1
|
Transduction of HEK293 Cells with BacMam Baculovirus Is an Efficient System for the Production of HIV-1 Virus-like Particles. Viruses 2022; 14:v14030636. [PMID: 35337043 PMCID: PMC8954388 DOI: 10.3390/v14030636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/06/2022] [Accepted: 03/15/2022] [Indexed: 12/13/2022] Open
Abstract
Gag virus-like particles (VLPs) are promising vaccine candidates against infectious diseases. VLPs are generally produced using the insect cell/baculovirus expression vector system (BEVS), or in mammalian cells by plasmid DNA transient gene expression (TGE). However, VLPs produced with the insect cell/BEVS are difficult to purify and might not display the appropriate post-translational modifications, whereas plasmid DNA TGE approaches are expensive and have a limited scale-up capability. In this study, the production of Gag VLPs with the BacMam expression system in a suspension culture of HEK293 cells is addressed. The optimal conditions of multiplicity of infection (MOI), viable cell density (VCD) at infection, and butyric acid (BA) concentration that maximize cell transduction and VLP production are determined. In these conditions, a maximum cell transduction efficiency of 91.5 ± 1.1%, and a VLP titer of 2.8 ± 0.1 × 109 VLPs/mL are achieved. Successful VLP generation in transduced HEK293 cells is validated using super-resolution fluorescence microscopy, with VLPs produced resembling immature HIV-1 virions and with an average size comprised in the 100–200 nm range. Additionally, evidence that BacMam transduction occurs via different pathways including dynamin-mediated endocytosis and macropinocytosis is provided. This work puts the basis for future studies aiming at scaling up the BacMam baculovirus system as an alternative strategy for VLP production.
Collapse
|
2
|
Comparison of Chicken Immune Responses after Inoculation with H5 Avian Influenza Virus-like Particles Produced by Insect Cells or Pupae. J Vet Res 2021; 65:139-145. [PMID: 34250297 PMCID: PMC8256473 DOI: 10.2478/jvetres-2021-0026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 04/26/2021] [Indexed: 11/21/2022] Open
Abstract
Introduction Novel clade 2.3.4.4 H5 highly pathogenic avian influenza virus (HPAIV) outbreaks have occurred since early 2015 in Taiwan and impacted the island economically, like they have many countries. This research investigates the immunogenicity of two HPAIV-like particles to assess their promise as vaccine candidates. Material and Methods The haemagglutinin (HA) gene derived from clade 2.3.4.4 H5 HPAIV and matrix protein 1 (M1) gene were cloned into the pFastBac Dual baculovirus vector. The resulting recombinant viruses were expressed in Spodoptera frugiperda moth (Sf)21 cells and silkworm pupae to generate Sf21 virus-like particles (VLP) and silkworm pupa VLP. Two-week-old specific pathogen–free chickens were immunised and their humoral and cellular immune responses were analysed. Results The silkworm pupa VLP had higher haemagglutination competence. Both VLP types elicited haemagglutination inhibition antibodies, anti-HA antibodies, splenic interferon gamma (IFN-γ) and interleukin 4 (IL-4) mRNA expression, and CD4+/CD8+ ratio elevation. However, chickens receiving silkworm pupa VLP exhibited a significantly higher anti-HA antibody titre in ELISA after vaccination. Although Sf21 VLP recipients expressed more IFN-γ and IL-4, the increase in IFN-γ did not significantly raise the CD4+/CD8+ ratio and the increase in IL-4 did not promote anti-HA antibodies. Conclusion Both VLP systems possess desirable immunogenicity in vivo. However, in respect of immunogenic efficacy and the production cost, pupa VLP may be the superior vaccine candidate against clade 2.3.4.4 H5 HPAIV infection.
