1
|
Fernandes AJ, Shibukawa VP, Prata AMR, Segato F, Dos Santos JC, Ferraz A, Milagres AMF. Using low-shear aerated and agitated bioreactor for producing two specific laccases by trametes versicolor cultures induced by 2,5-xylidine: Process development and economic analysis. BIORESOURCE TECHNOLOGY 2024; 401:130737. [PMID: 38677383 DOI: 10.1016/j.biortech.2024.130737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/08/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
Laccase isoforms from basidiomycetes exhibit a superior redox potential compared to commercially available laccases obtained from ascomycete fungi, rendering them more reactive toward mono-substituted phenols and polyphenolic compounds. However, basidiomycetes present limitations for large-scale culture in liquid media, restraining the current availability of laccases from this fungal class. To advance laccase production from basidiomycetes, a newly designed 14-L low-shear aerated and agitated bioreactor provided enzyme titers up to 23.5 IU/mL from Trametes versicolor cultures. Produced enzymes underwent ultrafiltration and LC/MS-MS characterization, revealing the predominant production of only two out of the ten laccases predicted in the T. versicolor genome. Process simulation and economic analysis using SuperPro designer® suggested that T. versicolor laccase could be produced at US$ 3.60/kIU in a 200-L/batch enterprise with attractive economic parameters and a payback period of 1.7 years. The study indicates that new bioreactors with plain design help to produce low-cost enzymes from basidiomycetes.
Collapse
Affiliation(s)
- André J Fernandes
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, University of Sao Paulo, Lorena, SP, Brazil
| | - Vinícius P Shibukawa
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, University of Sao Paulo, Lorena, SP, Brazil
| | - Arnaldo M R Prata
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, University of Sao Paulo, Lorena, SP, Brazil
| | - Fernando Segato
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, University of Sao Paulo, Lorena, SP, Brazil
| | - Julio C Dos Santos
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, University of Sao Paulo, Lorena, SP, Brazil
| | - André Ferraz
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, University of Sao Paulo, Lorena, SP, Brazil
| | - Adriane M F Milagres
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, University of Sao Paulo, Lorena, SP, Brazil.
| |
Collapse
|
2
|
Bari E, Far MG, Daniel G, Bozorgzadeh Y, Ribera J, Aghajani H, Hosseinpourpia R. Fungal behavior and recent developments in biopulping technology. World J Microbiol Biotechnol 2024; 40:207. [PMID: 38767733 DOI: 10.1007/s11274-024-03992-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/17/2024] [Indexed: 05/22/2024]
Abstract
Biological pretreatment of wood chips by fungi is a well-known approach prior to mechanical- or chemical pulp production. For this biological approach, a limited number of white-rot fungi with an ability to colonize and selectively degrade lignin are used to pretreat wood chips allowing the remaining cellulose to be processed for further applications. Biopulping is an environmentally friendly technology that can reduce the energy consumption of traditional pulping processes. Fungal pretreatment also reduces the pitch content in the wood chips and improves the pulp quality in terms of brightness, strength, and bleachability. The bleached biopulps are easier to refine compared to pulps produced by conventional methodology. In the last decades, biopulping has been scaled up with pilot trials towards industrial level, with optimization of several intermediate steps and improvement of economic feasibility. Nevertheless, fundamental knowledge on the biochemical mechanisms involved in biopulping is still lacking. Overall, biopulping technology has advanced rapidly during recent decades and pilot mill trials have been implemented. The use of fungi as pretreatment for pulp production is in line with modern circular economy strategies and can be implemented in existing production plants. In this review, we discuss some recent advances in biopulping technology, which can improve mechanical-, chemical-, and organosolv pulping processes along with their mechanisms.
Collapse
Affiliation(s)
- Ehsan Bari
- Department of Wood Sciences and Engineering, Technical and Vocational University (TVU), Tehran, Iran.
| | - Mohammad Ghorbanian Far
- Department of Wood Sciences and Engineering, Technical and Vocational University (TVU), Tehran, Iran
| | - Geoffrey Daniel
- Department of Forest Biomaterial and Technology/Wood Science, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| | - Younes Bozorgzadeh
- Department of Wood Engineering and Technology, Gorgan University of Agriculture Sciences and Natural Resources, Gorgan, 4913815739, Iran
| | - Javier Ribera
- Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | - Hamed Aghajani
- Department of Forest Science and Engineering, Sari Agricultural Science and Natural Resources University, Sari, Iran
| | - Reza Hosseinpourpia
- Department of Forestry and Wood Technology, Linnaeus University, Georg Lückligs Plats 1, 35195, Växjö, Sweden.
