1
|
Jin KC, Seo SO, Kim SK. Animal-free production of hen egg ovalbumin in engineered Saccharomyces cerevisiae via precision fermentation. Int J Biol Macromol 2024; 271:132479. [PMID: 38772474 DOI: 10.1016/j.ijbiomac.2024.132479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/27/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024]
Abstract
To enable the sustainable production of ovalbumin (OVA) without relying on animal sources, the generally recognized as safe (GRAS) host Saccharomyces cerevisiae was used for the precision fermentation-based production of recombinant OVA. For this purpose, a signal peptide derived from EPX1, the most abundant extracellular protein produced by Pichia pastoris, was identified as a novel signal peptide for the efficient secretion of OVA in S. cerevisiae. To improve OVA secretion and cell growth, three helper proteins (PDI1, KAR2, and HAC1) present in the endoplasmic reticulum were expressed individually or in combination. Notably, the +P1/K2 strain coexpressing PDI1 and KAR2 with OVA produced 2 mg/L of OVA in the medium fraction; this value was 2.6-fold higher than the corresponding value for the control strain without helper proteins. Finally, a glucose-limited fed-batch fermentation process using the +P1/K2 strain yielded 132 mg/L of total OVA with 8 mg/L of extracellular OVA.
Collapse
Affiliation(s)
- Kyoung Chan Jin
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea
| | - Seung-Oh Seo
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| | - Sun-Ki Kim
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea.
| |
Collapse
|
2
|
Chen N, Yang S, You D, Shen J, Ruan B, Wu M, Zhang J, Luo X, Tang H. Systematic genetic modifications of cell wall biosynthesis enhanced the secretion and surface-display of polysaccharide degrading enzymes in Saccharomyces cerevisiae. Metab Eng 2023; 77:273-282. [PMID: 37100192 DOI: 10.1016/j.ymben.2023.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/31/2023] [Accepted: 04/15/2023] [Indexed: 04/28/2023]
Abstract
Saccharomyces cerevisiae is a robust cell factory to secrete or surface-display cellulase and amylase for the conversion of agricultural residues into valuable chemicals. Engineering the secretory pathway is a well-known strategy for overproducing these enzymes. Although cell wall biosynthesis can be tightly linked to the secretory pathway by regulation of all involved processes, the effect of its modifications on protein production has not been extensively studied. In this study, we systematically studied the effect of engineering cell wall biosynthesis on the activity of cellulolytic enzyme β-glucosidase (BGL1) by comparing seventy-nine gene knockout S. cerevisiae strains and newly identified that inactivation of DFG5, YPK1, FYV5, CCW12 and KRE1 obviously improved BGL1 secretion and surface-display. Combinatorial modifications of these genes, particularly double deletion of FVY5 and CCW12, along with the use of rich medium, increased the activity of secreted and surface-displayed BGL1 by 6.13-fold and 7.99-fold, respectively. Additionally, we applied this strategy to improve the activity of the cellulolytic cellobiohydrolase and amylolytic α-amylase. Through proteomic analysis coupled with reverse engineering, we found that in addition to the secretory pathway, regulation of translation processes may also involve in improving enzyme activity by engineering cell wall biosynthesis. Our work provides new insight into the construction of a yeast cell factory for efficient production of polysaccharide degrading enzymes.
Collapse
Affiliation(s)
- Nanzhu Chen
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Shuo Yang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology, 3501 Daxue Road, Jinan, 250353, China
| | - Dawei You
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Junfeng Shen
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Banlai Ruan
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Mei Wu
- Synceres Biosciences (Shenzhen) Co., Ltd, Nanshan Medical Device Industrial Park, Nanhai Avenue, Shenzhen, 518067, China
| | - Jianzhi Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaozhou Luo
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Hongting Tang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
3
|
Lin Y, Feng Y, Zheng L, Zhao M, Huang M. Improved protein production in yeast using cell engineering with genes related to a key factor in the unfolded protein response. Metab Eng 2023; 77:152-161. [PMID: 37044356 DOI: 10.1016/j.ymben.2023.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 04/08/2023] [Accepted: 04/09/2023] [Indexed: 04/14/2023]
Abstract
The yeast Saccharomyces cerevisiae is a widely used cell factory for protein production. Increasing the protein production capacity of a yeast strain may be beneficial for obtaining recombinant proteins as a product or exerting its competence in consolidated bioprocessing. However, heterologous protein expression usually imposes stress on cells. Improving the cell's ability to cope with stress enhances protein yield. HAC1 is a key transcription factor in the unfolded protein response (UPR). In this study, several genes related to the UPR signal pathway, including unfolded protein sensing, HAC1 mRNA splicing, mRNA ligation, mRNA decay, translation, and Hac1p degradation, were selected as targets to engineer yeast strains. The final engineered strain produced α-amylase 3.3-fold, and human serum albumin 15.3-fold, greater than that of the control strain. Key regulation and metabolic network changes in the engineered strains were identified by transcriptome analysis and physiological characterizations. This study demonstrated that cell engineering with genes relevant to the key node HAC1 in UPR increased protein secretion substantially. The verified genetic modifications of this study provide useful targets in the construction of yeast cell factories for efficient protein production.
