1
|
Mazhed ZK, Vasilenko VE, Siniugina AA, Kaa KV, Motov AS, Pokidova KO, Ivin YY, Piniaeva AN, Khapchaev YK, Chernov KA, Ishmukhametov AA. Intensification of Vero cell adherence to microcarrier particles during cultivation in a wave bioreactor. Front Bioeng Biotechnol 2025; 13:1542060. [PMID: 40028290 PMCID: PMC11868258 DOI: 10.3389/fbioe.2025.1542060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
Vaccination is the most effective strategy for fighting viral diseases, with both live and inactivated vaccines remaining crucial despite advancements in subunit vaccine technologies. A key player in vaccine production is the Vero cell line, derived from the kidney cells of the African green monkey, which is essential for manufacturing vaccines against diseases like polio, rabies, yellow fever, and COVID-19. The efficiency of Vero cell cultivation directly impacts vaccine production, often utilizing bioreactors ranging from small (1-10 L) to large (up to several thousand liters). Wave-type bioreactors are commonly employed for initial cell propagation due to their simplicity. However, achieving uniform cell distribution on microcarriers in these systems poses challenges. This study aims to evaluate intermittent stirring during the early cultivation stages to enhance Vero cell distribution and growth, potentially improving overall cultivation efficiency.
Collapse
Affiliation(s)
- Z. K. Mazhed
- Federal State Autonomous Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products of the Russian Academy of Sciences” (FSASI “Chumakov FSC R&D IBP RAS”), Moscow, Russia
| | - V. E. Vasilenko
- Federal State Autonomous Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products of the Russian Academy of Sciences” (FSASI “Chumakov FSC R&D IBP RAS”), Moscow, Russia
| | - A. A. Siniugina
- Federal State Autonomous Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products of the Russian Academy of Sciences” (FSASI “Chumakov FSC R&D IBP RAS”), Moscow, Russia
| | - K. V. Kaa
- Federal State Autonomous Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products of the Russian Academy of Sciences” (FSASI “Chumakov FSC R&D IBP RAS”), Moscow, Russia
| | - A. S. Motov
- Federal State Autonomous Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products of the Russian Academy of Sciences” (FSASI “Chumakov FSC R&D IBP RAS”), Moscow, Russia
| | - K. O. Pokidova
- Federal State Autonomous Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products of the Russian Academy of Sciences” (FSASI “Chumakov FSC R&D IBP RAS”), Moscow, Russia
| | - Y. Y. Ivin
- Federal State Autonomous Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products of the Russian Academy of Sciences” (FSASI “Chumakov FSC R&D IBP RAS”), Moscow, Russia
| | - A. N. Piniaeva
- Federal State Autonomous Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products of the Russian Academy of Sciences” (FSASI “Chumakov FSC R&D IBP RAS”), Moscow, Russia
| | - Y. K. Khapchaev
- Federal State Autonomous Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products of the Russian Academy of Sciences” (FSASI “Chumakov FSC R&D IBP RAS”), Moscow, Russia
| | - K. A. Chernov
- Federal State Autonomous Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products of the Russian Academy of Sciences” (FSASI “Chumakov FSC R&D IBP RAS”), Moscow, Russia
| | - A. A. Ishmukhametov
- Federal State Autonomous Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products of the Russian Academy of Sciences” (FSASI “Chumakov FSC R&D IBP RAS”), Moscow, Russia
- Institute for Translational Medicine and Biotechnology, First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
2
|
Todesco HM, Gafuik C, John CM, Roberts EL, Borys BS, Pawluk A, Kallos MS, Potts KG, Mahoney DJ. High-titer manufacturing of SARS-CoV-2 Spike-pseudotyped VSV in stirred-tank bioreactors. Mol Ther Methods Clin Dev 2024; 32:101189. [PMID: 38327804 PMCID: PMC10847022 DOI: 10.1016/j.omtm.2024.101189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024]
Abstract
The severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) pandemic highlighted the importance of vaccine innovation in public health. Hundreds of vaccines built on numerous technology platforms have been rapidly developed against SARS-CoV-2 since 2020. Like all vaccine platforms, an important bottleneck to viral-vectored vaccine development is manufacturing. Here, we describe a scalable manufacturing protocol for replication-competent SARS-CoV-2 Spike-pseudotyped vesicular stomatitis virus (S-VSV)-vectored vaccines using Vero cells grown on microcarriers in a stirred-tank bioreactor. Using Cytodex 1 microcarriers over 6 days of fed-batch culture, Vero cells grew to a density of 3.95 ± 0.42 ×106 cells/mL in 1-L stirred-tank bioreactors. Ancestral strain S-VSV reached a peak titer of 2.05 ± 0.58 ×108 plaque-forming units (PFUs)/mL at 3 days postinfection. When compared to growth in plate-based cultures, this was a 29-fold increase in virus production, meaning a 1-L bioreactor produces the same amount of virus as 1,284 plates of 15 cm. In addition, the omicron BA.1 S-VSV reached a peak titer of 5.58 ± 0.35 × 106 PFU/mL. Quality control testing showed plate- and bioreactor-produced S-VSV had similar particle-to-PFU ratios and elicited comparable levels of neutralizing antibodies in immunized hamsters. This method should enhance preclinical and clinical development of pseudotyped VSV-vectored vaccines in future pandemics.