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA.
| |
Collapse
|
3
|
Kupczyński R, Bednarski M, Budny-Walczak A, Kociuba W. Evaluation of Suitability of New Bedding Material Obtained after Straw Biogasification for Dairy Cows. Animals (Basel) 2023; 13:1905. [PMID: 37370415 DOI: 10.3390/ani13121905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/30/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
This study aimed to compare the biomass obtained via the biogasification of straw with the classic bedding material, wheat straw. It was divided into two stages. In the first stage, a laboratory evaluation of the bedding materials was carried out, taking into account dry matter, pH, and water absorption. In the laboratory tests, the bedding obtained after the biogasification of straw (Verbio) showed better sorptive properties, with a value of 439.86% (wheat straw's value was 294.10%), and its pH value was higher than that of wheat straw. In the second stage of the experiment, field tests were carried out on a production farm, wherein the bedding was evaluated for bedding hygiene, animal hygiene, insulation properties, animal productivity, and microbiological properties. A microbiological assessment was also performed. Regarding cleanliness and production parameters and thermographic insulation properties, the two types of bedding did not show statistically significant differences. In terms of microbiological parameters, a higher number of all examined types of bacteria and fungi was observed in the Verbio bedding compared with straw, but these differences were not statistically significant, except in the case of total coliform. The results indicate that straw obtained after gasification is a suitable bedding material, with parameters similar to those of wheat straw.
Collapse
Affiliation(s)
- Robert Kupczyński
- Department of Environment Hygiene and Animal Welfare, The Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, 38c Chelmonskiego St., 50-375 Wroclaw, Poland
| | - Michał Bednarski
- Department of Epizootiology and Clinic of Bird and Exotic Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 47 Grunwaldzki Sq., 50-366 Wroclaw, Poland
| | - Anna Budny-Walczak
- Department of Environment Hygiene and Animal Welfare, The Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, 38c Chelmonskiego St., 50-375 Wroclaw, Poland
| | - Wojciech Kociuba
- Department of Environment Hygiene and Animal Welfare, The Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, 38c Chelmonskiego St., 50-375 Wroclaw, Poland
| |
Collapse
|
4
|
PsAA9A, a C1-specific AA9 lytic polysaccharide monooxygenase from the white-rot basidiomycete Pycnoporus sanguineus. Appl Microbiol Biotechnol 2020; 104:9631-9643. [DOI: 10.1007/s00253-020-10911-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/04/2020] [Accepted: 09/14/2020] [Indexed: 10/23/2022]
|
5
|
Machado AS, Valadares F, Silva TF, Milagres AMF, Segato F, Ferraz A. The Secretome of Phanerochaete chrysosporium and Trametes versicolor Grown in Microcrystalline Cellulose and Use of the Enzymes for Hydrolysis of Lignocellulosic Materials. Front Bioeng Biotechnol 2020; 8:826. [PMID: 32766234 PMCID: PMC7379840 DOI: 10.3389/fbioe.2020.00826] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/29/2020] [Indexed: 12/26/2022] Open
Abstract
The ability of white-rot fungi to degrade polysaccharides in lignified plant cell walls makes them a suitable reservoir for CAZyme prospects. However, to date, CAZymes from these species are barely studied, which limits their use in the set of choices for biomass conversion in modern biorefineries. The current work joined secretome studies of two representative white-rot fungi, Phanerochaete chrysosporium and Trametes versicolor, with expression analysis of cellobiohydrolase (CBH) genes, and use of the secretomes to evaluate enzymatic conversion of simple and complex sugarcane-derived substrates. Avicel was used to induce secretion of high levels of CBHs in the extracellular medium. A total of 56 and 58 proteins were identified in cultures of P. chrysosporium and T. versicolor, respectively, with 78-86% of these proteins corresponding to plant cell wall degrading enzymes (cellulolytic, hemicellulolytic, pectinolytic, esterase, and auxiliary activity). CBHI predominated among the plant cell wall degrading enzymes, corresponding to 47 and 34% of the detected proteins in P. chrysosporium and T. versicolor, respectively, which confirms that Avicel is an efficient CBH inducer in white-rot fungi. The induction by Avicel of genes encoding CBHs (cel) was supported by high expression levels of cel7D and cel7C in P. chrysosporium and T. versicolor, respectively. Both white-rot fungi secretomes enabled hydrolysis experiments at 10 FPU/g substrate, despite the varied proportions of CBHs and other enzymes present in each case. When low recalcitrance sugarcane pith was used as a substrate, P. chrysosporium and T. versicolor secretomes performed similarly to Cellic® CTec2. However, the white-rot fungi secretomes were less efficient than Cellic® CTec2 during hydrolysis of more recalcitrant substrates, such as acid or alkaline sulfite-pretreated sugarcane bagasse, likely because Cellic® CTec2 contains an excess of CBHs compared with the white-rot fungi secretomes. General comparison of the white-rot fungi secretomes highlighted T. versicolor enzymes for providing high glucan conversions, even at lower proportion of CBHs, probably because the other enzymes present in this secretome and CBHs lacking carbohydrate-binding modules compensate for problems associated with unproductive binding to lignin.