Collapse
|
3
|
Yu L, Pan J, Cao G, Jiang M, Zhang Y, Zhu M, Liang Z, Zhang X, Hu X, Xue R, Gong C. AIV polyantigen epitope expressed by recombinant baculovirus induces a systemic immune response in chicken and mouse models. Virol J 2020; 17:121. [PMID: 32758272 PMCID: PMC7403573 DOI: 10.1186/s12985-020-01388-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/15/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The protective efficacy of avian influenza virus (AIV) vaccines is unsatisfactory due to the presence of various serotypes generated by genetic reassortment. Thus, immunization with a polyantigen chimeric epitope vaccine may be an effective strategy for protecting poultry from infection with different AIV subtypes. METHODS Baculovirus has recently emerged as a novel and attractive gene delivery vehicle for animal cells. In the present study, a recombinant baculovirus BmNPV-CMV/THB-P10/CTLT containing a fused codon-optimized sequence (CTLT) of T lymphocyte epitopes from H1HA, H9HA, and H7HA AIV subtypes, and another fused codon-optimized sequence (THB) of Th and B cell epitopes from H1HA, H9HA, and H7HA AIV subtypes, driven by a baculovirus P10 promoter and cytomegalovirus CMV promoter, respectively, was constructed. RESULTS Western blotting and cellular immunofluorescence demonstrated that the CTLT (THB) can be expressed in rBac-CMV/THB-P10/CTLT-infected silkworm cells (mammalian HEK293T cells). Furthermore, the recombinant virus, rBac-CMV-THB-CTLT, was used to immunize both chickens and mice. CONCLUSIONS The results of an indirect ELISA, immunohistochemistry, and T lymphocyte proliferation assay indicated that specific humoral and cellular responses were detected in both chicken and mice. These results suggest that rBac-CMV/THB-P10/CTLT can be developed as a potential vaccine against different AIV subtypes.
Collapse
Affiliation(s)
- Lei Yu
- School of Biology and Basic Medical Sciences, Soochow University, No.199 Ren'ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park, Suzhou, 215123, P.R. China
| | - Jun Pan
- School of Biology and Basic Medical Sciences, Soochow University, No.199 Ren'ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park, Suzhou, 215123, P.R. China
| | - Guangli Cao
- School of Biology and Basic Medical Sciences, Soochow University, No.199 Ren'ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park, Suzhou, 215123, P.R. China
- Agricultural Biotechnology Research Institute, Agricultural biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Mengsheng Jiang
- School of Biology and Basic Medical Sciences, Soochow University, No.199 Ren'ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park, Suzhou, 215123, P.R. China
| | - Yunshan Zhang
- School of Biology and Basic Medical Sciences, Soochow University, No.199 Ren'ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park, Suzhou, 215123, P.R. China
| | - Min Zhu
- School of Biology and Basic Medical Sciences, Soochow University, No.199 Ren'ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park, Suzhou, 215123, P.R. China
| | - Zi Liang
- School of Biology and Basic Medical Sciences, Soochow University, No.199 Ren'ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park, Suzhou, 215123, P.R. China
| | - Xing Zhang
- School of Biology and Basic Medical Sciences, Soochow University, No.199 Ren'ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park, Suzhou, 215123, P.R. China
- Agricultural Biotechnology Research Institute, Agricultural biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Xiaolong Hu
- School of Biology and Basic Medical Sciences, Soochow University, No.199 Ren'ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park, Suzhou, 215123, P.R. China
- Agricultural Biotechnology Research Institute, Agricultural biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Renyu Xue
- School of Biology and Basic Medical Sciences, Soochow University, No.199 Ren'ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park, Suzhou, 215123, P.R. China
- Agricultural Biotechnology Research Institute, Agricultural biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Chengliang Gong
- School of Biology and Basic Medical Sciences, Soochow University, No.199 Ren'ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park, Suzhou, 215123, P.R. China.
- Agricultural Biotechnology Research Institute, Agricultural biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
4
|
Durous L, Rosa-Calatrava M, Petiot E. Advances in influenza virus-like particles bioprocesses. Expert Rev Vaccines 2019; 18:1285-1300. [DOI: 10.1080/14760584.2019.1704262] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Laurent Durous
- Virologie et Pathologie Humaine - VirPath team - Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Manuel Rosa-Calatrava
- Virologie et Pathologie Humaine - VirPath team - Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Emma Petiot
- Virologie et Pathologie Humaine - VirPath team - Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| |
Collapse
|
5
|
Hu CMJ, Chien CY, Liu MT, Fang ZS, Chang SY, Juang RH, Chang SC, Chen HW. Multi-antigen avian influenza a (H7N9) virus-like particles: particulate characterizations and immunogenicity evaluation in murine and avian models. BMC Biotechnol 2017; 17:2. [PMID: 28061848 PMCID: PMC5219756 DOI: 10.1186/s12896-016-0321-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 12/07/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Human infection with avian influenza A virus (H7N9) was first reported in China in March 2013. Since then, hundreds of cases have been confirmed showing severe symptoms with a high mortality rate. The virus was transmitted from avian species to humans and has spread to many neighboring areas, raising serious concerns over its pandemic potential. Towards containing the disease, the goal of this study is to prepare a virus-like particle (VLP) that consists of hemagglutinin (HA), neuraminidase (NA) and matrix protein 1 (M1) derived from the human isolate A/Taiwan/S02076/2013(H7N9) for potential vaccine development. RESULTS Full length HA, NA, and M1 protein genes were cloned and expressed using a baculoviral expression system, and the VLPs were generated by co-infecting insect cells with three respective recombinant baculoviruses. Nanoparticle tracking analysis and transmission electron microscopy were applied to verify the VLPs' structure and antigenicity, and the multiplicity of infection of the recombinant baculoviruses was adjusted to achieve the highest hemagglutination activity. In animal experiments, BALB/c mice and specific-pathogen-free chickens receiving the VLP immunization showed elevated hemagglutination inhibition serum titer and antibodies against NA and M1 proteins. In addition, examination of cellular immunity showed the VLP-immunized mice and chickens exhibited an increased splenic antigen-specific cytokines production. CONCLUSIONS The H7N9 VLPs possess desirable immunogenicity in vivo and may serve as a candidate for vaccine development against avian influenza A (H7N9) infection.
