1
|
Wang M, Wu B, Zheng Q, Yang P, Hu J, Zheng S. Highly effective removal of 4-chloroaniline in water by nano zero-valent iron cooperated with microbial degradation. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134235. [PMID: 38608585 DOI: 10.1016/j.jhazmat.2024.134235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/28/2024] [Accepted: 04/06/2024] [Indexed: 04/14/2024]
Abstract
The misuse of aromatic amines like 4-chloroaniline (4-CA) has led to severe environmental and health issues. However, it's difficult to be utilized by microorganisms for degradation. Nano-zero-valent iron (nZVI) is a promising material for the remediation of chloroaniline pollution, however, the synergistic effect and mechanism of nZVI with microorganisms for the degradation of 4-CA are still unclear. This study investigated the potential of 4-CA removal by the synergistic system involving nZVI and 4-CA degrading microbial flora. The results indicate that the addition of nZVI significantly enhanced the bio-degradation rate of 4-CA from 43.13 % to 62.26 %. Under conditions involving 0.1 % nZVI addition at a 24-hour interval, pH maintained at 7, and glucose as an external carbon source, the microbial biomass, antioxidant enzymes, and dehydrogenase were significantly increased, and the optimal 4-CA degradation rate achieved 68.79 %. Additionally, gas chromatography-mass spectrometry (GC-MS) analysis of intermediates indicated that the addition of nZVI reduced compounds containing benzene rings and enhanced the dechlorination efficiency. The microbial community remained stable during the 4-CA degradation process. This study illustrates the potential of nZVI in co-microbial remediation of 4-CA compounds in the environment.
Collapse
Affiliation(s)
- MeiQi Wang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Bin Wu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China.
| | - QingJuan Zheng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Peng Yang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - JunQi Hu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Shuai Zheng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| |
Collapse
|
2
|
Liu Z, Yang R, Li Z, Ning F, Wang J, Gao M, Zhang A, Liu Y. Role of cycle duration on the formation of quinoline-degraded aerobic granules in the aspect of sludge characteristics, extracellular polymeric substances and microbial communities. ENVIRONMENTAL RESEARCH 2023; 216:114589. [PMID: 36244442 DOI: 10.1016/j.envres.2022.114589] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/27/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
This study investigated the culture and characteristics of quinoline-degraded aerobic granular sludge (AGS) under 8-h and 12-h cycle duration. According to results, the cultivation of an 8-h cycle duration enhanced the growth of quinoline-degraded AGS, as well as the settleability of sludge and the retention of biomass. Quinoline can be removed from mature AGS at a rate of more than 90%, but it is removed at a rate slightly higher when the AGS are cultured for 12-h. Compared to 12-h cycle duration, 8-h cycle duration result in a greater increase in the production of extracellular polymeric substances, particularly extracellular proteins. In these two systems, Acidovorax and Paracoccus dominated the quinoline degrading bacteria. In addition, analysis by non-metric multidimensional scaling (based on Bray-curtis distance) showed significant differences of community structure between the two reactors. Clostridia and Acidaminobacter are different bacteria with an 8-h cycle duration compared to 12 h. Relative abundance of nitrogen metabolism genes based on PICRUSt2 prediction, which explain the better total nitrogen removal for an 8-h cycle duration compared to a 12-h cycle duration. Finally, the KEGG pathway was analyzed in order to confirm the results of the microbial analysis.
Collapse
Affiliation(s)
- Zhe Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Yulin Ecological Environment Monitoring Station, High-tech Zone Xingda Road, Yulin, 719000, China.
