36
Rasrendra CB, Fachri BA, Makertihartha IGBN, Adisasmito S, Heeres HJ. Catalytic conversion of dihydroxyacetone to lactic acid using metal salts in water. CHEMSUSCHEM 2011;4:768-777. [PMID: 21598406 DOI: 10.1002/cssc.201000457] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Indexed: 05/30/2023]
37
Dagher SF, Ragout AL, Siñeriz F, Bruno-Bárcena JM. Cell immobilization for production of lactic acid biofilms do it naturally. ADVANCES IN APPLIED MICROBIOLOGY 2010;71:113-48. [PMID: 20378053 DOI: 10.1016/s0065-2164(10)71005-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
38
Rosche B, Li XZ, Hauer B, Schmid A, Buehler K. Microbial biofilms: a concept for industrial catalysis? Trends Biotechnol 2009;27:636-43. [PMID: 19783314 DOI: 10.1016/j.tibtech.2009.08.001] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 08/13/2009] [Accepted: 08/14/2009] [Indexed: 11/18/2022]
39
Taarning E, Saravanamurugan S, Holm MS, Xiong J, West RM, Christensen CH. Zeolite-catalyzed isomerization of triose sugars. CHEMSUSCHEM 2009;2:625-627. [PMID: 19562790 DOI: 10.1002/cssc.200900099] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Indexed: 05/27/2023]
40
Schörken U, Kempers P. Lipid biotechnology: Industrially relevant production processes. EUR J LIPID SCI TECH 2009. [DOI: 10.1002/ejlt.200900057] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
41
Odaci D, Timur S, Telefoncu A. A microbial biosensor based on bacterial cells immobilized on chitosan matrix. Bioelectrochemistry 2009;75:77-82. [PMID: 19196553 DOI: 10.1016/j.bioelechem.2009.01.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 01/06/2009] [Accepted: 01/07/2009] [Indexed: 10/21/2022]
42
Raspor P, Goranovic D. Biotechnological applications of acetic acid bacteria. Crit Rev Biotechnol 2008;28:101-24. [PMID: 18568850 DOI: 10.1080/07388550802046749] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
43
Chen SY, Wei YH, Chang JS. Repeated pH-stat fed-batch fermentation for rhamnolipid production with indigenous Pseudomonas aeruginosa S2. Appl Microbiol Biotechnol 2007;76:67-74. [PMID: 17457541 DOI: 10.1007/s00253-007-0980-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 04/01/2007] [Accepted: 04/02/2007] [Indexed: 11/29/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA