1
|
Li R, Song H, Chen Q, Sun H, Chang Y, Luo H. Effect of SpyTag/SpyCatcher cyclization on reactivation of covalently immobilized biocatalysts. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
2
|
Simulation of the Reactivation of Partially Inactivated Biocatalysts in Sequential Batch Reactors. Processes (Basel) 2020. [DOI: 10.3390/pr8111419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The enzymatic reactivation process enables the recovery of catalytic activity for inactive biocatalysts. However, its effect on the specific productivity of the processes has not been studied. The main objective of this work was to evaluate the specific productivity of the processes with and without reactivation using the program Spyder Python (3.7). Using fixed values for all of the parameters, the global specific productivity was 8 mM/h·gbiocat for the process without reactivation, and 4 mM/h·gbiocat for the process with reactivation. Random numbers were generated to use as different values for parameters, and the results yielded a global specific productivity of 3.79 mM/h·gbiocat for the process with reactivation and 3.68 mM/h·gbiocat for the process without reactivation. ANOVA tests showed that there were significant differences between the specific global productivities of the two processes. Reactivation has great potential for use when the biocatalyst is of high cost.
Collapse
|
3
|
Wahab RA, Elias N, Abdullah F, Ghoshal SK. On the taught new tricks of enzymes immobilization: An all-inclusive overview. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104613] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
4
|
de Sousa M, Melo VMM, Hissa DC, Manzo RM, Mammarella EJ, Antunes ASLM, García JL, Pessela BC, Gonçalves LRB. One-Step Immobilization and Stabilization of a Recombinant Enterococcus faecium DBFIQ E36 L-Arabinose Isomerase for D-Tagatose Synthesis. Appl Biochem Biotechnol 2018; 188:310-325. [PMID: 30430344 DOI: 10.1007/s12010-018-2905-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/08/2018] [Indexed: 10/27/2022]
Abstract
A recombinant L-arabinose isomerase from Enterococcus faecium DBFIQ E36 was immobilized onto multifunctional epoxide supports by chemical adsorption and onto a chelate-activated support via polyhistidine-tag, located on the N-terminal (N-His-L-AI) or on the C-terminal (C-His-L-AI) sequence, followed by covalent bonding between the enzyme and the support. The results were compared to reversible L-AI immobilization by adsorption onto charged agarose supports with improved stability. All the derivatives presented immobilization yields of above 75%. The ionic interaction established between agarose gels containing monoaminoethyl-N-aminoethyl structures (MANAE) and the enzyme was the most suitable strategy for L-AI immobilization in comparison to the chelate-activated agarose. In addition, the immobilized biocatalysts by ionic interaction in MANAE showed to be the most stable, retaining up to 100% of enzyme activity for 60 min at 60 °C and with Km values of 28 and 218 mM for MANAE-N-His-L-AI and MANAE-C-His-L-AI, respectively.
Collapse
Affiliation(s)
- Marylane de Sousa
- Department of Chemical Engineering, Federal University of Ceará, Campus do Pici, BL 709, Fortaleza, CE, Brazil
| | - Vânia M M Melo
- Department of Biology, Federal University of Ceará, Campus do Pici, BL 909, Fortaleza, CE, Brazil
| | - Denise C Hissa
- Department of Biology, Federal University of Ceará, Campus do Pici, BL 909, Fortaleza, CE, Brazil
| | - Ricardo M Manzo
- Food and Biotechnology Engineering Group, Institute of Technological Development for the Chemical Industry, National University of the Litoral (UNL), National Council of Scientific and Technical Research (CONICET), RN 168 Km 472 "Paraje El Pozo" S / N, Santa Fe, Argentina
| | - Enrique J Mammarella
- Food and Biotechnology Engineering Group, Institute of Technological Development for the Chemical Industry, National University of the Litoral (UNL), National Council of Scientific and Technical Research (CONICET), RN 168 Km 472 "Paraje El Pozo" S / N, Santa Fe, Argentina
| | | | - José L García
- Center for Biological Research, CIB, Higher Council for Scientific Research, CSIC, C / Ramiro de Maeztu, 9, Madrid, Spain
| | - Benevides C Pessela
- Department of Food Biotechnology and Microbiology, Institute of Research in Food Sciences, CIAL, Higher Council for Scientific Research, CSIC, C / Nicolás Cabrera 9, UAM Campus, Madrid, Spain. .,Department of Engineering and Technology, Polytechnic Institute of Sciences and Technology, Av. Luanda Sul, Rua Lateral Via S10, Talatona, Luanda, Angola.
