1
|
Zhao Q, Guo W, Luo H, Xing C, Wang H, Liu B, Si Q, Li D, Sun L, Ren N. Insights into removal of sulfonamides in anaerobic activated sludge system: Mechanisms, degradation pathways and stress responses. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127248. [PMID: 34560488 DOI: 10.1016/j.jhazmat.2021.127248] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
The fate of antibiotics in activated sludge has attracted increasing interests. However, the focus needs to shift from concerning removal efficiencies to understanding mechanisms and sludge responding to antibiotic toxicity. Herein, we operated two anaerobic sequencing batch reactors (ASBRs) for 200 days with sulfadiazine (SDZ) and sulfamethoxazole (SMX) added. The removal efficiency of SMX was higher than that of SDZ. SDZ was removed via adsorption (9.91-21.18%) and biodegradation (10.20-16.00%), while biodegradation (65.44-86.26%) was dominant for SMX removal. The mechanisms involved in adsorption and biodegradation were investigated, including adsorption strength, adsorption sites and the roles of enzymes. Protein-like substance (tryptophan) functioned vitally in adsorption by forming complexes with sulfonamides. P450 enzymes may catalyze sulfonamides degradation via hydroxylation and desulfurization. Activated sludge showed distinct responses to different sulfonamides, reflected in the changes of microbial communities and functions. These responses were related to sulfonamides removal, corresponding to the stronger adsorption capacity of activated sludge in ASBR-SDZ and degradation capacity in ASBR-SMX. Furthermore, the reasons for different removal efficiencies of sulfonamides were analyzed according to steric and electronic effects. These findings propose insights into antibiotic removal and broaden the knowledge for self-protection mechanisms of activated sludge under chronic toxicities of antibiotics.
Collapse
Affiliation(s)
- Qi Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Wanqian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China.
| | - Haichao Luo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Chuanming Xing
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Huazhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Banghai Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Qishi Si
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Denian Li
- Laboratory for Integrated Technology of "Urban and Rural Mines" Exploitation, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, No. 2 Nengyuan Road, Wushan, Tianhe District, Guangzhou, Guangdong 510640, China
| | - Lushi Sun
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
2
|
Liu R, Gao Y, Ji Y, Zhang Y, Yang M. Characteristics of hydrocarbon hydroxylase genes in a thermophilic aerobic biological system treating oily produced wastewater. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2015; 71:75-82. [PMID: 25607672 DOI: 10.2166/wst.2014.470] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Alkane and aromatic hydroxylase genes in a full-scale aerobic system treating oily produced wastewater under thermophilic condition (45-50 °C) in the Jidong oilfield, China, were investigated using clone library and quantitative polymerase chain reaction methods. Rather than the normally encountered integral-membrane non-haem iron monooxygenase (alkB) genes, only CYP153-type P450 hydroxylase genes were detected for the alkane activation, indicating that the terminal oxidation of alkanes might be mainly mediated by the CYP153-type alkane hydroxylases in the thermophilic aerobic process. Most of the obtained CYP153 gene clones showed distant homology with the reference sequences, which might represent novel alkane hydroxylases. For the aromatic activation, the polycyclic aromatic hydrocarbon-ring hydroxylating dioxygenase (PAH-RHD) gene was derived from Gram-negative PAH-degraders belonging to the Burkholderiales order, with a 0.72% relative abundance of PAH-RHD gene to 16S rRNA gene. This was consistent with the result of 16S rRNA gene analysis, indicating that Burkholderiales bacteria might play a key role in the full-scale process of thermophilic hydrocarbon degradation.