Collapse
Affiliation(s)
| | | | | | | | | | - André Ferraz
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, Lorena, Brazil
| |
Collapse
|
6
|
Kumar A, Gautam A, Dutt D. Bio-pulping: An energy saving and environment-friendly approach. PHYSICAL SCIENCES REVIEWS 2020. [DOI: 10.1515/psr-2019-0043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractPretreatment of wood or other raw material with white-rot fungi (WRF) prior to pulping is known as biopulping. Lignin and hemicelluloses are removed selectively during early growth of WRF that produces enriched cellulose, known as selective delignification. Biopulping is considered as environment-friendly and cost-effective approach for delignification of lignocellulosic raw materials. The delignification efficiency of WRF during biopulping is directly related to ligninolytic enzymes production that is influence by several factors such as fungal strain, nature of raw material, oxygen availability, moisture content, pH, temperature, source of nitrogen, presence of Mn++ and Cu++ ions. The WRF, especially Ceriporiopsis subvermispora, Trametes versicolor and Phanerochaete chrysosporium, have been used dominantly for the purpose of biopulping. It is an energy saving process that also improves brightness of pulp and strength properties including tensile index, burst index and folding endurance of paper. Significant decrease in kappa number has also been attained by fungal pretreatment of raw materials. Biological pretreatment of raw material also reduces the requirement of pulping chemicals.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Biotechnology, College of Natural and Computational Sciences, Debre Markos University (Ethiopia), Debre Markos, Gojjam, Ethiopia
| | - Archana Gautam
- Department of Paper Technology, Indian Institute of Technology Roorkee, Saharanpur Campus, Roorkee, Uttar Pradesh, India
| | - Dharm Dutt
- Department of Paper Technology, Indian Institute of Technology Roorkee, Saharanpur Campus, Roorkee, Uttar Pradesh, India
| |
Collapse
|
7
|
Effect of laccase from Trametes versicolor on the oxidative stability of edible vegetable oils. FOOD SCIENCE AND HUMAN WELLNESS 2019. [DOI: 10.1016/j.fshw.2019.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Piazza G, Ercoli L, Nuti M, Pellegrino E. Interaction Between Conservation Tillage and Nitrogen Fertilization Shapes Prokaryotic and Fungal Diversity at Different Soil Depths: Evidence From a 23-Year Field Experiment in the Mediterranean Area. Front Microbiol 2019; 10:2047. [PMID: 31551981 PMCID: PMC6737287 DOI: 10.3389/fmicb.2019.02047] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/20/2019] [Indexed: 01/20/2023] Open
Abstract
Soil biodiversity accomplishes key roles in agro-ecosystem services consisting in preserving and enhancing soil fertility and nutrient cycling, crop productivity and environmental protection. Thus, the improvement of knowledge on the effect of conservation practices, related to tillage and N fertilization, on soil microbial communities is critical to better understand the role and function of microorganisms in regulating agro-ecosystems. In the Mediterranean area, vulnerable to climate change and suffering for management-induced losses of soil fertility, the impact of conservation practices on soil microbial communities is of special interest for building mitigation and adaptation strategies to climate change. A long-term experiment, originally designed to investigate the effect of tillage and N fertilization on crop yield and soil organic carbon, was utilized to understand the effect of these management practices on soil prokaryotic and fungal community diversity. The majority of prokaryotic and fungal taxa were common to all treatments at both soil depths, whereas few bacterial taxa (Cloacimonates, Spirochaetia and Berkelbacteria) and a larger number of fungal taxa (i.e., Coniphoraceae, Debaryomycetaceae, Geastraceae, Cordicypitaceae and Steccherinaceae) were unique to specific management practices. Soil prokaryotic and fungal structure was heavily influenced by the interaction of tillage and N fertilization: the prokaryotic community structure of the fertilized conventional tillage system was remarkably different respect to the unfertilized conservation and conventional systems in the surface layer. In addition, the effect of N fertilization in shaping the fungal community structure of the surface layer was higher under conservation tillage systems than under conventional tillage systems. Soil microbial community was shaped by soil depth irrespective of the effect of plowing and N addition. Finally, chemical and enzymatic parameters of soil and crop yields were significantly related to fungal community structure along the soil profile. The findings of this study gave new insights on the identification of management practices supporting and suppressing beneficial and detrimental taxa, respectively. This highlights the importance of managing soil microbial diversity through agro-ecological intensified systems in the Mediterranean area.