| | - Luciana R B Gonçalves
- Department of Chemical Engineering, Federal University of Ceará, Campus do Pici, BL 709, Fortaleza, CE, Brazil.
| |
Collapse
|
5
|
de Sousa M, Manzo RM, García JL, Mammarella EJ, Gonçalves LRB, Pessela BC. Engineering the l-Arabinose Isomerase from Enterococcus Faecium for d-Tagatose Synthesis. Molecules 2017; 22:molecules22122164. [PMID: 29211024 PMCID: PMC6149694 DOI: 10.3390/molecules22122164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/14/2017] [Accepted: 11/29/2017] [Indexed: 11/16/2022] Open
Abstract
l-Arabinose isomerase (EC 5.3.1.4) (l-AI) from Enterococcus faecium DBFIQ E36 was overproduced in Escherichia coli by designing a codon-optimized synthetic araA gene. Using this optimized gene, two N- and C-terminal His-tagged-l-AI proteins were produced. The cloning of the two chimeric genes into regulated expression vectors resulted in the production of high amounts of recombinant N-His-l-AI and C-His-l-AI in soluble and active forms. Both His-tagged enzymes were purified in a single step through metal-affinity chromatography and showed different kinetic and structural characteristics. Analytical ultracentrifugation revealed that C-His-l-AI was preferentially hexameric in solution, whereas N-His-l-AI was mainly monomeric. The specific activity of the N-His-l-AI at acidic pH was higher than that of C-His-l-AI and showed a maximum bioconversion yield of 26% at 50 °C for d-tagatose biosynthesis, with Km and Vmax parameters of 252 mM and 0.092 U mg-1, respectively. However, C-His-l-AI was more active and stable at alkaline pH than N-His-l-AI. N-His-l-AI follows a Michaelis-Menten kinetic, whereas C-His-l-AI fitted to a sigmoidal saturation curve.
Collapse
Affiliation(s)
- Marylane de Sousa
- Department of Chemical Engineering, Federal University of Ceará, Campus do Pici, BL 709, Fortaleza-CE 60455-760, Brazil.
| | - Ricardo M Manzo
- Food and Biotechnology Engineering Group, Institute of Technological Development for the Chemical Industry, National University of the Litoral (UNL), National Council of Scientific and Technical Research (CONICET), RN 168 Km 472 "Paraje El Pozo" S/N, S3000 Santa Fe, Argentina.
| | - José L García
- Center for Biological Research, CIB, Higher Council for Scientific Research, CSIC, C/Ramiro de Maeztu, 9, 28040 Madrid, Spain.
| | - Enrique J Mammarella
- Food and Biotechnology Engineering Group, Institute of Technological Development for the Chemical Industry, National University of the Litoral (UNL), National Council of Scientific and Technical Research (CONICET), RN 168 Km 472 "Paraje El Pozo" S/N, S3000 Santa Fe, Argentina.
| | - Luciana R B Gonçalves
- Department of Chemical Engineering, Federal University of Ceará, Campus do Pici, BL 709, Fortaleza-CE 60455-760, Brazil.
| | - Benevides C Pessela
- Department of Food Biotechnology and Microbiology, Institute of Research in Food Sciences, CIAL, Higher Council for Scientific Research, CSIC, C/Nicolás Cabrera 9, UAM Campus, 28049 Madrid, Spain.