Collapse
Affiliation(s)
- Ruyin Liu
- College of Environmental and Resource Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China E-mail:
| | - Yingxin Gao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China E-mail:
| | - Yifeng Ji
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China E-mail: ; Zhejiang University, Hangzhou 310058, China
| | - Yu Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China E-mail:
| | - Min Yang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China E-mail:
| |
Collapse
|
3
|
Rozanov AS, Bryanskaya AV, Malup TK, Meshcheryakova IA, Lazareva EV, Taran OP, Ivanisenko TV, Ivanisenko VA, Zhmodik SM, Kolchanov NA, Peltek SE. Molecular analysis of the benthos microbial community in Zavarzin thermal spring (Uzon Caldera, Kamchatka, Russia). BMC Genomics 2014; 15 Suppl 12:S12. [PMID: 25563397 PMCID: PMC4303939 DOI: 10.1186/1471-2164-15-s12-s12] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Geothermal areas are of great interest for the study of microbial communities. The results of such investigations can be used in a variety of fields (ecology, microbiology, medicine) to answer fundamental questions, as well as those with practical benefits. Uzon caldera is located in the Uzon-Geyser depression that is situated in the centre of the Karym-Semyachin region of the East Kamchatka graben-synclinorium. The microbial communities of Zavarzin spring are well studied; however, its benthic microbial mat has not been previously described. Results Pyrosequencing of the V3 region of the 16S rRNA gene was used to study the benthic microbial community of the Zavarzin thermal spring (Uzon Caldera, Kamchatka). The community is dominated by bacteria (>95% of all sequences), including thermophilic, chemoorganotrophic Caldiserica (33.0%) and Dictyoglomi (24.8%). The benthic community and the previously examined planktonic community of Zavarzin spring have qualitatively similar, but quantitatively different, compositions. Conclusions In this study, we performed a metagenomic analysis of the benthic microbial mat of Zavarzin spring. We compared this benthic community to microbial communities found in the water and of an integral probe consisting of water and bottom sediments. Various phylogenetic groups of microorganisms, including potentially new ones, represent the full-fledged trophic system of Zavarzin. A thorough geochemical study of the spring was performed.
Collapse
|
4
|
Németh A, Szirányi B, Krett G, Janurik E, Kosáros T, Pekár F, Márialigeti K, Borsodi A. Prokaryotic phylogenetic diversity of Hungarian deep subsurface geothermal well waters. Acta Microbiol Immunol Hung 2014; 61:363-77. [PMID: 25261947 DOI: 10.1556/amicr.61.2014.3.9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Geothermal wells characterized by thermal waters warmer than 30°C can be found in more than 65% of the area of Hungary. The examined thermal wells located nearby Szarvas are used for heating industrial and agricultural facilities because of their relatively high hydrocarbon content. The aim of this study was to reveal the prokaryotic community structure of the water of SZR18, K87 and SZR21 geothermal wells using molecular cloning methods and Denaturing Gradient Gel Electrophoresis (DGGE). Water samples from the outflow pipes were collected in 2012 and 2013. The phylogenetic distribution of archaeal molecular clones was very similar in each sample, the most abundant groups belonged to the genera Methanosaeta, Methanothermobacter and Thermofilum. In contrast, the distribution of bacterial molecular clones was very diverse. Many of them showed the closest sequence similarities to uncultured clone sequences from similar thermal environments. From the water of the SZR18 well, phylotypes closely related to genera Fictibacillus and Alicyclobacillus (Firmicutes) were only revealed, while the bacterial diversity of the K87 well water was much higher. Here, the members of the phyla Thermodesulfobacteria, Proteobacteria, Nitrospira, Chlorobi, OP1 and OPB7 were also detected besides Firmicutes.
Collapse
Affiliation(s)
- Andrea Németh
- 1 Eötvös Loránd University Department of Microbiology Pázmány P. sétány 1/C H-1117 Budapest Hungary
| | - Barbara Szirányi
- 1 Eötvös Loránd University Department of Microbiology Pázmány P. sétány 1/C H-1117 Budapest Hungary
| | - Gergely Krett
- 1 Eötvös Loránd University Department of Microbiology Pázmány P. sétány 1/C H-1117 Budapest Hungary
| | - Endre Janurik
- 2 Research Institute for Fisheries, Aquaculture and Irrigation Anna-liget 8 H-5540 Szarvas Hungary
| | - Tünde Kosáros
- 2 Research Institute for Fisheries, Aquaculture and Irrigation Anna-liget 8 H-5540 Szarvas Hungary
| | - Ferenc Pekár
- 2 Research Institute for Fisheries, Aquaculture and Irrigation Anna-liget 8 H-5540 Szarvas Hungary
| | - Károly Márialigeti
- 1 Eötvös Loránd University Department of Microbiology Pázmány P. sétány 1/C H-1117 Budapest Hungary
| | - Andrea Borsodi
- 1 Eötvös Loránd University Department of Microbiology Pázmány P. sétány 1/C H-1117 Budapest Hungary