Collapse
Affiliation(s)
- Hayley M. Todesco
- Arnie Charbonneau Cancer Institute, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Disease, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - Chris Gafuik
- Arnie Charbonneau Cancer Institute, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Disease, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - Cini M. John
- Arnie Charbonneau Cancer Institute, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Disease, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - Erin L. Roberts
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | - Breanna S. Borys
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | - Alexis Pawluk
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | - Michael S. Kallos
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | - Kyle G. Potts
- Arnie Charbonneau Cancer Institute, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Disease, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - Douglas J. Mahoney
- Arnie Charbonneau Cancer Institute, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Disease, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Microbiology, Immunology and Infectious Disease, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
3
|
Seidel S, Maschke RW, Kraume M, Eibl R, Eibl D. CFD modelling of a wave-mixed bioreactor with complex geometry and two degrees of freedom motion. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.1021416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Optimizing bioprocesses requires an in-depth understanding, from a bioengineering perspective, of the cultivation systems used. A bioengineering characterization is typically performed via experimental or numerical methods, which are particularly well-established for stirred bioreactors. For unstirred, non-rigid systems such as wave-mixed bioreactors, numerical methods prove to be problematic, as often only simplified geometries and motions can be assumed. In this work, a general approach for the numerical characterization of non-stirred cultivation systems is demonstrated using the CELL-tainer bioreactor with two degree of freedom motion as an example. In a first step, the motion is recorded via motion capturing, and a 3D model of the culture bag geometry is generated via 3D-scanning. Subsequently, the bioreactor is characterized with respect to mixing time, and oxygen transfer rate, as well as specific power input and temporal Kolmogorov length scale distribution. The results demonstrate that the CELL-tainer with two degrees of freedom outperforms classic wave-mixed bioreactors in terms of oxygen transport. In addition, it was shown that in the cell culture version of the CELL-tainer, the critical Kolmogorov length is not surpassed in any simulation.
Collapse
|
4
|
Suarez-Zuluaga DA, van der Pol LA, van 't Oever AG, Bakker WA, Thomassen YE. Development of an animal component free production process for Sabin inactivated polio vaccine. Vaccine X 2022; 12:100223. [PMID: 36217423 PMCID: PMC9547281 DOI: 10.1016/j.jvacx.2022.100223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 09/16/2022] [Accepted: 09/28/2022] [Indexed: 11/15/2022] Open
Abstract
Inactivated polio vaccine production using attenuated Sabin strains (sIPV) instead of wild type polio viruses (cIPV) is an initiative encouraged by the World Health Organization. This use of attenuated viruses is preferred as it reduces risks related to potential outbreaks during IPV production. Previously, an sIPV production process was set up based on the cIPV production process. Optimizing this process while using only animal component free (ACF) substances allows reduction of operational costs and mitigates risks of adverse effects related with animal derived compounds. Here, development of a process for production of sIPV using only ACF compounds, is described. The upstream process required a change in cell growth medium from serum-containing medium to ACF medium, while virus production media remained the same as the already used M199 medium was free of animal components. In the downstream process multiple modifications in existing unit operations were made including addition of a diafiltration step prior to inactivation. After optimizing each unit operation, robustness of the whole process was demonstrated using design of experiments (DoE) methodology. By using DoE we were able to vary different process parameters across unit operations to assess the impact on our quality attributes. The developed process was robust as the observed variation for quality attributes due to differences in process parameters remained within specification. The resulting pilot process showed not only to be robust, but also to have a considerable higher product yield when compared to the serum containing sIPV process. Product yields are now comparable to the cIPV process based on using wild type polio viruses. Moreover, the potency of the produced vaccine was comparable that of cIPV vaccine. The developed ACF sIPV process can be transferred to vaccine manufacturers at the end-of pre-clinical development phase, at lab- or pilot scale, before production of clinical trial material.
Collapse
|
5
|
Kiesslich S, Kamen AA. Vero cell upstream bioprocess development for the production of viral vectors and vaccines. Biotechnol Adv 2020; 44:107608. [PMID: 32768520 PMCID: PMC7405825 DOI: 10.1016/j.biotechadv.2020.107608] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022]
Abstract
The Vero cell line is considered the most used continuous cell line for the production of viral vectors and vaccines. Historically, it is the first cell line that was approved by the WHO for the production of human vaccines. Comprehensive experimental data on the production of many viruses using the Vero cell line can be found in the literature. However, the vast majority of these processes is relying on the microcarrier technology. While this system is established for the large-scale manufacturing of viral vaccine, it is still quite complex and labor intensive. Moreover, scale-up remains difficult and is limited by the surface area given by the carriers. To overcome these and other drawbacks and to establish more efficient manufacturing processes, it is a priority to further develop the Vero cell platform by applying novel bioprocess technologies. Especially in times like the current COVID-19 pandemic, advanced and scalable platform technologies could provide more efficient and cost-effective solutions to meet the global vaccine demand. Herein, we review the prevailing literature on Vero cell bioprocess development for the production of viral vectors and vaccines with the aim to assess the recent advances in bioprocess development. We critically underline the need for further research activities and describe bottlenecks to improve the Vero cell platform by taking advantage of recent developments in the cell culture engineering field.
Collapse
Affiliation(s)
- Sascha Kiesslich
- Department of Bioengineering, McGill University, 817 Sherbrooke Street West, Montreal, Quebec H3A 0C3, Canada
| | - Amine A Kamen
- Department of Bioengineering, McGill University, 817 Sherbrooke Street West, Montreal, Quebec H3A 0C3, Canada.
| |
Collapse
|
6
|
Jiang Y, van der Welle JE, Rubingh O, van Eikenhorst G, Bakker WAM, Thomassen YE. Kinetic model for adherent Vero cell growth and poliovirus production in batch bioreactors. Process Biochem 2019; 81:156-164. [PMID: 31217725 PMCID: PMC6559155 DOI: 10.1016/j.procbio.2019.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mathematical model for Vero cell growth in batch bioreactors. Mathematical model for poliovirus proliferation on Vero cells. Oxygen uptake rate as process analytical technology for simple process monitoring.
The production of poliovirus vaccines in adherent Vero cells in batch bioreactors usually consists of a two-step upstream process: (1) Vero cell cultivation on microcarriers and (2) poliovirus proliferation. In this study we developed a mathematical model to describe this two-step process. We introduced the calculation of the oxygen uptake rate (OUR) and a correction of measurement for the sampling effect in order to ensure the high quality data sets. Besides the data of the OUR, we selected glucose concentration, Vero cell concentration and the virus titer for daily in process control to evaluate the progress of the process. With the selected data sets, the described model can accurately describe poliovirus production by Vero cells. Several other regular in process control samples (e.g. lactate concentration, ammonia concentration, and amino acids concentration) were excluded from the model, simplifying the process control analysis and minimizing labor.