- Department of Engineering and Technology, Polytechnic Institute of Sciences and Technology, Av. Luanda Sul, Rua Lateral Via S10, P.O. Box 1316, Talatona-Luanda Sul, Angola.
| |
Collapse
|
6
|
Godoy CA. New Strategy for the Immobilization of Lipases on Glyoxyl-Agarose Supports: Production of Robust Biocatalysts for Natural Oil Transformation. Int J Mol Sci 2017; 18:ijms18102130. [PMID: 29023423 PMCID: PMC5666812 DOI: 10.3390/ijms18102130] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/08/2017] [Accepted: 10/09/2017] [Indexed: 01/18/2023] Open
Abstract
Immobilization on Glyoxyl–agarose support (Gx) is one of the best strategies to stabilize enzymes. However, the strategy is difficult to apply at neutral pH when most enzymes are stable and, even when possible, produces labile derivatives. This work contributes to overcoming this hurdle through a strategy that combines solid-phase amination, presence of key additives, and derivative basification. To this end, aminated industrial lipases from Candida artarctica (CAL), Thermomyces lunuginosus (TLL), and the recombinant Geobacillus thermocatenulatus (BTL2) were immobilized on Gx for the first time at neutral pH using anthranilic acid (AA) or DTT as additives (immobilization yields >70%; recovered activities 37.5–76.7%). The spectroscopic evidence suggests nucleophilic catalysis and/or adsorption as the initial lipase immobilization events. Subsequent basification drastically increases the stability of BTL2–glyoxyl derivatives under harsh conditions (t1/2, from 2.1–54.5 h at 70 °C; from 10.2 h–140 h in 80% dioxane). The novel BTL2-derivatives were active and selective in fish oil hydrolysis (1.0–1.8 μmol of polyunsaturated fatty acids (PUFAs) min−1·g−1) whereas the selected TLL-derivative was as active and stable in biodiesel production (fatty ethyl esters, EE) as the commercial Novozyme®-435 after ten reaction cycles (~70% EE). Therefore, the potential of the proposed strategy in producing suitable biocatalysts for industrial processes was demonstrated.
Collapse
Affiliation(s)
- César A Godoy
- Departamento de Química (LIBB), Grupo de Investigación en Ingeniería de los Procesos Agroalimentarios y Biotecnológicos (GIPAB), Universidad del Valle, C.P. 76001 Cali, Colombia.
| |
Collapse
|
7
|
Ravindran R, Jaiswal AK. Microbial Enzyme Production Using Lignocellulosic Food Industry Wastes as Feedstock: A Review. Bioengineering (Basel) 2016; 3:E30. [PMID: 28952592 PMCID: PMC5597273 DOI: 10.3390/bioengineering3040030] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/09/2016] [Accepted: 11/11/2016] [Indexed: 11/17/2022] Open
Abstract
Enzymes are of great importance in the industry due to their substrate and product specificity, moderate reaction conditions, minimal by-product formation and high yield. They are important ingredients in several products and production processes. Up to 30% of the total production cost of enzymes is attributed to the raw materials costs. The food industry expels copious amounts of processing waste annually, which is mostly lignocellulosic in nature. Upon proper treatment, lignocellulose can replace conventional carbon sources in media preparations for industrial microbial processes, such as enzyme production. However, wild strains of microorganisms that produce industrially important enzymes show low yield and cannot thrive on artificial substrates. The application of recombinant DNA technology and metabolic engineering has enabled researchers to develop superior strains that can not only withstand harsh environmental conditions within a bioreactor but also ensure timely delivery of optimal results. This article gives an overview of the current complications encountered in enzyme production and how accumulating food processing waste can emerge as an environment-friendly and economically feasible solution for a choice of raw material. It also substantiates the latest techniques that have emerged in enzyme purification and recovery over the past four years.
Collapse
Affiliation(s)
- Rajeev Ravindran
- School of Food Science and Environmental Health, College of Sciences and Health, Dublin Institute of Technology, Cathal Brugha Street, Dublin D01 HV58, Ireland.
| | - Amit K Jaiswal
- School of Food Science and Environmental Health, College of Sciences and Health, Dublin Institute of Technology, Cathal Brugha Street, Dublin D01 HV58, Ireland.
| |
Collapse
|
8
|
Yuan J, Wang C, Wei Y. High-capacity strong cation exchanger prepared from an inactivated immobilized enzyme and its application to the removal of methylene blue from water. RSC Adv 2016. [DOI: 10.1039/c6ra10243c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inactivated immobilized enzymes were reutilized by converting into a strong cation exchanger by using surface-initiated atom transfer radical polymerization, and the cation exchanger was used to remove methylene blue from water.