Collapse
|
9
|
Singh G, Arya SK. Utility of laccase in pulp and paper industry: A progressive step towards the green technology. Int J Biol Macromol 2019; 134:1070-1084. [DOI: 10.1016/j.ijbiomac.2019.05.168] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 01/31/2023]
|
10
|
Characterization of ligninolytic enzyme production in white-rot wild fungal strains suitable for kraft pulp bleaching. 3 Biotech 2017; 7:319. [PMID: 28955616 DOI: 10.1007/s13205-017-0968-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/07/2017] [Indexed: 12/15/2022] Open
Abstract
Fungal strains identified by phylogenetic analysis of the ITS rDNA region as Trametes versicolor (CMU-TA01), Irpex lacteus (CMU-84/13), and Phlebiopsis sp. (CMU-47/13) are able to grow on and bleach kraft pulp (KP) in a simple solid-state fermentation (SSF) assay conducted in Petri dishes. Kappa number reductions obtained with Phlebiopsis sp. (48.3%), T. versicolor (43%), and I. lacteus (39.3%), evidence their capability for lignin breakdown. Scanning electron microscopy images of KP fibers from SSF assays demonstrated increased roughness and striation, evidencing significant cell wall modification. T. versicolor produces laccase (Lac), manganese peroxidase (MnP), and lignin peroxidase (LiP) in potato dextrose broth (PDB), PDB + CuSO4, and PDB + KP, whereas Phlebiopsis sp. and I. lacteus showed no Lac and low LiP activities in all media. Compared to PDB, the highest increase in Lac (7.25-fold) and MnP (2.37-fold) activities in PDB + CuSO4 occur in T. versicolor; for LiP, the greatest changes (6.95-fold) were observed in I. lacteus. Incubation in PDB + KP shows significant increases in Lac and MnP for T. versicolor, MnP and LiP for Phlebiopsis sp., and none for I. lacteus. SSF assays in Petri plates are a valuable tool to select fungi that are able to delignify KP. Here, delignification by Phlebiopsis sp. of this substrate is reported for the first time, and MnP activity was strongly associated with the delignification ability of the studied strains. The obtained results suggest that the studied fungal strains have biotechnological potential for use in the paper industry.
Collapse
|
11
|
Liu Z, Wang Y, Pan X, Ge Q, Ma Q, Li Q, Fu T, Hu C, Zhu X, Pan J. Identification of Fungal Communities Associated with the Biodeterioration of Waterlogged Archeological Wood in a Han Dynasty Tomb in China. Front Microbiol 2017; 8:1633. [PMID: 28890715 PMCID: PMC5575450 DOI: 10.3389/fmicb.2017.01633] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/11/2017] [Indexed: 12/12/2022] Open
Abstract
The Mausoleum of the Dingtao King (termed ‘M2’) is a large-scale huangchang ticou tomb that dates to the Western Han Dynasty (206 B.C.–25 A.D.). It is the highest-ranking Han Dynasty tomb discovered to date. However, biodeterioration on the surface of the tomb M2 is causing severe damage to its wooden materials. The aim of the present study was to give insight into the fungal communities colonized the wooden tomb. For this purpose, seven samples were collected from different sections of the tomb M2 which exhibited obvious biodeterioration in the form of white spots. Microbial structures associated with the white spots were observed with scanning electron microscopy. Fungal community structures were assessed for seven samples via a combination of high-throughput sequencing and culture-dependent techniques. Sequencing analyses identified 114 total genera that belonged to five fungal phyla. Hypochnicium was the most abundant genus across all samples and accounted for 98.61–99.45% of the total community composition. Further, Hypochnicium sp. and Mortierella sp. cultures were successfully isolated from the tomb samples, and were distinguished as Hypochnicium sp. WY-DT1 and Mortierella sp. NK-DT1, respectively. Cultivation-dependent experiments indicated that the dominant member, Hypochnicium sp. WY- DT1, could grow at low temperatures and significantly degraded cellulose and lignin. Thus, our results taken together suggest that this fungal strain must be regarded as a serious threat to the preservation of the wooden tomb M2. The results reported here are useful for informing future contamination mitigation efforts for the tomb M2 as well as other similar cultural artifacts.