Collapse
Affiliation(s)
- Yeping Lin
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, 510650, China
| | - Yunzi Feng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, 510650, China
| | - Lin Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, 510650, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, 510650, China
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, 510650, China.
| |
Collapse
|
4
|
Han M, Wang W, Gong X, Zhou J, Xu C, Li Y. Increased expression of recombinant chitosanase by co-expression of Hac1p in the yeast Pichia pastoris. Protein Pept Lett 2021; 28:1434-1441. [PMID: 34749599 DOI: 10.2174/0929866528666211105111155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/13/2021] [Accepted: 09/20/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Pichia pastoris is one of the most popular eukaryotic hosts for producing heterologous proteins, while increasing secretion of target proteins is still a top priority for their application in industrial fields. Recently, the research effort to enhance protein production therein has focused on up-regulating the unfolded protein response (UPR). OBJECTIVE We evaluated the effects of activated UPR via Hac1p co-expression with the promoter AOX1 (PAOX1) or GAP (PGAP) on expression of recombinant chitosanase (rCBS) in P. pastoris. METHOD The DNA sequence encoding the chitosanase was chemically synthesized and cloned into pPICZαA and the resulted pPICZαA/rCBS was transformed into P. pastoris for expressing rCBS. The P. pastoris HAC1i cDNA was chemically synthesized and cloned into pPIC3.5K to give pPIC3.5K/Hac1p. The HAC1i cDNA was cloned into pGAPZB and then inserted with HIS4 gene from pAO815 to construct the vector pGAPZB/Hac1p/HIS4. For co-expression of Hac1p, the two plasmids pPIC3.5K/Hac1p and pGAPZB/Hac1p/HIS4 were transformed into P. pastoris harboring the CBS gene. The rCBS was assessed based on chitosanase activity and analyzed by SDS-PAGE. The enhanced Kar2p was detected with western blotting to evaluate UPR. RESULTS Hac1p co-expression with PAOX1 enhanced rCBS secretion by 41% at 28°C. Although the level of UPR resulted from Hac1p co-expression with PAOX1 was equivalent to that with PGAP in terms of the quantity of Kar2p (a hallmark of the UPR), substitution of PGAP for PAOX1 further increased rCBS production by 21%. The methanol-utilizing phenotype of P. pastoris did not affect rCBS secretion with co-expression of Hac1p or not. Finally, Hac1p co-expression with PAOX1 or PGAP promoted rCBS secretion from 22 to 30°C and raised the optimum induction temperature. CONCLUSION The study indicated that Hac1p co-expression with PAOX1 or PGAP is an effective strategy to trigger UPR of P. pastoris and a feasible means for improving production of rCBS therein.
Collapse
Affiliation(s)
- Minghai Han
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang. China
| | - Weixian Wang
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang. China
| | - Xun Gong
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang. China
| | - Jianli Zhou
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang. China
| | - Cunbin Xu
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang. China
| | - Yinfeng Li
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang. China
| |
Collapse
|
5
|
Expression and function of an Hac1-regulated multi-copy xylanase gene in Saccharomyces cerevisiae. Sci Rep 2020; 10:11686. [PMID: 32669586 PMCID: PMC7363925 DOI: 10.1038/s41598-020-68570-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/25/2020] [Indexed: 11/28/2022] Open
Abstract
Saccharomyces cerevisiae-based expression systems, which rely on safe, food-grade strains, are low cost, simple to operate, and can be used for large-scale fermentation. However, low levels of foreign protein expression by S. cerevisiae have limited their widespread application. The ability of the endoplasmic reticulum (ER) to fold and process foreign proteins is an important factor restricting the expression of foreign proteins. In the current study, the effects of transcription factor Hac1p, which is involved in the unfolded protein response pathway, on S. cerevisiae-based expression of xylanase gene xynB from Aspergillus niger were examined. Overlap extension polymerase chain reaction (PCR), rDNA integration and droplet digital PCR technology were used to generate a S. cerevisiae strain (S8) containing eight copies of xynB, allowing high-yield secretory expression of xylanase. The effects of subsequent overexpression of HAC1 in strain S8 on the expression of genes associated with protein folding in the ER were then examined using the GeXP system. Results confirmed the constitutive secretory expression of the multiple copies of xynB following rDNA-based integration of the expression cassette, with a maximum xylanase yield of 325 U/mL. However, overexpression of HAC1 further improved xylanase production by strain S8, resulting in a yield of 381 U/mL.