| |
Collapse
|
5
|
Nobu MK, Narihiro T, Hideyuki T, Qiu YL, Sekiguchi Y, Woyke T, Goodwin L, Davenport KW, Kamagata Y, Liu WT. The genome ofSyntrophorhabdus aromaticivoransstrain UI provides new insights for syntrophic aromatic compound metabolism and electron flow. Environ Microbiol 2014; 17:4861-72. [DOI: 10.1111/1462-2920.12444] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 02/21/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Masaru K. Nobu
- Department of Civil and Environmental Engineering; University of Illinois at Urbana-Champaign; Urbana IL USA
| | - Takashi Narihiro
- Department of Civil and Environmental Engineering; University of Illinois at Urbana-Champaign; Urbana IL USA
- Bioproduction Research Institute; National Institute of Advanced Industrial Science and Technology (AIST); Tsukuba Ibaraki Japan
| | - Tamaki Hideyuki
- Department of Civil and Environmental Engineering; University of Illinois at Urbana-Champaign; Urbana IL USA
- Bioproduction Research Institute; National Institute of Advanced Industrial Science and Technology (AIST); Tsukuba Ibaraki Japan
| | - Yan-Ling Qiu
- Key Laboratory of Biofuels; Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences; Qingdao Shandong Province China
| | - Yuji Sekiguchi
- Biomedical Research Institute; National Institute of Advanced Industrial Science and Technology (AIST); Tsukuba Ibaraki Japan
| | - Tanja Woyke
- DOE Joint Genome Institute; Walnut Creek CA USA
| | | | | | - Yoichi Kamagata
- Bioproduction Research Institute; National Institute of Advanced Industrial Science and Technology (AIST); Tsukuba Ibaraki Japan
- Bioproduction Research Institute; National Institute of Advanced Industrial Science and Technology (AIST); Toyohira-ku Sapporo Hokkaido Japan
| | - Wen-Tso Liu
- Department of Civil and Environmental Engineering; University of Illinois at Urbana-Champaign; Urbana IL USA
| |
Collapse
|
6
|
Cheng L, He Q, Ding C, Dai LR, Li Q, Zhang H. Novel bacterial groups dominate in a thermophilic methanogenic hexadecane-degrading consortium. FEMS Microbiol Ecol 2013; 85:568-77. [DOI: 10.1111/1574-6941.12141] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 04/17/2013] [Accepted: 04/24/2013] [Indexed: 11/27/2022] Open
Affiliation(s)
- Lei Cheng
- Key Laboratory of Development and Application of Rural Renewable Energy; Biogas Institute of Ministry of Agriculture; Chengdu China
| | - Qiao He
- Key Laboratory of Development and Application of Rural Renewable Energy; Biogas Institute of Ministry of Agriculture; Chengdu China
| | - Chen Ding
- Key Laboratory of Development and Application of Rural Renewable Energy; Biogas Institute of Ministry of Agriculture; Chengdu China
| | - Li-rong Dai
- Key Laboratory of Development and Application of Rural Renewable Energy; Biogas Institute of Ministry of Agriculture; Chengdu China
| | - Qiang Li
- Key Laboratory of Development and Application of Rural Renewable Energy; Biogas Institute of Ministry of Agriculture; Chengdu China
| | - Hui Zhang
- Key Laboratory of Development and Application of Rural Renewable Energy; Biogas Institute of Ministry of Agriculture; Chengdu China
| |
Collapse
|
7
|
Zheng X, Su Y, Li X, Xiao N, Wang D, Chen Y. Pyrosequencing reveals the key microorganisms involved in sludge alkaline fermentation for efficient short-chain fatty acids production. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:4262-8. [PMID: 23544425 DOI: 10.1021/es400210v] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Short-chain fatty acids (SCFAs) have been regarded as the excellent carbon source of wastewater biological nutrient removal, and sludge alkaline (pH 10) fermentation has been reported to achieve highly efficient SCFAs production. In this study, the underlying mechanisms for the improved SCFAs production at pH 10 were investigated by using 454 pyrosequencing and fluorescent in situ hybridization (FISH) to analyze the microbial community structures in sludge fermentation reactors. It was found that sludge fermentation at pH 10 increased the abundances of Pseudomonas sp. and Alcaligenes sp., which were able to excrete extracellular proteases and depolymerases, and thus enhanced the hydrolysis of insoluble sludge protein and polyhydroxyalkanoates (PHA). Meanwhile, the abundance of acid-producing bacteria (such as Clostridium sp.) in the reactor of pH 10 was also higher than that of uncontrolled pH, which benefited the acidification of soluble organic substrates. Further study indicated that sludge fermentation at pH 10 significantly decreased the number of methanogenic archaea, resulting in lower SCFAs consumption and lower methane production. Therefore, anaerobic sludge fermentation under alkaline conditions increased the abundances of bacteria involved in sludge hydrolysis and acidification, and decreased the abundance of methanogenic archaea, which favored the competition of bacteria over methanogens and resulted in the efficient production of SCFAs.