Collapse
Affiliation(s)
- Zijun Liu
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai UniversityTianjin, China
| | - Yu Wang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai UniversityTianjin, China
| | - Xiaoxuan Pan
- Chinese Academy of Cultural HeritageBeijing, China
| | - Qinya Ge
- Chinese Academy of Cultural HeritageBeijing, China
| | - Qinglin Ma
- Chinese Academy of Cultural HeritageBeijing, China
| | - Qiang Li
- Laboratory of Cultural Relics Conservation Materials, Department of Chemistry, Zhejiang UniversityHangzhou, China
| | - Tongtong Fu
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai UniversityTianjin, China
| | - Cuiting Hu
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai UniversityTianjin, China
| | - Xudong Zhu
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai UniversityTianjin, China
| | - Jiao Pan
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai UniversityTianjin, China
| |
Collapse
|
12
|
Dier TKF, Rauber D, Jauch J, Hempelmann R, Volmer DA. Novel Mixed-Mode Stationary Phases for Chromatographic Separation of Complex Mixtures of Decomposed Lignin. ChemistrySelect 2017. [DOI: 10.1002/slct.201601673] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tobias K. F. Dier
- Institute of Bioanalytical Chemistry; Saarland University; 66123 Saarbrücken Germany
| | - Daniel Rauber
- Institute of Physical Chemistry; Saarland University; 66123 Saarbrücken Germany
| | - Johann Jauch
- Institute of Organic Chemistry; Saarland University; 66123 Saarbrücken Germany
| | - Rolf Hempelmann
- Institute of Physical Chemistry; Saarland University; 66123 Saarbrücken Germany
| | - Dietrich A. Volmer
- Institute of Bioanalytical Chemistry; Saarland University; 66123 Saarbrücken Germany
| |
Collapse
|
13
|
Saparrat MCN, Balatti PA, Arambarri AM, Martínez MJ. Coriolopsis rigida, a potential model of white-rot fungi that produce extracellular laccases. J Ind Microbiol Biotechnol 2014; 41:607-17. [DOI: 10.1007/s10295-014-1408-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 01/20/2014] [Indexed: 11/28/2022]
Abstract
Abstract
In the last two decades, a significant amount of work aimed at studying the ability of the white-rot fungus Coriolopsis rigida strain LPSC no. 232 to degrade lignin, sterols, as well as several hazardous pollutants like dyes and aliphatic and aromatic fractions of crude oil, including polycyclic aromatic hydrocarbons, has been performed. Additionally, C. rigida in association with arbuscular mycorrhizal fungi appears to enhance plant growth, albeit the physiological and molecular bases of this effect remain to be elucidated. C. rigida's ability to degrade lignin and lignin-related compounds and the capacity to transform the aromatic fraction of crude oil in the soil might be partially ascribed to its ligninolytic enzyme system. Two extracellular laccases are the only enzymatic components of its lignin-degrading system. We reviewed the most relevant findings regarding the activity and role of C. rigida LPSC no. 232 and its laccases and discussed the work that remains to be done in order to assess, more precisely, the potential use of this fungus and its extracellular enzymes as a model in several applied processes.