Collapse
Affiliation(s)
- Yang Jiang
- Intravacc, Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | | | - Olaf Rubingh
- Intravacc, Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | | | - Wilfried A M Bakker
- Intravacc, Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Yvonne E Thomassen
- Intravacc, Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| |
Collapse
|
7
|
Propagation and Molecular Characterization of Bioreactor Adapted Very Virulent Infectious Bursal Disease Virus Isolates of Malaysia. J Pathog 2018; 2018:1068758. [PMID: 30245887 PMCID: PMC6139196 DOI: 10.1155/2018/1068758] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 07/01/2018] [Accepted: 08/01/2018] [Indexed: 12/02/2022] Open
Abstract
Two Malaysian very virulent infectious bursal disease virus (vvIBDV) strains UPM0081 (also known as B00/81) and UPM190 (also known as UPM04/190) isolated from local IBD outbreaks in 2000 and 2004, respectively, were separately passaged for 12 consecutive times in 11-day-old specific pathogen free (SPF) chicken embryonated eggs (CEE) via the chorioallantoic membrane (CAM) route. The CEE passage 8 (EP8) isolates were passaged once in BGM-70 cell line yielding UPM0081EP8BGMP1 and UPM190EP8BGMP1, while the EP12 isolates were passaged 15 times in BGM-70 cell line yielding UPM0081EP12BGMP15 and UPM190EP12BGMP15 using T25 tissue culture flask. These isolates were all propagated once in bioreactor using cytodex 1 as microcarrier at 3 g per liter (3 g/L) yielding UPM0081EP8BGMP1BP1, UPM190EP8BGMP1BP1, UPM0081EP12BGMP15BP1, and UPM190EP12BGMP15BP1 isolates. The viruses were harvested at 3 days after inoculation, following the appearance of cytopathic effects (CPE) characterized by detachment from the microcarrier using standard protocol and filtered using 0.2 μm syringe filter. The filtrates were positive for IBDV by RT-PCR and immunofluorescence. Sequence and phylogenetic tree analysis indicated that the isolates were of the vvIBDV strains and were not different from the flask propagated parental viruses.
Collapse
|
8
|
Löffelholz C, Kaiser SC, Kraume M, Eibl R, Eibl D. Dynamic Single-Use Bioreactors Used in Modern Liter- and m(3)- Scale Biotechnological Processes: Engineering Characteristics and Scaling Up. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 138:1-44. [PMID: 23609177 DOI: 10.1007/10_2013_187] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
During the past 10 years, single-use bioreactors have been well accepted in modern biopharmaceutical production processes targeting high-value products. Up to now, such processes have mainly been small- or medium-scale mammalian cell culture-based seed inoculum, vaccine or antibody productions. However, recently first attempts have been made to modify existing single-use bioreactors for the cultivation of plant cells and tissue cultures, and microorganisms. This has even led to the development of new single-use bioreactor types. Moreover, due to safety issues it has become clear that single-use bioreactors are the "must have" for expanding human stem cells delivering cell therapeutics, the biopharmaceuticals of the next generation. So it comes as no surprise that numerous different dynamic single-use bioreactor types, which are suitable for a wide range of applications, already dominate the market today. Bioreactor working principles, main applications, and bioengineering data are presented in this review, based on a current overview of greater than milliliter-scale, commercially available, dynamic single-use bioreactors. The focus is on stirred versions, which are omnipresent in R&D and manufacturing, and in particular Sartorius Stedim's BIOSTAT family. Finally, we examine development trends for single-use bioreactors, after discussing proven approaches for fast scaling-up processes.
Collapse
Affiliation(s)
- Christian Löffelholz
- School of Life Sciences and Facility Management, Institute of Biotechnology, Zurich University of Applied Sciences (ZHAW), 8820, Wädenswil, Switzerland,
| | | | | | | | | |
Collapse
|
9
|
Gallo-Ramírez LE, Nikolay A, Genzel Y, Reichl U. Bioreactor concepts for cell culture-based viral vaccine production. Expert Rev Vaccines 2015; 14:1181-95. [PMID: 26178380 DOI: 10.1586/14760584.2015.1067144] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Vaccine manufacturing processes are designed to meet present and upcoming challenges associated with a growing vaccine market and to include multi-use facilities offering a broad portfolio and faster reaction times in case of pandemics and emerging diseases. The final products, from whole viruses to recombinant viral proteins, are very diverse, making standard process strategies hardly universally applicable. Numerous factors such as cell substrate, virus strain or expression system, medium, cultivation system, cultivation method, and scale need consideration. Reviewing options for efficient and economical production of human vaccines, this paper discusses basic factors relevant for viral antigen production in mammalian cells, avian cells and insect cells. In addition, bioreactor concepts, including static systems, single-use systems, stirred tanks and packed-beds are addressed. On this basis, methods towards process intensification, in particular operational strategies, the use of perfusion systems for high product yields, and steps to establish continuous processes are introduced.