| | - Rushuo Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
| | - Zhengyang Li
- School of Architecture and Civil Engineering, Xi'an University of Science and Technology, Yan Ta Road No. 58, Xi'an, 710054, China
| | - Fangzhi Ning
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
| | - Jiaxuan Wang
- School of Architecture and Civil Engineering, Xi'an University of Science and Technology, Yan Ta Road No. 58, Xi'an, 710054, China
| | - Min Gao
- School of Environmental and Chemical Engineering, Xìan Polytechnic University, Jin Hua Nan Road. No.19, Xi'an, 710048, China
| | - Aining Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
| | - Yongjun Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
3
|
Hu M, Huang X, Sun L, Zheng W, Chou IM, Wu L, Wan J, Pan Z, Wang J. Catalytic oxidation of o-chloroaniline in hot compressed water: Degradation behaviors and nitrogen transformation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Liu YQ, Maulidiany N, Zeng P, Heo S. Decolourization of azo, anthraquinone and triphenylmethane dyes using aerobic granules: Acclimatization and long-term stability. CHEMOSPHERE 2021; 263:128312. [PMID: 33297248 DOI: 10.1016/j.chemosphere.2020.128312] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/07/2020] [Accepted: 09/09/2020] [Indexed: 06/12/2023]
Abstract
The long-term stability of aerobic granules is critical for decolourization of different dyes in textile wastewater. Here, we investigated dye decolourization and the stability of acetate-cultivated granules after exposure to dyes. Results show that granules can maintain excellent structure stability with the presence of azo and triphenylmethane dyes during a 200-day operation period, achieving biomass concentrations as high as 8-12 g L-1 and 90% and 100% decolourization efficiency, respectively. Aerobic granules, however, partially disintegrated after exposure to anthraquinone, resulting in dye decolourization efficiency ranging from 50 to 80% and a biomass concentration as low as around 0.5 g L-1 due to biomass wash-out. The study indicates that long-term granule stability is much dependent on the dye classes. The enrichment of specific species in granules for dye decolourization has not been affected by the granule structure. The specific dye decolourization rate and dye to microorganism ratio for anthraquinone were 5-6.5 and 13.5-16.4 times, respectively, higher than those for azo and triphenylmethane dyes, but the total reactor performance for anthraquinone decolourization is much poorer than azo and triphenylmethane dyes due to low biomass retention in the reactor. The results suggest the importance of stability of aerobic granules for biomass retention to achieve better treatment performance of dye-containing wastewater. For the first time, the long-term stability and decolourization performance of aerobic granules for treating anthraquinone and triphenylmethane dyes are reported here and compared with azo dye, which can be used to guide the treatment of real textile wastewater containing azo, anthraquinone and triphenylmethane dyes by aerobic granules.
Collapse
Affiliation(s)
- Yong-Qiang Liu
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom.
| | - Nopa Maulidiany
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Ping Zeng
- Department of Urban Water Environmental Research, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Seongbong Heo
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| |
Collapse
|
5
|
Kumar M, Mahajan R, Saini HS. Evaluating metabolic potential of Thauera sp. M9 for the transformation of 4-chloroaniline (4-CA). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Liu Z, Mu Q, Sun Y, Gao P, Yu Y, Gao J, Shi W, Wen X, Fei Z. Effective adsorption of chloroanilines from aqueous solution by m-phenylenediamine modified hyper-cross-linked resin: Kinetic, equilibrium, and thermodynamic studies. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124996] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Zhou LJ, Rong ZY, Gu W, Fan DL, Liu JN, Shi LL, Xu YH, Liu ZY. Integrated fate assessment of aromatic amines in aerobic sewage treatment plants. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:278. [PMID: 32277289 PMCID: PMC7148277 DOI: 10.1007/s10661-020-8111-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 01/21/2020] [Indexed: 06/11/2023]
Abstract
The fate and exposure of chemicals in sewage treatment plants (STPs) are major considerations in risk assessment and environmental regulation. The biodegradability and removal of seven aromatic amines were systematically evaluated using a three-tiered integrated method: a standard ready biodegradability test, an aerobic sewage treatment simulation method, and model prediction. In tier 1, the seven aromatic amines were not readily biodegraded after 28 days. In adapted aerobic active sludge, 4-isopropyl aniline, 2,4-diaminotoluene, and 4-nitroaniline among them exhibited the degradation half-life time less than 20 h, the other four aromatic amines exhibited persistent with degradation half-life of > 60 h. In tier 2 of the aerobic sewage treatment simulation testing, 2,4-diaminotoluene, 4-nitroaniline, and 4-isopropylaniline demonstrated moderately to high overall removal. Hydraulic retention time (HRT) affects the removal with the optimum HRT was determined to be 12 h to 24. 2,6-Dimethyl aniline, 2-chloro-4-nitroaniline, 2,6-diethylaniline, and 3,4-dichloroaniline were not removed during the test, indicting these four aromatic amines will enter surface water and hence pose a potential risk to aquatic ecology. Considering the lack of an STP model in China for regulation purposes, in tier 3, we developed a Chinese STP (aerobic) (abbreviated as C-STP(O)) model that reflects a universal scenario for China to predict the fate. The predicted degradation, volatilization, and absorption showed a close relationship to the physicochemical properties of the chemicals, and had same tendency with tier 2 simulation test. The prediction showed that biodegradation rather than absorption or volatilization was the main removal process of aromatic amines in aerobic STP. With the combination of modified kinetics test with C-STP (O) model, the chemical fate can be more accurately predicted than using only the readily biodegradation result.