Collapse
Affiliation(s)
- Xiong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | | | | | | | | | | |
Collapse
|
8
|
Zeng DN, Fan ZY, Chi L, Wang X, Qu WD, Quan ZX. Analysis of the bacterial communities associated with different drinking water treatment processes. World J Microbiol Biotechnol 2013; 29:1573-84. [PMID: 23515963 DOI: 10.1007/s11274-013-1321-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 03/12/2013] [Indexed: 10/27/2022]
Abstract
A drinking water plant was surveyed to determine the bacterial composition of different drinking water treatment processes (DWTP). Water samples were collected from different processing steps in the plant (i.e., coagulation, sedimentation, sand filtration, and chloramine disinfection) and from distantly piped water. The samples were pyrosequensed using sample-specific oligonucleotide barcodes. The taxonomic composition of the microbial communities of different DWTP and piped water was dominated by the phylum Proteobacteria. Additionally, a large proportion of the sequences were assigned to the phyla Actinobacteria and Bacteroidetes. The piped water exhibited increasing taxonomic diversity, including human pathogens such as the Mycobacterium, which revealed a threat to the safety of drinking water. Surprisingly, we also found that a sister group of SAR11 (LD12) persisted throughout the DWTP, which was always detected in freshwater aquatic systems. Moreover, Polynucleobacter, Rhodoferax, and a group of Actinobacteria, hgcI clade, were relatively consistent throughout the processes. It is concluded that smaller-size microorganisms tended to survive against the present treatment procedure. More improvement should be made to ensure the long-distance transmission drinking water.
Collapse
Affiliation(s)
- Dan-Ning Zeng
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | | | | | | | | | | |
Collapse
|
9
|
The performance of a thermophilic microbial fuel cell fed with synthesis gas. Enzyme Microb Technol 2012; 51:163-70. [DOI: 10.1016/j.enzmictec.2012.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 05/18/2012] [Accepted: 05/21/2012] [Indexed: 11/19/2022]
|
10
|
Huang J, Wen Y, Ding N, Xu Y, Zhou Q. Fast start-up and stable performance coupled to sulfate reduction in the nitrobenzene bio-reduction system and its microbial community. BIORESOURCE TECHNOLOGY 2012; 114:201-206. [PMID: 22487131 DOI: 10.1016/j.biortech.2012.03.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/14/2012] [Accepted: 03/16/2012] [Indexed: 05/31/2023]
Abstract
Three laboratory-scale sequence batch reactors were set up in this study. It was found that a successfully established sulfate-reducing system - operating at COD/SO42- ratio of 5.0 - could speed up the start-up process, leading to a high performance. It took about 100 and 60 days, respectively, for a non-sulfate-reducing system and a sulfate-reducing control system to achieve stable and high removal of NB. However, it maintained a complete NB removal in sulfate-reducing system throughout the study. Rapid and stable NB reduction was coupled to the on-going sulfate reducing process. Denaturing gradient gel electrophoresis profile demonstrated that the predominant bacterial groups in the non-sulfate-reducing system and the sulfate-reducing control system were affiliated to Deltaproteobacterium and Acinetobacter, while in the sulfate-reducing system were sulfate-reducing and sulfur-oxidizing bacteria.