Collapse
Affiliation(s)
- Lilí Esmeralda Gallo-Ramírez
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg; Sandtorstr. 1, 39106 Magdeburg, Germany
| | | | | | | |
Collapse
|
10
|
Kaiser SC, Kraume M, Eibl D, Eibl R. Single-Use Bioreactors for Animal and Human Cells. CELL ENGINEERING 2015. [DOI: 10.1007/978-3-319-10320-4_14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
11
|
Mathematical model of adherent Vero cell growth and poliovirus production in animal component free medium. Bioprocess Biosyst Eng 2014; 38:543-55. [PMID: 25294335 DOI: 10.1007/s00449-014-1294-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 09/23/2014] [Indexed: 12/12/2022]
Abstract
Sabin-IPV (or sIPV, inactivated polio vaccine based on attenuated Sabin strains) is anticipated to replace the oral polio vaccine for the endgame in polio eradication. Optimization of sIPV production will lead to a better economically feasible vaccine. To assist process optimization, we studied Sabin type 1 poliovirus (PV) infection kinetics on Vero cells in controlled bioreactor vessels. The aim of our study was to develop a descriptive mathematical model able to capture the dynamics of adherent Vero cell growth and PV infection kinetics in animal component free medium. The model predicts the cell density, metabolites profiles, and viral yields in time. We found that the multiplicity of infection (MOI) and the time of infection (TOI) within the investigated range did not affect maximal PV yields, but they did affect the process time. The latter may be reduced by selecting a low TOI and a high MOI. Additionally, we present a correlation between viral titers and D-antigen, a measure for immunogenicity, of Sabin type 1 PV. The developed model is adequate for further studies of the cell metabolism and infection kinetics and may be used to identify control strategies to increase viral productivity. Increased viral yields reduce costs of polio vaccines with large implications on public health.
Collapse
|
12
|
van Eikenhorst G, Thomassen YE, van der Pol LA, Bakker WAM. Assessment of mass transfer and mixing in rigid lab-scale disposable bioreactors at low power input levels. Biotechnol Prog 2014; 30:1269-76. [DOI: 10.1002/btpr.1981] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 08/07/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Gerco van Eikenhorst
- Inst. for Translational Vaccinology (Intravacc, process development); P.O. Box 450, 3720 AL Bilthoven The Netherlands
| | - Yvonne E. Thomassen
- Inst. for Translational Vaccinology (Intravacc, process development); P.O. Box 450, 3720 AL Bilthoven The Netherlands
| | - Leo A. van der Pol
- Inst. for Translational Vaccinology (Intravacc, process development); P.O. Box 450, 3720 AL Bilthoven The Netherlands
| | - Wilfried A. M. Bakker
- Inst. for Translational Vaccinology (Intravacc, process development); P.O. Box 450, 3720 AL Bilthoven The Netherlands
| |
Collapse
|
13
|
Westbrook A, Scharer J, Moo-Young M, Oosterhuis N, Perry Chou C. Application of a two-dimensional disposable rocking bioreactor to bacterial cultivation for recombinant protein production. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2014.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Thomassen YE, Rubingh O, Wijffels RH, van der Pol LA, Bakker WAM. Improved poliovirus D-antigen yields by application of different Vero cell cultivation methods. Vaccine 2014; 32:2782-8. [PMID: 24583004 PMCID: PMC5355417 DOI: 10.1016/j.vaccine.2014.02.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vero cells were grown in batch, semi-batch, perfusion and recirculation strategies. At high cell densities (to 5 × 106 cells mL−1) cells were infected with poliovirus. Increased cell densities allowed 3 fold increase in d-antigen yield. Cell specific d-antigen yields were lower at higher cell densities. The semi-batch cultivation strategy is most promising for optimization.
Vero cells were grown adherent to microcarriers (Cytodex 1; 3 g L−1) using animal component free media in stirred-tank type bioreactors. Different strategies for media refreshment, daily media replacement (semi-batch), continuous media replacement (perfusion) and recirculation of media, were compared with batch cultivation. Cell densities increased using a feed strategy from 1 × 106 cells mL−1 during batch cultivation to 1.8, 2.7 and 5.0 × 106 cells mL−1 during semi-batch, perfusion and recirculation, respectively. The effects of these different cell culture strategies on subsequent poliovirus production were investigated. Increased cell densities allowed up to 3 times higher d-antigen levels when compared with that obtained from batch-wise Vero cell culture. However, the cell specific d-antigen production was lower when cells were infected at higher cell densities. This cell density effect is in good agreement with observations for different cell lines and virus types. From the evaluated alternative culture methods, application of a semi-batch mode of operations allowed the highest cell specific d-antigen production. The increased product yields that can easily be reached using these higher cell density cultivation methods, showed the possibility for better use of bioreactor capacity for the manufacturing of polio vaccines to ultimately reduce vaccine cost per dose. Further, the use of animal-component-free cell- and virus culture media shows opportunities for modernization of human viral vaccine manufacturing.