Collapse
Affiliation(s)
- Lin Jun Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, China
| | | | - Wen Gu
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, China
| | - De Ling Fan
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, China
| | - Ji Ning Liu
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, China.
| | - Li Li Shi
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, China
| | - Yan Hua Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.
| | - Zhi Ying Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.
| |
Collapse
|
8
|
Poursat BAJ, van Spanning RJM, Braster M, Helmus R, de Voogt P, Parsons JR. Long-term exposure of activated sludge in chemostats leads to changes in microbial communities composition and enhanced biodegradation of 4-chloroaniline and N-methylpiperazine. CHEMOSPHERE 2020; 242:125102. [PMID: 31669985 DOI: 10.1016/j.chemosphere.2019.125102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/04/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Exposure history and adaptation of the inoculum to chemicals have been shown to influence the outcome of ready biodegradability tests. However, there is a lack of information about the mechanisms involved in microbial adaptation and the implication thereof for the tests. In the present study, we investigated the impact of a long-term exposure to N-methylpiperazine (NMP) and 4-chloroaniline (4CA) of an activated sludge microbial community using chemostat systems. The objective was to characterize the influence of adaptation to the chemicals on an enhanced biodegradation testing, following the OECD 310 guideline. Cultures were used to inoculate the enhanced biodegradability tests, in batch, before and after exposure to each chemical independently in chemostat culture. Composition and diversity of the microbial communities were characterised by 16s rRNA gene amplicon sequencing. Using freshly sampled activated sludge, NMP was not degraded within the 28 d frame of the test while 4CA was completely eliminated. However, after one month of exposure, the community exposed to NMP was adapted and could completely degrade it. This result was in complete contrast with that from the culture exposed for 3 months to 4CA. Long term incubation in the chemostat system led to a progressive loss of the initial biodegradation capacity of the community, as a consequence of the loss of key degrading microorganisms. This study highlights the potential of chemostat systems to induce adaptation to a specific chemical, ultimately resulting in its biodegradation. At the same time, one should be critical of these observations as the dynamics of a microbial community are difficult to maintain in chemostat, as the loss of 4CA biodegradation capacity demonstrates.
Collapse
Affiliation(s)
- Baptiste A J Poursat
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands; Department of Molecular Cell Biology, Vrije Universteit, de Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands.
| | - Rob J M van Spanning
- Department of Molecular Cell Biology, Vrije Universteit, de Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands
| | - Martin Braster
- Department of Molecular Cell Biology, Vrije Universteit, de Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands
| | - Rick Helmus
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Pim de Voogt
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands; KWR Watercycle Research Institute, Nieuwegein, the Netherlands
| | - John R Parsons
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| |
Collapse
|
9
|
Li C, Zhang X, Lu Y, Fan Z, Wang T, Zhang G. Cometabolic degradation of p-chloroaniline by the genus Brevibacillus bacteria with extra carbon sources. JOURNAL OF HAZARDOUS MATERIALS 2020; 383:121198. [PMID: 31541955 DOI: 10.1016/j.jhazmat.2019.121198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 08/31/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
In this study, we discovered and isolated a new genus Brevibacillus strain from effluent of dyeing and finishing factory containing highly toxic p-chloroanilines (PCA). Based on the morphological, physiological and biochemical characteristics, as well as 16S rDNA sequence, the strain was identified and denominated as Brevibacillus S-618. Co-metabolism effect was found with extra carbon sources including sodium succinate, sodium citrate, ammonium chloride and glucose which can efficiently promote the biodegradation process of PCA. Under the optimal growth conditions at temperature of 30 °C, pH˜7 and air-water ratio of 0.3 m3/m3·min, the degradation rate of PCA in a 2 L pilot bioreactor with high concentration of 180 mg/L increased from 86.7% to 100% within 72 h after adding sodium succinate. The release of chloride ions during the growth process of the strain was equivalent to the degradation amount of PCA. Meanwhile, the cleavage pathway of PCA degradation by Brevibacillus S-618 was proposed by analysis of enzyme activities of microorganism and intermediate products in the reaction. Benefiting from excellent degradation ability and unique characters in high pollutant contents, high efficient bioreactor can easily be scale up for industrial application. Our study provides a facile route for cost-effectively and environmental-friendly degrading hazardous chemicals.
