1
|
Intensification of Inclusion Body Processing via Temperature-Based Refolding. Methods Mol Biol 2023; 2617:189-200. [PMID: 36656525 DOI: 10.1007/978-1-0716-2930-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Inclusion bodies (IB) are dense insoluble aggregates of mostly misfolded polypeptides that usually result from recombinant protein overexpression. IB formation has been observed in protein expression systems such as E. coli, yeast, and higher eukaryotes. To recover soluble recombinant proteins in their native state, IB are commonly first solubilized with a high concentration of denaturant. This is followed by concurrent denaturant removal or reduction and a transition into a refolding-favorable chemical environment to facilitate the refolding of solubilized protein to its native state. Due to the high concentration of denaturant used, conventional refolding approaches can result in dilute products and are buffer inefficient. To circumvent the limitations of conventional refolding approaches, a temperature-based refolding approach which combines a low concentration of denaturant (0.5 M guanidine hydrochloride, GdnHCl) with a high temperature (95 °C) during solubilization was proposed. In this chapter, we describe a temperature-based refolding approach for the recovery of core streptavidin (cSAV) from IB. Through the temperature-based approach, intensification was achieved through the elimination of a concentration step which would be required by a dilution approach and through a reduction in buffer volumes required for dilution or denaturant removal. High-temperature treatment during solubilization may have also resulted in the denaturation and aggregation of undesired host-cell proteins, which could then be removed through a centrifugation step resulting in refolded cSAV of high purity without the need for column purification. Refolded cSAV was characterized by biotin-binding assay and SDS-PAGE, while purity was determined by RP-HPLC.
Collapse
|
2
|
|
3
|
Expression of fibronectin-binding protein of L. acidophilus NCFM and in vitro refolding to adhesion capable native-like protein from inclusion bodies. Protein Expr Purif 2017; 145:7-13. [PMID: 29229289 DOI: 10.1016/j.pep.2017.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/16/2017] [Accepted: 11/29/2017] [Indexed: 01/01/2023]
Abstract
The ability of Lactobacilli to adhere to host epithelial surface and intestinal tracts is important for colonization and persistence of bacteria in the host gut. Extracellular matrix components like fibronectin, mucin, collagen and other adhesion molecules serve as substratum for attachment of bacteria. However, the precise structure, function and mechanism of binding of microbial surface adhesion proteins such as Fibronectin-binding protein (FBP) with host molecules remains unclear. This is primarily due to limitations in high expression of these proteins in biologically active form. To study adhesion of its FBP (64 kDa), the fbp gene of L. acidophilus NCFM was cloned and expressed in E. coli. However, the fibronectin-binding protein expressed in soluble form could not be purified by Ni-NTA affinity chromatography possibly because of partially buried Histidine tag in the recombinant fusion protein. Therefore, the protein was expressed as inclusion bodies (IBs) at 37 °C and solubilized in urea followed by purification in denatured form by Ni-NTA affinity chromatography. The purified denatured protein was refolded in vitro to structurally stable and biologically active form. The conformational properties of the refolded protein were studied by circular dichroism, which showed prominence of α+ β structural element. The refolded FBP also showed significant binding to human intestinal tissue sections. Our optimized refolding protocol from IBs of this recombinant probiotic FBP led into high amounts of biologically active protein. Our results help in increasing understanding of structure-function relation of surface adhesion proteins and host-microbial interactions.