Collapse
Affiliation(s)
- Mario C N Saparrat
- grid.9499.d 0000000120973940 Instituto de Fisiología Vegetal (INFIVE) Universidad Nacional de La Plata (UNLP)-CCT-La Plata-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Diag. 113 y 61, CC 327 1900 La Plata Argentina
- grid.9499.d 0000000120973940 Facultad de Ciencias Naturales y Museo Instituto de Botánica Spegazzini, UNLP 53 # 477 1900 La Plata Argentina
- grid.9499.d 0000000120973940 Cátedra de Microbiología Agrícola Facultad de Ciencias Agrarias y Forestales, UNLP 60 y 119 1900 La Plata Argentina
| | - Pedro A Balatti
- grid.9499.d 0000000120973940 Cátedra de Microbiología Agrícola Facultad de Ciencias Agrarias y Forestales, UNLP 60 y 119 1900 La Plata Argentina
- grid.501763.6 0000 0004 1757 289X INFIVE, UNLP-CCT-La Plata-CONICET Diag. 113 y 61, CC 327 1900 La Plata Argentina
- grid.9499.d 0000 0001 2097 3940 Facultad de Ciencias Agrarias y Forestales Centro de Investigaciones de Fitopatología (CIDEFI), UNLP 60 y 119 1900 La Plata Argentina
| | - Angélica M Arambarri
- grid.9499.d 0000000120973940 Facultad de Ciencias Naturales y Museo Instituto de Botánica Spegazzini, UNLP 53 # 477 1900 La Plata Argentina
| | - María J Martínez
- grid.418281.6 0000000417940752 Centro de Investigaciones Biológicas, CSIC Ramiro de Maeztu 9 28040 Madrid Spain
| |
Collapse
|
14
|
Rohr CO, Levin LN, Mentaberry AN, Wirth SA. A first insight into Pycnoporus sanguineus BAFC 2126 transcriptome. PLoS One 2013; 8:e81033. [PMID: 24312521 PMCID: PMC3846667 DOI: 10.1371/journal.pone.0081033] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 10/09/2013] [Indexed: 12/12/2022] Open
Abstract
Fungi of the genus Pycnoporus are white-rot basidiomycetes widely studied because of their ability to synthesize high added-value compounds and enzymes of industrial interest. Here we report the sequencing, assembly and analysis of the transcriptome of Pycnoporus sanguineus BAFC 2126 grown at stationary phase, in media supplemented with copper sulfate. Using the 454 pyrosequencing platform we obtained a total of 226,336 reads (88,779,843 bases) that were filtered and de novo assembled to generate a reference transcriptome of 7,303 transcripts. Putative functions were assigned for 4,732 transcripts by searching similarities of six-frame translated sequences against a customized protein database and by the presence of conserved protein domains. Through the analysis of translated sequences we identified transcripts encoding 178 putative carbohydrate active enzymes, including representatives of 15 families with roles in lignocellulose degradation. Furthermore, we found many transcripts encoding enzymes related to lignin hydrolysis and modification, including laccases and peroxidases, as well as GMC oxidoreductases, copper radical oxidases and other enzymes involved in the generation of extracellular hydrogen peroxide and iron homeostasis. Finally, we identified the transcripts encoding all of the enzymes involved in terpenoid backbone biosynthesis pathway, various terpene synthases related to the biosynthesis of sesquiterpenoids and triterpenoids precursors, and also cytochrome P450 monooxygenases, glutathione S-transferases and epoxide hydrolases with potential functions in the biodegradation of xenobiotics and the enantioselective biosynthesis of biologically active drugs. To our knowledge this is the first report of a transcriptome of genus Pycnoporus and a resource for future molecular studies in P. sanguineus.