Collapse
Affiliation(s)
- Chang Li
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xu Zhang
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yin Lu
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Zheng Fan
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Tiecheng Wang
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Guoliang Zhang
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
10
|
Wang X, Li Y, Pan L, Miao J, Li Y, Wei S, Lin Y, Wu J. Toxicity assessment of p-choroaniline on Platymonas subcordiformis and its biodegradation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:109995. [PMID: 31785947 DOI: 10.1016/j.ecoenv.2019.109995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
The use of p-chloroaniline (PCA) in various aspects leads to its existence and accumulation in the environment. Relevant researches showed that PCA was a prime toxic pollutant that had imposed a serious risk to public health and the environment. This paper investigated the toxicity effects of PCA on Platymonas subcordiformis (P. subcordiformis) and the biodegradation of PCA by the marine microalga. In the toxicity experiments, the EC50 of PCA on P. subcordiformis at 24 h, 48 h, 72 h and 96 h was 41.42, 24.04, 17.15 and 13.05 mg L-1, respectively. The pigment parameters including chlorophyll a, chlorophyll b, carotenoids, photosynthetic O2 release rate, respiration O2 consumption rate and the chlorophyll fluorescence parameters including Fv/Fm, ETR and qP decreased greatly while antioxidant enzyme activities (SOD, CAT) and the chlorophyll fluorescence parameter NPQ increased when P. subcordiformis exposed to PCA compared with the control group. Fv/Fm would be a suitable indicator for assessing the toxicity of PCA in marine environment based on the analysis of Pearson's correlation coefficient and Integrated Biomarker Response (IBR). The degradation assay in P. subcordiformis indicated that the green marine microalga had the ability to remove and degrade PCA, and the order of removal and degradation proportion of PCA was 2 mg L-1 > 5 mg L-1>10 mg L-1. The maximum removal and biodegradation percentage was 54% and 34%, respectively.
Collapse
Affiliation(s)
- Xiufen Wang
- The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shangdong, 266003, China
| | - Yun Li
- The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shangdong, 266003, China.
| | - Luqing Pan
- The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shangdong, 266003, China
| | - Jingjing Miao
- The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shangdong, 266003, China
| | - Yusong Li
- Faculty of Science, Western University, London, Ontario, N6A5B7, Canada
| | - Shouxiang Wei
- The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shangdong, 266003, China
| | - Yufei Lin
- National Marine Hazard Mitigation Service, State Ocean Administration, Beijing, 100194, China
| | - Jiangyue Wu
- National Marine Hazard Mitigation Service, State Ocean Administration, Beijing, 100194, China
| |
Collapse
|
11
|
Wang X, Miao J, Pan L, Li Y, Lin Y, Wu J. Toxicity effects of p-choroaniline on the growth, photosynthesis, respiration capacity and antioxidant enzyme activities of a diatom, Phaeodactylum tricornutu. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:654-661. [PMID: 30496998 DOI: 10.1016/j.ecoenv.2018.11.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
The environmental risk issues of p-choroaniline have been concerned by the widespread application and transportation of this important chemical intermediate. The information about the toxicity of p-chloroaniline was mainly concentrated on freshwater organisms while the current knowledge on marine organisms was scarce yet. In this study, acute toxicity and toxic physiology characteristic of p-chloroaniline to Phaeodactylum tricornutum (P. tricornutum) were first determined. In the acute experiments, the effect of the p-choroaniline to P. tricornutum showed time- and dose-dependent response, which the half maximum effective concentration (EC50) at 24 h, 48 h and 96 h was 35.35, 20.10 and 10.00 mgL-1, respectively. Toxic physiology assays in P. tricornutum indicated that the p-choroaniline induced significant changes of photosynthetic pigments (Chl-a, Chl-b, Caro, Chl-a/b and Chl-(a+b)/Caro), Chlorophyll fluorescence parameters (Fv/Fm, ETR, qP and NPQ), rates of photosynthetic O2 release and respiration O2 consumption, and antioxidant enzyme activities (SOD, CAT). The obvious decrease of Fv/Fm, ETR and chl-a in low p-choroaniline treatments (≤ 5.00 mgL-1) compared with the control could be observed, which implied that these parameters could be taken as sensitive indicators for the environmental assessment. Meanwhile, the activities of SOD and CAT significant increase in p-choroaniline stress after 24 h and the extent of the increase has fallen after 96 h. These toxicity data obtained here might provide available basic data for the ecological risk assessment of p-choroaniline pollution.