Collapse
|
4
|
Wen H, Qin Y, Zhong W, Li C, Liu X, Shen Y. Trivalent metal ions based on inorganic compounds with in vitro inhibitory activity of matrix metalloproteinase 13. Enzyme Microb Technol 2016; 92:9-17. [PMID: 27542739 DOI: 10.1016/j.enzmictec.2016.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 06/07/2016] [Accepted: 06/10/2016] [Indexed: 02/02/2023]
Abstract
Collagenase-3 (MMP-13) inhibitors have attracted considerable attention in recent years and have been developed as a therapeutic target for a variety of diseases, including cancer. Matrix metalloproteinases (MMPs) can be inhibited by a multitude of compounds, including hydroxamic acids. Studies have shown that materials and compounds containing trivalent metal ions, particularly potassium hexacyanoferrate (III) (K3[Fe(CN)6]), exhibit cdMMP-13 inhibitory potential with a half maximal inhibitory concentration (IC50) of 1.3μM. The target protein was obtained by refolding the recombinant histidine-tagged cdMMP-13 using size exclusion chromatography (SEC). The secondary structures of the refolded cdMMP-13 with or without metal ions were further analyzed via circular dichroism and the results indicate that upon binding with metal ions, an altered structure with increased domain stability was obtained. Furthermore, isothermal titration calorimetry (ITC) experiments demonstrated that K3[Fe(CN)6]is able to bind to MMP-13 and endothelial cell tube formation tests provide further evidence for this interaction to exhibit anti-angiogenesis potential. To the best of our knowledge, no previous report of an inorganic compound featuring a MMP-13 inhibitory activity has ever been reported in the literature. Our results demonstrate that K3[Fe(CN)6] is useful as a new effective and specific inhibitor for cdMMP-13 which may be of great potential for future drug screening applications.
Collapse
Affiliation(s)
- Hanyu Wen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Shaanxi Alcohol Ether and Biomass Energy Engineering Research Center, Key laboratory of Yulin Desert Plants Resources, 229 Taibai North Road, Xi'an 710069, PR China
| | - Yuan Qin
- College of Pharmacy, Nankai University, PR China
| | | | - Cong Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Shaanxi Alcohol Ether and Biomass Energy Engineering Research Center, Key laboratory of Yulin Desert Plants Resources, 229 Taibai North Road, Xi'an 710069, PR China
| | - Xiang Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Shaanxi Alcohol Ether and Biomass Energy Engineering Research Center, Key laboratory of Yulin Desert Plants Resources, 229 Taibai North Road, Xi'an 710069, PR China; College of Pharmacy, Nankai University, PR China.
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Shaanxi Alcohol Ether and Biomass Energy Engineering Research Center, Key laboratory of Yulin Desert Plants Resources, 229 Taibai North Road, Xi'an 710069, PR China; College of Pharmacy, Nankai University, PR China.
| |
Collapse
|
5
|
Tripathi NK. Production and Purification of Recombinant Proteins fromEscherichia coli. CHEMBIOENG REVIEWS 2016. [DOI: 10.1002/cben.201600002] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
Ryś S, Muca R, Kołodziej M, Piątkowski W, Dürauer A, Jungbauer A, Antos D. Design and optimization of protein refolding with crossflow ultrafiltration. Chem Eng Sci 2015. [DOI: 10.1016/j.ces.2015.03.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Zakharova GS, Poloznikov AA, Chubar TA, Gazaryan IG, Tishkov VI. High-yield reactivation of anionic tobacco peroxidase overexpressed in Escherichia coli. Protein Expr Purif 2015; 113:85-93. [PMID: 25986322 DOI: 10.1016/j.pep.2015.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 05/08/2015] [Accepted: 05/10/2015] [Indexed: 10/23/2022]
Abstract
Anionic tobacco peroxidase (TOP) is extremely active in chemiluminescence reaction of luminol oxidation without addition of enhancers and more stable than horseradish peroxidase under antibody conjugation conditions. In addition, recombinant TOP (rTOP) produced in Escherichia coli is known to be a perfect direct electron transfer catalyst on electrodes of various origin. These features make the task of development of a high-yield reactivation protocol for rTOP practically important. Previous attempts to reactivate the enzyme from E. coli inclusion bodies were successful, but the reported reactivation yield was only 14%. In this work, we thoroughly screened the refolding conditions for dilution protocol and compared it with gel-filtration chromatography. The impressive reactivation yield in the dilution protocol (85%) was achieved for 8 μg/mL solubilized rTOP protein and the refolding medium containing 0.3 mM oxidized glutathione, 0.05 mM dithiothreitol, 5 mM CaCl2, 5% glycerol in 50 mM Tris-HCl buffer, pH 9.6, with 1 μM hemin added at the 24th hour of incubation. A practically important discovery was a 30-40% increase in the reactivation yield upon delayed addition of hemin. The reactivation yield achieved is one of the highest reported in the literature on protein refolding by dilution. The final yield of purified active non-glycosylated rTOP was ca. 60 mg per L of E. coli culture, close to the yield reported before for tomato and tobacco plants overexpressing glycosylated TOP (60 mg/kg biomass) and much higher than for the previously reported refolding protocol (2.6 mg per L of E. coli culture).