Collapse
Affiliation(s)
- Yvonne E Thomassen
- Institute for Translational Vaccinology, Process Development, PO BOX 450, Bilthoven 3720 AL, The Netherlands
| | - Olaf Rubingh
- Institute for Translational Vaccinology, Process Development, PO BOX 450, Bilthoven 3720 AL, The Netherlands
| | - René H Wijffels
- Wageningen University, Bioprocess Engineering, PO BOX 8129, Wageningen 6700 EV, The Netherlands
| | - Leo A van der Pol
- Institute for Translational Vaccinology, Process Development, PO BOX 450, Bilthoven 3720 AL, The Netherlands
| | - Wilfried A M Bakker
- Institute for Translational Vaccinology, Process Development, PO BOX 450, Bilthoven 3720 AL, The Netherlands.
| |
Collapse
|
15
|
Thomassen YE, van ’t Oever AG, van Oijen MGCT, Wijffels RH, van der Pol LA, Bakker WAM. Next generation inactivated polio vaccine manufacturing to support post polio-eradication biosafety goals. PLoS One 2013; 8:e83374. [PMID: 24349497 PMCID: PMC3861478 DOI: 10.1371/journal.pone.0083374] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 11/01/2013] [Indexed: 02/04/2023] Open
Abstract
Worldwide efforts to eradicate polio caused a tipping point in polio vaccination strategies. A switch from the oral polio vaccine, which can cause circulating and virulent vaccine derived polioviruses, to inactivated polio vaccines (IPV) is scheduled. Moreover, a manufacturing process, using attenuated virus strains instead of wild-type polioviruses, is demanded to enhance worldwide production of IPV, especially in low- and middle income countries. Therefore, development of an IPV from attenuated (Sabin) poliovirus strains (sIPV) was pursued. Starting from the current IPV production process based on wild type Salk strains, adaptations, such as lower virus cultivation temperature, were implemented. sIPV was produced at industrial scale followed by formulation of both plain and aluminium adjuvanted sIPV. The final products met the quality criteria, were immunogenic in rats, showed no toxicity in rabbits and could be released for testing in the clinic. Concluding, sIPV was developed to manufacturing scale. The technology can be transferred worldwide to support post polio-eradication biosafety goals.
Collapse
Affiliation(s)
- Yvonne E. Thomassen
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
- * E-mail:
| | | | | | - René H. Wijffels
- Bioprocess Engineering, Wageningen University, Wageningen, The Netherlands
| | - Leo A. van der Pol
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
| | | |
Collapse
|
16
|
Kwon J, Yang Y, Cheon S, Nam H, Jin G, Kim D. Bioreactor engineering using disposable technology for enhanced production of hCTLA4Ig in transgenic rice cell cultures. Biotechnol Bioeng 2013; 110:2412-24. [DOI: 10.1002/bit.24916] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 03/14/2013] [Accepted: 03/19/2013] [Indexed: 01/12/2023]
Affiliation(s)
- Jun‐Young Kwon
- Department of Biological EngineeringInha UniversityIncheon402‐751Korea
| | - Yong‐Suk Yang
- Department of Biological EngineeringInha UniversityIncheon402‐751Korea
| | - Su‐Hwan Cheon
- Department of Biological EngineeringInha UniversityIncheon402‐751Korea
| | - Hyung‐Jin Nam
- Department of Biological EngineeringInha UniversityIncheon402‐751Korea
| | - Gi‐Hong Jin
- Department of Biological EngineeringInha UniversityIncheon402‐751Korea
| | - Dong‐Il Kim
- Department of Biological EngineeringInha UniversityIncheon402‐751Korea
| |
Collapse
|
17
|
Thomassen YE, van 't Oever AG, Vinke M, Spiekstra A, Wijffels RH, van der Pol LA, Bakker WA. Scale-down of the inactivated polio vaccine production process. Biotechnol Bioeng 2012. [DOI: 10.1002/bit.24798] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Junne S, Solymosi T, Oosterhuis N, Neubauer P. Cultivation of Cells and Microorganisms in Wave-Mixed Disposable Bag Bioreactors at Different Scales. CHEM-ING-TECH 2012. [DOI: 10.1002/cite.201200149] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|