Collapse
Affiliation(s)
- Jingxiang Yuan
- Synthetic and Natural Functional Molecule Chemistry of Ministry of Education Key Laboratory
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
- China
| | - Chaozhan Wang
- Synthetic and Natural Functional Molecule Chemistry of Ministry of Education Key Laboratory
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
- China
| | - Yinmao Wei
- Synthetic and Natural Functional Molecule Chemistry of Ministry of Education Key Laboratory
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
- China
| |
Collapse
|
9
|
Marques Netto CGC, da Silva DG, Toma SH, Andrade LH, Nakamura M, Araki K, Toma HE. Bovine glutamate dehydrogenase immobilization on magnetic nanoparticles: conformational changes and catalysis. RSC Adv 2016. [DOI: 10.1039/c5ra24637g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Glutamate dehydrogenase (GDH) was immobilized on different supports and systematically investigated in order to provide a better understanding of the immobilization effects on the catalysis of multimeric enzymes.
Collapse
Affiliation(s)
| | - Delmárcio G. da Silva
- Supramolecular NanotechLab
- Instituto de Quimica
- Universidade de São Paulo
- São Paulo-SP
- Brazil
| | - Sergio H. Toma
- Supramolecular NanotechLab
- Instituto de Quimica
- Universidade de São Paulo
- São Paulo-SP
- Brazil
| | - Leandro H. Andrade
- Laboratory of Fine Chemistry and Biocatalysis
- Instituto de Química
- Universidade de São Paulo
- São Paulo-SP
- Brazil
| | - Marcelo Nakamura
- Supramolecular NanotechLab
- Instituto de Quimica
- Universidade de São Paulo
- São Paulo-SP
- Brazil
| | - Koiti Araki
- Supramolecular NanotechLab
- Instituto de Quimica
- Universidade de São Paulo
- São Paulo-SP
- Brazil
| | - Henrique E. Toma
- Supramolecular NanotechLab
- Instituto de Quimica
- Universidade de São Paulo
- São Paulo-SP
- Brazil
| |
Collapse
|
10
|
Exploitation of Food Industry Waste for High-Value Products. Trends Biotechnol 2015; 34:58-69. [PMID: 26645658 DOI: 10.1016/j.tibtech.2015.10.008] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/21/2015] [Accepted: 10/23/2015] [Indexed: 01/21/2023]
Abstract
A growing global population leads to an increasing demand for food production and the processing industry associated with it and consequently the generation of large amounts of food waste. This problem is intensified due to slow progress in the development of effective waste management strategies and measures for the proper treatment and disposal of waste. Food waste is a reservoir of complex carbohydrates, proteins, lipids, and nutraceuticals and can form the raw materials for commercially important metabolites. The current legislation on food waste treatment prioritises the prevention of waste generation and least emphasises disposal. Recent valorisation studies for food supply chain waste opens avenues to the production of biofuels, enzymes, bioactive compounds, biodegradable plastics, and nanoparticles among many other molecules.
Collapse
|
11
|
Barbosa O, Ortiz C, Berenguer-Murcia Á, Torres R, Rodrigues RC, Fernandez-Lafuente R. Strategies for the one-step immobilization–purification of enzymes as industrial biocatalysts. Biotechnol Adv 2015; 33:435-56. [DOI: 10.1016/j.biotechadv.2015.03.006] [Citation(s) in RCA: 481] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 01/06/2023]
|
12
|
|
13
|
Rueda N, dos Santos JCS, Torres R, Barbosa O, Ortiz C, Fernandez-Lafuente R. Reactivation of lipases by the unfolding and refolding of covalently immobilized biocatalysts. RSC Adv 2015. [DOI: 10.1039/c5ra07379k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Lipases immobilized on octyl–glyoxyl agarose may be partially reactivated by unfolding/refolding strategies.