Collapse
|
6
|
Haque F, Verma NK, Alfatah M, Bijlani S, Bhattacharyya MS. Sophorolipid exhibits antifungal activity by ROS mediated endoplasmic reticulum stress and mitochondrial dysfunction pathways in Candida albicans. RSC Adv 2019; 9:41639-41648. [PMID: 35541620 PMCID: PMC9076456 DOI: 10.1039/c9ra07599b] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/01/2019] [Indexed: 01/22/2023] Open
Abstract
In the present study, we investigated the mechanism of cell death in C. albicans due to treatment with sophorolipid (SL). SL is an extracellular glycolipid biosurfactant produced by various species of non-pathogenic yeasts and is known to inhibit the growth and biofilm formation of C. albicans. This study revealed that treatment of C. albicans cells with SL increases the ROS production and expression of oxidative stress-related genes significantly (SOD1, CAT1). Increased ROS level within the cells causes ER stress and release of Ca2+ in the cytoplasm and alteration of the mitochondrial membrane potential (MMP). Quantitative real time-polymerase chain reaction (qRT-PCR) data showed that SL also upregulates the Endoplasmic Reticulum (ER) stress marker HAC1. Flow cytometric analysis (AnnexinV/PI) indicated that the cell death may have occurred due to necrosis which was further confirmed by LDH release assay and transmission electron microscopy (TEM). Further experiments with the null mutant Δ hog1 strain of C. albicans SC5314 indicated the activation of the osmotic stress response pathway (HOG-MAPK) and SAP9. This study gave an insight into the mechanism of cell death initiation by glycolipids and indicated that further modification of these molecules can lead to the development of new therapeutic agent against C. albicans. Sophorolipid induces ROS generation in C. albicans leading to mitochondrial dysfunction and ER stress followed by the release of Ca2+ ions (from the ER lumen) that enter mitochondria and further magnify ROS generation leading to cell death.![]()
Collapse
Affiliation(s)
- Farazul Haque
- Biochemical Engineering Research & Process Development Centre (BERPDC)
- CSIR-Institute of Microbial Technology (IMTECH)
- Chandigarh 160036
- India
| | - Nitish Kumar Verma
- Biochemical Engineering Research & Process Development Centre (BERPDC)
- CSIR-Institute of Microbial Technology (IMTECH)
- Chandigarh 160036
- India
| | - Mohammad Alfatah
- Yeast Molecular Biology Laboratory
- CSIR-Institute of Microbial Technology (IMTECH)
- Chandigarh 160036
- India
| | - Swati Bijlani
- Yeast Molecular Biology Laboratory
- CSIR-Institute of Microbial Technology (IMTECH)
- Chandigarh 160036
- India
| | - Mani Shankar Bhattacharyya
- Biochemical Engineering Research & Process Development Centre (BERPDC)
- CSIR-Institute of Microbial Technology (IMTECH)
- Chandigarh 160036
- India
| |
Collapse
|
7
|
Aw R, Polizzi KM. Can too many copies spoil the broth? Microb Cell Fact 2013; 12:128. [PMID: 24354594 PMCID: PMC3878197 DOI: 10.1186/1475-2859-12-128] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 12/16/2013] [Indexed: 02/02/2023] Open
Abstract
The success of Pichia pastoris as a heterologous expression system lies predominantly in the impressive yields that can be achieved due to high volumetric productivity. However, low specific productivity still inhibits the potential success of this platform. Multi-(gene) copy clones are potentially a quick and convenient method to increase recombinant protein titer, yet they are not without their pitfalls. It has been more than twenty years since the first reported use of multi-copy clones and it is still an active area of research to find the fastest and most efficient method for generating these strains. It has also become apparent that there is not always a linear correlation between copy number and protein titer, leading to in-depth investigations into how to minimize the negative impact of secretory stress and achieve clonal stability.
Collapse
Affiliation(s)
- Rochelle Aw
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK.
| | | |
Collapse
|