Collapse
Affiliation(s)
- G S Zakharova
- A.N. Bach Institute of Biochemistry, RAS, 119071 Moscow, Russia; Innovations and High Technologies MSU Ltd, 109559 Moscow, Russia.
| | - A A Poloznikov
- Innovations and High Technologies MSU Ltd, 109559 Moscow, Russia; M.V. Lomonosov Moscow State University, Chemistry Faculty, Department of Chemical Enzymology, 119899 Moscow, Russia
| | - T A Chubar
- M.V. Lomonosov Moscow State University, Chemistry Faculty, Department of Chemical Enzymology, 119899 Moscow, Russia
| | - I G Gazaryan
- M.V. Lomonosov Moscow State University, Chemistry Faculty, Department of Chemical Enzymology, 119899 Moscow, Russia
| | - V I Tishkov
- A.N. Bach Institute of Biochemistry, RAS, 119071 Moscow, Russia; Innovations and High Technologies MSU Ltd, 109559 Moscow, Russia; M.V. Lomonosov Moscow State University, Chemistry Faculty, Department of Chemical Enzymology, 119899 Moscow, Russia
| |
Collapse
|
8
|
Singh A, Upadhyay V, Upadhyay AK, Singh SM, Panda AK. Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process. Microb Cell Fact 2015; 14:41. [PMID: 25889252 PMCID: PMC4379949 DOI: 10.1186/s12934-015-0222-8] [Citation(s) in RCA: 312] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/06/2015] [Indexed: 11/13/2022] Open
Abstract
Formation of inclusion bodies in bacterial hosts poses a major challenge for large scale recovery of bioactive proteins. The process of obtaining bioactive protein from inclusion bodies is labor intensive and the yields of recombinant protein are often low. Here we review the developments in the field that are targeted at improving the yield, as well as quality of the recombinant protein by optimizing the individual steps of the process, especially solubilization of the inclusion bodies and refolding of the solubilized protein. Mild solubilization methods have been discussed which are based on the understanding of the fact that protein molecules in inclusion body aggregates have native-like structure. These methods solubilize the inclusion body aggregates while preserving the native-like protein structure. Subsequent protein refolding and purification results in high recovery of bioactive protein. Other parameters which influence the overall recovery of bioactive protein from inclusion bodies have also been discussed. A schematic model describing the utility of mild solubilization methods for high throughput recovery of bioactive protein has also been presented.