Collapse
Affiliation(s)
- Jingang Huang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | | | | | | | | |
Collapse
|
11
|
Tang YQ, Li Y, Zhao JY, Chi CQ, Huang LX, Dong HP, Wu XL. Microbial communities in long-term, water-flooded petroleum reservoirs with different in situ temperatures in the Huabei Oilfield, China. PLoS One 2012; 7:e33535. [PMID: 22432032 PMCID: PMC3303836 DOI: 10.1371/journal.pone.0033535] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Accepted: 02/10/2012] [Indexed: 11/19/2022] Open
Abstract
The distribution of microbial communities in the Menggulin (MGL) and Ba19 blocks in the Huabei Oilfield, China, were studied based on 16S rRNA gene analysis. The dominant microbes showed obvious block-specific characteristics, and the two blocks had substantially different bacterial and archaeal communities. In the moderate-temperature MGL block, the bacteria were mainly Epsilonproteobacteria and Alphaproteobacteria, and the archaea were methanogens belonging to Methanolinea, Methanothermobacter, Methanosaeta, and Methanocella. However, in the high-temperature Ba19 block, the predominant bacteria were Gammaproteobacteria, and the predominant archaea were Methanothermobacter and Methanosaeta. In spite of shared taxa in the blocks, differences among wells in the same block were obvious, especially for bacterial communities in the MGL block. Compared to the bacterial communities, the archaeal communities were much more conserved within blocks and were not affected by the variation in the bacterial communities.
Collapse
Affiliation(s)
- Yue-Qin Tang
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing, People's Republic of China
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yan Li
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing, People's Republic of China
| | - Jie-Yu Zhao
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing, People's Republic of China
| | - Chang-Qiao Chi
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing, People's Republic of China
| | - Li-Xin Huang
- Research Institute of Petroleum Exploration and Development (Langfang), China National Petroleum Corporation (CNPC), Beijing, People's Republic of China
| | - Han-Ping Dong
- Research Institute of Petroleum Exploration and Development (Langfang), China National Petroleum Corporation (CNPC), Beijing, People's Republic of China
| | - Xiao-Lei Wu
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing, People's Republic of China
| |
Collapse
|
12
|
Lovley DR, Ueki T, Zhang T, Malvankar NS, Shrestha PM, Flanagan KA, Aklujkar M, Butler JE, Giloteaux L, Rotaru AE, Holmes DE, Franks AE, Orellana R, Risso C, Nevin KP. Geobacter: the microbe electric's physiology, ecology, and practical applications. Adv Microb Physiol 2011; 59:1-100. [PMID: 22114840 DOI: 10.1016/b978-0-12-387661-4.00004-5] [Citation(s) in RCA: 412] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Geobacter species specialize in making electrical contacts with extracellular electron acceptors and other organisms. This permits Geobacter species to fill important niches in a diversity of anaerobic environments. Geobacter species appear to be the primary agents for coupling the oxidation of organic compounds to the reduction of insoluble Fe(III) and Mn(IV) oxides in many soils and sediments, a process of global biogeochemical significance. Some Geobacter species can anaerobically oxidize aromatic hydrocarbons and play an important role in aromatic hydrocarbon removal from contaminated aquifers. The ability of Geobacter species to reductively precipitate uranium and related contaminants has led to the development of bioremediation strategies for contaminated environments. Geobacter species produce higher current densities than any other known organism in microbial fuel cells and are common colonizers of electrodes harvesting electricity from organic wastes and aquatic sediments. Direct interspecies electron exchange between Geobacter species and syntrophic partners appears to be an important process in anaerobic wastewater digesters. Functional and comparative genomic studies have begun to reveal important aspects of Geobacter physiology and regulation, but much remains unexplored. Quantifying key gene transcripts and proteins of subsurface Geobacter communities has proven to be a powerful approach to diagnose the in situ physiological status of Geobacter species during groundwater bioremediation. The growth and activity of Geobacter species in the subsurface and their biogeochemical impact under different environmental conditions can be predicted with a systems biology approach in which genome-scale metabolic models are coupled with appropriate physical/chemical models. The proficiency of Geobacter species in transferring electrons to insoluble minerals, electrodes, and possibly other microorganisms can be attributed to their unique "microbial nanowires," pili that conduct electrons along their length with metallic-like conductivity. Surprisingly, the abundant c-type cytochromes of Geobacter species do not contribute to this long-range electron transport, but cytochromes are important for making the terminal electrical connections with Fe(III) oxides and electrodes and also function as capacitors, storing charge to permit continued respiration when extracellular electron acceptors are temporarily unavailable. The high conductivity of Geobacter pili and biofilms and the ability of biofilms to function as supercapacitors are novel properties that might contribute to the field of bioelectronics. The study of Geobacter species has revealed a remarkable number of microbial physiological properties that had not previously been described in any microorganism. Further investigation of these environmentally relevant and physiologically unique organisms is warranted.
Collapse
Affiliation(s)
- Derek R Lovley
- Department of Microbiology and Environmental Biotechnology Center, University of Massachusetts, Amherst, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|