Collapse
Affiliation(s)
- Xiufen Wang
- The key laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shangdong p, China
| | - Jingjing Miao
- The key laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shangdong p, China
| | - Luqing Pan
- The key laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shangdong p, China
| | - Yun Li
- The key laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shangdong p, China.
| | - Yufei Lin
- National Marine Hazard Mitigation Service, State Ocean Administration, People's Republic of China, Beijing 100194, China
| | - Jiangyue Wu
- National Marine Hazard Mitigation Service, State Ocean Administration, People's Republic of China, Beijing 100194, China
| |
Collapse
|
12
|
Xu H, Zhao X, Huang S, Li H, Tong N, Wen X, Sun C, Fazal S, Zhang Y. Evaluation of microbial p-chloroaniline degradation in bioelectrochemical reactors in the presence of easily-biodegrading cosubstrates: Degradation efficiency and bacterial community structure. BIORESOURCE TECHNOLOGY 2018; 270:422-429. [PMID: 30245311 DOI: 10.1016/j.biortech.2018.09.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 06/08/2023]
Abstract
This study aimed to illustrate p-Chloroaniline (p-CIA) biodegradation efficiencies in bioelectrochemical reactors under stimulation by a low-voltage electric field (0.2 V versus Ag/AgCl) in the presence of easily-degrading cosubstrates including glucose and acetate. The biodegradation efficiencies of closed-circuit bioreactors were compared with those of open-circuit reactors. Experimental results showed that the six different bioreactors provided different p-CIA biodegradation efficiencies. The highest biodegradation efficiency of 38.5 ± 10.3 mg/l was obtained in a closed-circuit bioreactor with acetate and the lowest biodegradation efficiency of 15.7 ± 9.4 mg/l was obtained in an open-circuit bioreactor. This difference may be attributed to the presence of electrical stimulation and acetate. The results for generated current and biodegradation efficiency indicated that acetate is a better cosubstrate than glucose. High-throughput sequencing technologies were used to characterise the bacterial community structure of the six bioreactors and revealed that different bacterial communities resulted in different treatment efficiencies.
Collapse
Affiliation(s)
- Hao Xu
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, PR China
| | - Xuesong Zhao
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, PR China
| | - Shaobin Huang
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, PR China.
| | - Han Li
- School of Resource and Environmental Sciences, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Na Tong
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, PR China
| | - Xiangyu Wen
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, PR China
| | - Congcong Sun
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, PR China
| | - Saima Fazal
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, PR China
| | - Yongqing Zhang
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, PR China
| |
Collapse
|
13
|
Dong H, Wei D, Wei J, Han F, Yan T, Khan MS, Du B, Wei Q. Qualitative and quantitative spectrometric evaluation of soluble microbial products formation in aerobic granular sludge system treating nitrate wastewater. Bioprocess Biosyst Eng 2018. [PMID: 29523965 DOI: 10.1007/s00449-018-1918-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In present study, the characteristics of soluble microbial products (SMP) were evaluated in aerobic granular sludge system during denitrification process under different chemical oxygen demand/nitrogen (C/N) ratios. Batch experiment showed that the effluent nitrate (NO3--N) concentration were 15.24 ± 1.83 and 1.72 ± 1.53 mg/L at C/N ratio of 1 and 6, respectively. For the release of SMP, the protein (PN) and polysaccharide contents increased from 1.23 ± 0.38 and 7.46 ± 1.13 mg/L to 1.80 ± 0.76 and 10.53 ± 1.24 mg/L with increasing C/N ratios, respectively. Excitation-emission matrix identified four peaks in SMP, including aromatic PN-like, tryptophan PN-like, fulvic acid-like and humic acid-like substances. Fluorescence regional integration suggested that biodegradable PN-like substances occupied the percentage between 53.0 and 61.7% in SMP. Synchronous fluorescence spectra coupled with two-dimensional correlation spectroscopy indicated that the release of SMP fractions in the early stage (0-150 min) changed in the following sequences: PN-like fraction > fulvic acid-like fraction.