Collapse
Affiliation(s)
- Nazzoly Rueda
- ICP – CSIC
- Campus UAM – CSIC
- 28049 Madrid
- Spain
- Escuela de Química
| | | | - Rodrigo Torres
- Escuela de Química
- Grupo de investigación en Bioquímica y Microbiología (GIBIM)
- Universidad Industrial de Santander
- Bucaramanga
- Colombia
| | - Oveimar Barbosa
- Grupo de investigación en productos naturales (GIPRONUT)
- Departamento de Química
- Facultad de Ciencias
- Universidad del Tolima
- Ibagué
| | - Claudia Ortiz
- Escuela de Microbiología
- Universidad Industrial de Santander
- Bucaramanga
- Colombia
| | | |
Collapse
|
14
|
Barbosa O, Torres R, Ortiz C, Berenguer-Murcia Á, Rodrigues RC, Fernandez-Lafuente R. Heterofunctional Supports in Enzyme Immobilization: From Traditional Immobilization Protocols to Opportunities in Tuning Enzyme Properties. Biomacromolecules 2013; 14:2433-62. [DOI: 10.1021/bm400762h] [Citation(s) in RCA: 377] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Oveimar Barbosa
- Escuela de Química, Grupo
de investigación en Bioquímica y Microbiología
(GIBIM), Edificio Camilo Torres 210, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Rodrigo Torres
- Escuela de Química, Grupo
de investigación en Bioquímica y Microbiología
(GIBIM), Edificio Camilo Torres 210, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Claudia Ortiz
- Escuela de Bacteriología
y Laboratorio Clínico, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Ángel Berenguer-Murcia
- Instituto Universitario de Materiales,
Departamento de Química Inorgánica, Universidad de Alicante, Campus de San Vicente del Raspeig, Ap.
99 - 03080 Alicante, Spain
| | - Rafael C. Rodrigues
- Biocatalysis and Enzyme Technology
Lab, Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves,
9500, P.O. Box 15090, ZC 91501-970, Porto Alegre, RS, Brazil
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatalisis, Instituto de Catálisis-CSIC, Campus UAM-CSIC,
Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
15
|
Nandanwar HS, Vohra RM, Hoondal GS. Enhanced stability of newly isolated trimericl-methionine-N-carbamoylase fromBrevibacillus reuszeriHSN1 by covalent immobilization. Biotechnol Appl Biochem 2013; 60:305-15. [DOI: 10.1002/bab.1082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 12/14/2012] [Indexed: 01/13/2023]
Affiliation(s)
| | - Rakesh M. Vohra
- RCS Biotechnology Consultancy Services, Harrison; Canberra; Australia
| | | |
Collapse
|
16
|
Findrik Z, Presečki AV, Vasić-Rački Đ. The influence of aeration on activity and operational stability of two snake venom amino acid oxidases. Biochem Eng J 2012. [DOI: 10.1016/j.bej.2011.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
17
|
Garcia-Galan C, Berenguer-Murcia Á, Fernandez-Lafuente R, Rodrigues RC. Potential of Different Enzyme Immobilization Strategies to Improve Enzyme Performance. Adv Synth Catal 2011. [DOI: 10.1002/adsc.201100534] [Citation(s) in RCA: 1243] [Impact Index Per Article: 88.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
18
|
Rocha-Martín J, Vega D, Bolivar JM, Godoy CA, Hidalgo A, Berenguer J, Guisán JM, López-Gallego F. New biotechnological perspectives of a NADH oxidase variant from Thermus thermophilus HB27 as NAD+-recycling enzyme. BMC Biotechnol 2011; 11:101. [PMID: 22053761 PMCID: PMC3238333 DOI: 10.1186/1472-6750-11-101] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 11/03/2011] [Indexed: 11/10/2022] Open
Abstract
Background The number of biotransformations that use nicotinamide recycling systems is exponentially growing. For this reason one of the current challenges in biocatalysis is to develop and optimize more simple and efficient cofactor recycling systems. One promising approach to regenerate NAD+ pools is the use of NADH-oxidases that reduce oxygen to hydrogen peroxide while oxidizing NADH to NAD+. This class of enzymes may be applied to asymmetric reduction of prochiral substrates in order to obtain enantiopure compounds. Results The NADH-oxidase (NOX) presented here is a flavoenzyme which needs exogenous FAD or FMN to reach its maximum velocity. Interestingly, this enzyme is 6-fold hyperactivated by incubation at high temperatures (80°C) under limiting concentrations of flavin cofactor, a change that remains stable even at low temperatures (37°C). The hyperactivated form presented a high specific activity (37.5 U/mg) at low temperatures despite isolation from a thermophile source. Immobilization of NOX onto agarose activated with glyoxyl groups yielded the most stable enzyme preparation (6-fold more stable than the hyperactivated soluble enzyme). The immobilized derivative was able to be reactivated under physiological conditions after inactivation by high solvent concentrations. The inactivation/reactivation cycle could be repeated at least three times, recovering full NOX activity in all cases after the reactivation step. This immobilized catalyst is presented as a recycling partner for a thermophile alcohol dehydrogenase in order to perform the kinetic resolution secondary alcohols. Conclusion We have designed, developed and characterized a heterogeneous and robust biocatalyst which has been used as recycling partner in the kinetic resolution of rac-1-phenylethanol. The high stability along with its capability to be reactivated makes this biocatalyst highly re-useable for cofactor recycling in redox biotransformations.
Collapse
Affiliation(s)
- Javier Rocha-Martín
- Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica, Cantoblanco, Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Godoy CA, de las Rivas B, Bezbradica D, Bolivar JM, López-Gallego F, Fernandez-Lorente G, Guisan JM. Reactivation of a thermostable lipase by solid phase unfolding/refolding. Enzyme Microb Technol 2011; 49:388-94. [DOI: 10.1016/j.enzmictec.2011.06.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 06/17/2011] [Accepted: 06/23/2011] [Indexed: 10/18/2022]
|
20
|
Rodrigues RC, Berenguer-Murcia Á, Fernandez-Lafuente R. Coupling Chemical Modification and Immobilization to Improve the Catalytic Performance of Enzymes. Adv Synth Catal 2011. [DOI: 10.1002/adsc.201100163] [Citation(s) in RCA: 272] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Enhancing the functional properties of thermophilic enzymes by chemical modification and immobilization. Enzyme Microb Technol 2011; 49:326-46. [PMID: 22112558 DOI: 10.1016/j.enzmictec.2011.06.023] [Citation(s) in RCA: 226] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 06/28/2011] [Accepted: 06/29/2011] [Indexed: 12/20/2022]
Abstract
The immobilization of proteins (mostly typically enzymes) onto solid supports is mature technology and has been used successfully to enhance biocatalytic processes in a wide range of industrial applications. However, continued developments in immobilization technology have led to more sophisticated and specialized applications of the process. A combination of targeted chemistries, for both the support and the protein, sometimes in combination with additional chemical and/or genetic engineering, has led to the development of methods for the modification of protein functional properties, for enhancing protein stability and for the recovery of specific proteins from complex mixtures. In particular, the development of effective methods for immobilizing large multi-subunit proteins with multiple covalent linkages (multi-point immobilization) has been effective in stabilizing proteins where subunit dissociation is the initial step in enzyme inactivation. In some instances, multiple benefits are achievable in a single process. Here we comprehensively review the literature pertaining to immobilization and chemical modification of different enzyme classes from thermophiles, with emphasis on the chemistries involved and their implications for modification of the enzyme functional properties. We also highlight the potential for synergies in the combined use of immobilization and other chemical modifications.
Collapse
|
22
|
Bolivar JM, Mateo C, Grazu V, Carrascosa AV, Pessela BC, Guisan JM. Heterofunctional supports for the one-step purification, immobilization and stabilization of large multimeric enzymes: Amino-glyoxyl versus amino-epoxy supports. Process Biochem 2010. [DOI: 10.1016/j.procbio.2010.07.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|