Collapse
Affiliation(s)
- Cristian O. Rohr
- Instituto de Ecología, Genética y Evolución, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires, Buenos Aires, Argentina
| | - Laura N. Levin
- Laboratorio de Micología Experimental, Departamento de Biodiversidad y Biología Experimental, Universidad de Buenos Aires, Ciudad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro N. Mentaberry
- Laboratorio de Agrobiotecnología, Universidad de Buenos Aires, Ciudad de Buenos Aires, Buenos Aires, Argentina
| | - Sonia A. Wirth
- Laboratorio de Agrobiotecnología, Universidad de Buenos Aires, Ciudad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
15
|
Singhal A, Jaiswal PK, Jha PK, Thapliyal A, Thakur IS. ASSESSMENT OFCryptococcus albidusFOR BIOPULPING OF EUCALYPTUS. Prep Biochem Biotechnol 2013; 43:735-49. [DOI: 10.1080/10826068.2013.771784] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Garcés L, Vásquez C, Contreras E, Urra J, Diez MC, Guerrero L, Palma C. An alternative, banana peel-based medium used to investigate the catalytic properties of peroxidase from a fungus, Inonotus sp SP2, recently isolated in southern Chile. BIOTECHNOL BIOPROC E 2012. [DOI: 10.1007/s12257-012-0295-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Fackler K, Schwanninger M. How spectroscopy and microspectroscopy of degraded wood contribute to understand fungal wood decay. Appl Microbiol Biotechnol 2012; 96:587-99. [PMID: 22983562 PMCID: PMC3466433 DOI: 10.1007/s00253-012-4369-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 08/13/2012] [Accepted: 08/13/2012] [Indexed: 12/01/2022]
Abstract
Nuclear magnetic resonance, mid and near infrared, and ultra violet (UV) spectra of wood contain information on its chemistry and composition. When solid wood samples are analysed, information on the molecular structure of the lignocellulose complex of wood e.g. crystallinity of polysaccharides and the orientation of the polymers in wood cell walls can also be gained. UV and infrared spectroscopy allow also for spatially resolved spectroscopy, and state-of-the-art mapping and imaging systems have been able to provide local information on wood chemistry and structure at the level of wood cells (with IR) or cell wall layers (with UV). During the last decades, these methods have also proven useful to follow alterations of the composition, chemistry and physics of the substrate wood after fungi had grown on it as well as changes of the interactions between the wood polymers within the lignocellulose complex caused by decay fungi. This review provides an overview on how molecular spectroscopic methods could contribute to understand these degradation processes and were able to characterise and localise fungal wood decay in its various stages starting from the incipient and early ones even if the major share of research focussed on advanced decay. Practical issues such as requirements in terms of sample preparation and sample form and present examples of optimised data analysis will also be addressed to be able to detect and characterise the generally highly variable microbial degradation processes within their highly variable substrate wood.
Collapse
Affiliation(s)
- Karin Fackler
- Institute of Chemical Engineering, Vienna University of Technology, Gumpendorfer Straße 1a, 1060, Vienna, Austria.
| | | |
Collapse
|
18
|
Levin L, Melignani E, Ramos AM. Effect of nitrogen sources and vitamins on ligninolytic enzyme production by some white-rot fungi. Dye decolorization by selected culture filtrates. BIORESOURCE TECHNOLOGY 2010; 101:4554-63. [PMID: 20153961 DOI: 10.1016/j.biortech.2010.01.102] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 01/19/2010] [Accepted: 01/20/2010] [Indexed: 05/07/2023]
Abstract
The effect of amino acids, complex nitrogen sources and vitamin addition on Trametes trogii, Trametes villosa and Coriolus versicolor var. antarcticus ligninolytic enzyme production, was evaluated. Dye decolorization by their culture filtrates was compared. Glutamic acid followed by peptone, were the best N sources for laccase and manganese peroxidase production. The three fungi produced two laccase isoenzymes (molecular weights from 38 up to 150 kDa); their pattern of production was not affected by medium composition. Although the response was not uniform, vitamin addition sometimes stimulated ligninolytic enzyme production, but never inhibited it. Thiamine induced manganese peroxidase production. T. trogii grown in glutamic acid produced culture filtrates with the highest laccase (188.3 U/ml) and manganese peroxidase activities (4.5 U/ml), rendering the best results in decolorization. These crude filtrates were able to decolorize in half hour (at pH 4.5, 30 degrees C): 13%, 23%, 40%, 46%, 82%, 94% and 95% of Gentian Violet, Xylidine, Congo Red, Malachite Green, Remazol Brilliant Blue R, Indigo Carmine and Anthraquinone Blue, respectively.
Collapse
Affiliation(s)
- Laura Levin
- Lab. de Micología Experimental, Dpto. de Biodiversidad y Biología Experimental, Fac. Cs. Exactas y Naturales, PROPLAME - PRHIDEB - CONICET, Universidad de Buenos Aires, C1428EHA Ciudad Universitaria, CABA, Argentina.
| | | | | |
Collapse
|
19
|
Fonseca MI, Shimizu E, Zapata PD, Villalba LL. Copper inducing effect on laccase production of white rot fungi native from Misiones (Argentina). Enzyme Microb Technol 2010; 46:534-9. [DOI: 10.1016/j.enzmictec.2009.12.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 12/23/2009] [Indexed: 10/20/2022]
|
20
|
Da Re V, Papinutti L, Villalba L, Forchiassin F, Levin L. Preliminary studies on the biobleaching of loblolly pine Kraft pulp with Trametes trogii crude extracts. Enzyme Microb Technol 2008. [DOI: 10.1016/j.enzmictec.2007.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|