Collapse
Affiliation(s)
- Heng Dong
- School of Resources and Environment, University of Jinan, Jinan, 250022, People's Republic of China
| | - Dong Wei
- School of Resources and Environment, University of Jinan, Jinan, 250022, People's Republic of China.
| | - Jinglin Wei
- School of Resources and Environment, University of Jinan, Jinan, 250022, People's Republic of China
| | - Fei Han
- School of Resources and Environment, University of Jinan, Jinan, 250022, People's Republic of China
| | - Tao Yan
- School of Resources and Environment, University of Jinan, Jinan, 250022, People's Republic of China
| | - Malik Saddam Khan
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Bin Du
- School of Resources and Environment, University of Jinan, Jinan, 250022, People's Republic of China.
| | - Qin Wei
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| |
Collapse
|
14
|
Directing the amount of CNTs in CuO–CNT catalysts for enhanced adsorption-oriented visible-light-responsive photodegradation of p-chloroaniline. POWDER TECHNOL 2018. [DOI: 10.1016/j.powtec.2017.12.052] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Corsino SF, Campo R, Di Bella G, Torregrossa M, Viviani G. Aerobic granular sludge treating shipboard slop: Analysis of total petroleum hydrocarbons loading rates on performances and stability. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Aerobic degradation study of three fluoroanilines and microbial community analysis: the effects of increased fluorine substitution. Biodegradation 2014; 26:1-14. [PMID: 25238671 DOI: 10.1007/s10532-014-9704-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 07/26/2014] [Indexed: 10/24/2022]
Abstract
The fate of fluorinated compounds in the environment, especially polyfluorinated aromatics, is a matter of great concern. In this work, 4-Fluoroaniline (4-FA), 2,4-Difluoroanilines (2,4-DFA), and 2,3,4-Trifluoroanilines (2,3,4-TFA), were chosen as the target pollutants to study their biodegradability under aerobic conditions. The required enriched time of the mixed bacterial culture for degrading 4-FA, 2,4-DFA, and 2,3,4-TFA was 26, 51, and 165 days, respectively, which suggested that the longer enrichment time was required with the increase of fluorine substitution. At the initial concentrations of 100-200 mg L(-1), the 4-FA, 2,4-DFA, and 2,3,4-TFA could be degraded completely by the mixed bacterial culture. The maximum specific degradation rates of 4-FA, 2,4-DFA, and 2,3,4-TFA were 22.48 ± 0.55, 15.27 ± 2.04, and 8.84 ± 0.93 mg FA (g VSS h)(-1), respectively. Also, the three FAs enriched cultures showed certain potential of degrading other two FAs. The results from enzyme assay suggested the expression of meta-cleavage pathways during three FAs degradation. The denaturing gradient gel electrophoresis analysis revealed that unique bacterial communities were formed after FAs enrichment and these were principally composed of β-Proteobacteria, Oscillatoriophycideae, δ-Proteobacteria, α-Proteobacteria, Thermales, Xanthomonadales, Deinococci, Flavobacteriia, and Actinobacteridae. The Shannon-Wiener indexes in three FAs enriched culture decreased with the increase of fluorine substitution, indicating the significant effect of fluorine substitution on the microbial diversity. These findings supply important information on the fate of three FAs under aerobic environment, and the bacterial communities in their degradation systems.
Collapse
|
17
|
Dvořák L, Lederer T, Jirků V, Masák J, Novák L. Removal of aniline, cyanides and diphenylguanidine from industrial wastewater using a full-scale moving bed biofilm reactor. Process Biochem 2014. [DOI: 10.1016/j.procbio.2013.10.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Su KZ, Ni BJ, Yu HQ. Modeling and optimization of granulation process of activated sludge in sequencing batch reactors. Biotechnol Bioeng 2013; 110:1312-22. [DOI: 10.1002/bit.24812] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 12/12/2012] [Accepted: 12/14/2012] [Indexed: 11/08/2022]
|