Collapse
Affiliation(s)
- Che-Ming Jack Hu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Research Center for Nanotechnology and Infectious Diseases, Taipei, Taiwan
| | - Chu-Yang Chien
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Tsan Liu
- Center for Research, Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan
| | - Zih-Syun Fang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Rong-Huay Juang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Shih-Chung Chang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Hui-Wen Chen
- Research Center for Nanotechnology and Infectious Diseases, Taipei, Taiwan. .,Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
6
|
Rahn J, Hoffmann D, Harder TC, Beer M. Vaccines against influenza A viruses in poultry and swine: Status and future developments. Vaccine 2015; 33:2414-24. [PMID: 25835575 DOI: 10.1016/j.vaccine.2015.03.052] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/01/2015] [Accepted: 03/18/2015] [Indexed: 12/29/2022]
Abstract
Influenza A viruses are important pathogens with a very broad host spectrum including domestic poultry and swine. For preventing clinical disease and controlling the spread, vaccination is one of the most efficient tools. Classical influenza vaccines for domestic poultry and swine are conventional inactivated preparations. However, a very broad range of novel vaccine types ranging from (i) nucleic acid-based vaccines, (ii) replicon particles, (iii) subunits and virus-like particles, (iv) vectored vaccines, or (v) live-attenuated vaccines has been described, and some of them are now also used in the field. The different novel approaches for vaccines against avian and swine influenza virus infections are reviewed, and additional features like universal vaccines, novel application approaches and the "differentiating infected from vaccinated animals" (DIVA)-strategy are summarized.
Collapse
Affiliation(s)
- J Rahn
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald-Insel Riems, Germany
| | - D Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald-Insel Riems, Germany
| | - T C Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald-Insel Riems, Germany
| | - M Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald-Insel Riems, Germany.
| |
Collapse
|
7
|
Klausberger M, Wilde M, Palmberger D, Hai R, Albrecht RA, Margine I, Hirsh A, García-Sastre A, Grabherr R, Krammer F. One-shot vaccination with an insect cell-derived low-dose influenza A H7 virus-like particle preparation protects mice against H7N9 challenge. Vaccine 2013; 32:355-62. [PMID: 24262313 PMCID: PMC3906608 DOI: 10.1016/j.vaccine.2013.11.036] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/04/2013] [Accepted: 11/07/2013] [Indexed: 01/25/2023]
Abstract
Human infections with a novel influenza A H7N9 subtype virus were reported in China recently. The virus caused severe disease with high mortality rates and it raised concerns over its pandemic potential. Here, we assessed in the mouse model protective efficacy of single immunisations with low vaccine doses of insect cell-derived H7 virus-like particles, consisting of hemagglutinin and matrix protein. Vaccinated mice were fully protected and survived a stringent lethal challenge (100 mLD50) with H7N9, even after a single, unadjuvanted, low vaccine dose (0.03 μg). Serum analysis revealed broad reactivity and hemagglutination inhibition activity across a panel of divergent H7 strains. Moreover, we detected significant levels of cross-reactivity to related group 2 hemagglutinins. These data demonstrate that virus-like particle vaccines have the potential to induce broadly protective immunity against the novel H7N9 virus and a variety of other H7 strains.