Collapse
Affiliation(s)
- Anupam Singh
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Vaibhav Upadhyay
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Arun Kumar Upadhyay
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Surinder Mohan Singh
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Amulya Kumar Panda
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
9
|
Saremirad P, Wood JA, Zhang Y, Ray AK. Oxidative protein refolding on size exclusion chromatography at high loading concentrations: Fundamental studies and mathematical modeling. J Chromatogr A 2014; 1370:147-55. [DOI: 10.1016/j.chroma.2014.10.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/12/2014] [Accepted: 10/14/2014] [Indexed: 10/24/2022]
|
10
|
Saremirad P, Wood JA, Zhang Y, Ray AK. Multi-variable operational characteristic studies of on-column oxidative protein refolding at high loading concentrations. J Chromatogr A 2014; 1359:70-5. [DOI: 10.1016/j.chroma.2014.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/08/2014] [Accepted: 07/08/2014] [Indexed: 10/25/2022]
|
11
|
Protein renaturation with simultaneous purification by protein folding liquid chromatography: recent developments. Amino Acids 2013; 46:153-65. [DOI: 10.1007/s00726-013-1614-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 10/20/2013] [Indexed: 10/26/2022]
|
12
|
High productivity chromatography refolding process for Hepatitis B Virus X (HBx) protein guided by statistical design of experiment studies. J Chromatogr A 2012; 1223:64-71. [DOI: 10.1016/j.chroma.2011.12.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 12/08/2011] [Accepted: 12/08/2011] [Indexed: 12/17/2022]
|
13
|
The imminent role of protein engineering in synthetic biology. Biotechnol Adv 2011; 30:541-9. [PMID: 21963685 DOI: 10.1016/j.biotechadv.2011.09.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 09/13/2011] [Accepted: 09/13/2011] [Indexed: 01/08/2023]
Abstract
Protein engineering has for decades been a powerful tool in biotechnology for generating vast numbers of useful enzymes for industrial applications. Today, protein engineering has a crucial role in advancing the emerging field of synthetic biology, where metabolic engineering efforts alone are insufficient to maximize the full potential of synthetic biology. This article reviews the advancements in protein engineering techniques for improving biocatalytic properties to optimize engineered pathways in host systems, which are instrumental to achieve high titer production of target molecules. We also discuss the specific means by which protein engineering has improved metabolic engineering efforts and provide our assessment on its potential to continue to advance biology engineering as a whole.
Collapse
|
14
|
Refolding of proteins from inclusion bodies: rational design and recipes. Appl Microbiol Biotechnol 2011; 92:241-51. [DOI: 10.1007/s00253-011-3513-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 07/18/2011] [Accepted: 07/24/2011] [Indexed: 01/31/2023]
|
15
|
A chromatography-focused bioprocess that eliminates soluble aggregation for bioactive production of a new antimicrobial peptide candidate. J Chromatogr A 2011; 1218:3654-9. [DOI: 10.1016/j.chroma.2011.04.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 03/31/2011] [Accepted: 04/06/2011] [Indexed: 11/23/2022]
|
16
|
Sharapova OA, Yurkova MS, Laurinavichyute DK, Andronova SM, Fedorov AN, Severin SE, Severin ES. Efficient refolding of a hydrophobic protein with multiple S-S bonds by on-resin immobilized metal affinity chromatography. J Chromatogr A 2011; 1218:5115-9. [PMID: 21676401 DOI: 10.1016/j.chroma.2011.05.075] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 05/17/2011] [Accepted: 05/20/2011] [Indexed: 11/27/2022]
Abstract
The efficient refolding of recombinant proteins produced in the form of inclusion bodies (IBs) in Escherichia coli still is a complicated experimental problem especially for large hydrophobic highly disulfide-bonded proteins. The aim of this work was to develop highly efficient and simple refolding procedure for such a protein. The recombinant C-terminal fragment of human alpha-fetoprotein (rAFP-Cterm), which has molecular weight of 26 kDa and possesses 6 S-S bonds, was expressed in the form of IBs in E. coli. The C-terminal 7× His tag was introduced to facilitate protein purification and refolding. The refolding procedure of the immobilized protein by immobilized metal chelating chromatography (IMAC) was developed. Such hydrophobic highly disulfide-bonded proteins tend to irreversibly bind to traditionally used agarose-based matrices upon attempted refolding of the immobilized protein. Indeed, the yield of rAFP-Cterm upon its refolding by IMAC on agarose-based matrix was negligible with bulk of the protein irreversibly stacked to the resin. The key has occurred to be using IMAC based on silica matrix. This increased on-resin refolding yield of the target protein from almost 0 to 60% with purity 98%. Compared to dilution refolding of the same protein, the productivity of the developed procedure was two orders higher. There was no need for further purification or concentration of the renatured protein. The usage of silica-based matrix for the refolding of immobilized proteins by IMAC can improve and facilitate the experimental work for difficult-to-refold proteins.
Collapse
Affiliation(s)
- Olga A Sharapova
- Moscow Research Institute of Medical Ecology, Simpheropolski blvd.8, Moscow, 117638, Russia
| | | | | | | | | | | | | |
Collapse
|