Collapse
Affiliation(s)
- Miriam Klausberger
- Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Monika Wilde
- Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Dieter Palmberger
- Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Rong Hai
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Randy A Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Irina Margine
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ariana Hirsh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Reingard Grabherr
- Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
8
|
Thompson CM, Petiot E, Lennaertz A, Henry O, Kamen AA. Analytical technologies for influenza virus-like particle candidate vaccines: challenges and emerging approaches. Virol J 2013; 10:141. [PMID: 23642219 PMCID: PMC3655918 DOI: 10.1186/1743-422x-10-141] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 04/29/2013] [Indexed: 02/08/2023] Open
Abstract
Influenza virus-like particle vaccines are one of the most promising ways to respond to the threat of future influenza pandemics. VLPs are composed of viral antigens but lack nucleic acids making them non-infectious which limit the risk of recombination with wild-type strains. By taking advantage of the advancements in cell culture technologies, the process from strain identification to manufacturing has the potential to be completed rapidly and easily at large scales. After closely reviewing the current research done on influenza VLPs, it is evident that the development of quantification methods has been consistently overlooked. VLP quantification at all stages of the production process has been left to rely on current influenza quantification methods (i.e. Hemagglutination assay (HA), Single Radial Immunodiffusion assay (SRID), NA enzymatic activity assays, Western blot, Electron Microscopy). These are analytical methods developed decades ago for influenza virions and final bulk influenza vaccines. Although these methods are time-consuming and cumbersome they have been sufficient for the characterization of final purified material. Nevertheless, these analytical methods are impractical for in-line process monitoring because VLP concentration in crude samples generally falls out of the range of detection for these methods. This consequently impedes the development of robust influenza-VLP production and purification processes. Thus, development of functional process analytical techniques, applicable at every stage during production, that are compatible with different production platforms is in great need to assess, optimize and exploit the full potential of novel manufacturing platforms.
Collapse
Affiliation(s)
- Christine M Thompson
- National Research Council Canada, Vaccine Program – Human Health therapeutics Portfolio, 6100 Royalmount Avenue, Montreal, Québec H4P 2R2, Canada
- École Polytechnique de Montréal, C.P. 6079, succ. Centre-ville, Montréal, Québec H3C 3A7, Canada
| | - Emma Petiot
- National Research Council Canada, Vaccine Program – Human Health therapeutics Portfolio, 6100 Royalmount Avenue, Montreal, Québec H4P 2R2, Canada
| | - Alexandre Lennaertz
- National Research Council Canada, Vaccine Program – Human Health therapeutics Portfolio, 6100 Royalmount Avenue, Montreal, Québec H4P 2R2, Canada
- École Polytechnique de Montréal, C.P. 6079, succ. Centre-ville, Montréal, Québec H3C 3A7, Canada
| | - Olivier Henry
- École Polytechnique de Montréal, C.P. 6079, succ. Centre-ville, Montréal, Québec H3C 3A7, Canada
| | - Amine A Kamen
- National Research Council Canada, Vaccine Program – Human Health therapeutics Portfolio, 6100 Royalmount Avenue, Montreal, Québec H4P 2R2, Canada
- École Polytechnique de Montréal, C.P. 6079, succ. Centre-ville, Montréal, Québec H3C 3A7, Canada
| |
Collapse
|
9
|
Protective efficacy of baculovirus-derived influenza virus-like particles bearing H5 HA alone or in combination with M1 in chickens. Vet Microbiol 2012; 162:623-630. [PMID: 23265240 DOI: 10.1016/j.vetmic.2012.11.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 11/15/2012] [Accepted: 11/22/2012] [Indexed: 11/23/2022]
Abstract
Since 2003, the highly pathogenic avian influenza (HPAI) H5N1 has become a serious problem in animals and an increasing threat to public health. To develop effective vaccines for H5 HPAI in chickens, virus-like particles (VLP) were produced using a baculovirus expression system. The particles comprised hemagglutinin (HA) alone (HA-VLP) or HA in combination with a matrix protein (M1; HAM-VLP) derived from a recent clade 2.3.2.1 H5N1 HPAI virus. To compare the immunogenicity and protective efficacy of these VLPs, 10 μg HAM-VLP, the equivalent amounts of HA incorporated HA-VLP or whole inactivated virus (WIV), were emulsified with mineral oil and used to immunize chickens. The serum hemagglutination inhibition antibody levels induced by HA-VLP and HAM-VLP were comparable to WIV. Antibodies to nucleoprotein were detected only in the WIV group. Immunized chickens in each group survived and were protected against a lethal homologous virus challenge, showing no clinical signs of infection. The challenge virus was detected intermittently in some oropharyngeal swabs, but not in cloacal swabs or various organs, which means that VLPs and WIV provide protection against systemic but not local virus replication in chickens. After the challenge, the HA-VLP group showed significantly increased serum antibody levels compared to the HAM-VLP and WIV groups, and some chickens in the HA-VLP group seroconverted with respect to nucleoprotein. Taken together, these results suggest that VLPs may be an effective method for controlling HPAI in chickens. They could be applied to a differentiating infected from vaccinated animals (DIVA) strategy. In addition, it is likely that HAM-VLP is more efficacious than HA-VLP in chickens.
Collapse
|