1
|
Luo S, Song W, Hu G, Wen J, Li X, Gao C, Liu J, Wei W, Liu L. Construction of Escherichia coli Cell Factory for Efficient Synthesis of Indigo. Chembiochem 2025; 26:e202401073. [PMID: 39825611 DOI: 10.1002/cbic.202401073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 01/20/2025]
Abstract
Indigo is widely used in dyes, medicines and semiconductors materials due to its excellent dyeing efficiency, antibacterial, antiviral, anticancer, anti-corrosion, and thermostability properties. Here, a biosynthetic pathway for indigo was designed, integrating two enzymes (EcTnaA, MaFMO) into a higher L-tryptophan-producing the strain Escherichia coli TRP. However, the lower catalytic activity of MaFMO was a bottleneck for increasing indigo titers. To overcome this limitation, the enzyme activity of MaFMO was enhanced through mechanism-guided rational design. The optimal mutant obtained in this study, MaFMOD197E, whose kcat/Km was 1.34 times that of the wild type, and its specific activity was 2.36 times that of the wild type. In addition, the expression levels of EcTnaA and MaFMOD197E were regulated by optimizing the promoters and increasing the copy number to generate the strain E. coli IND-13. Finally, in the optimal fermentation conditions (220 rpm, 0.05 % Tween-80), the strain E. coli IND-13 achieved the indigo titer of 568.52 mg/L in a 5-L bioreactor, with the yield and productivity of 2.62 mg/g and 12.96 mg/L/h (the highest to date), respectively. The results presented here can lay a foundation for further construction of cell factories for indigo and its derivatives with industrial application potential.
Collapse
Affiliation(s)
- Shiqi Luo
- School of Food Engineering, Anhui Science and Technology University, Anhui, 233100, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Guipeng Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Jian Wen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xiaomin Li
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Cong Gao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jia Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Wanqing Wei
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Liming Liu
- School of Food Engineering, Anhui Science and Technology University, Anhui, 233100, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
2
|
Li F, Deng H, Zhong B, Ruan B, Zhao X, Luo X. Identification of an indole biodegradation gene cluster from Providencia rettgeri and its contribution in selectively biosynthesizing Tyrian purple. Front Bioeng Biotechnol 2023; 10:1109929. [PMID: 36704308 PMCID: PMC9871250 DOI: 10.3389/fbioe.2022.1109929] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023] Open
Abstract
Tyrian purple, mainly composed of 6, 6'-dibromoindigo, is a precious dye extracted from sea snails. In this study, we found Tyrian purple can be selectively produced by a bacterial strain GS-2 when fed with 6-bromotryptophan in the presence of tryptophan. This GS-2 strain was then identified as Providencia rettgeri based on bacterial genome sequencing analysis. An indole degradation gene cluster for indole metabolism was identified from this GS-2 strain. The heterologous expression of the indole degradation gene cluster in Escherichia coli BL21 (DE3) and in vitro enzymatic reaction demonstrated that the indole biodegradation gene cluster may contribute to selectively biosynthesizing Tyrian purple. To further explore the underlying mechanism of the selectivity, we explored the intermediates in this indole biodegradation pathway using liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS/MS), which indicated that the indole biodegradation pathway in Providencia rettgeri is the catechol pathway. Interestingly, the monooxygenase GS-C co-expressed with its corresponding reductase GS-D in the cluster has better activity for the biosynthesis of Tyrian purple compared with the previously reported monooxygenase from Methylophaga aminisulfidivorans (MaFMO) or Streptomyces cattleya cytochrome P450 enzyme (CYP102G4). This is the first study to show the existence of an indole biodegradation pathway in Providencia rettgeri, and the indole biodegradation gene cluster can contribute to the selective production of Tyrian purple.
Collapse
Affiliation(s)
- Feifei Li
- School of Life Sciences, Inner Mongolia University, Hohhot, China,Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Huaxiang Deng
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Biming Zhong
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Banlai Ruan
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xixi Zhao
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,*Correspondence: Xixi Zhao, ; Xiaozhou Luo,
| | - Xiaozhou Luo
- School of Life Sciences, Inner Mongolia University, Hohhot, China,Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,*Correspondence: Xixi Zhao, ; Xiaozhou Luo,
| |
Collapse
|
3
|
Yang J, Ma F, Dai C, Wu W, Fan S, Lian S, Qu Y. Indole metabolism by phenol-stimulated activated sludges: Performance, microbial communities and network analysis. ENVIRONMENTAL RESEARCH 2022; 207:112660. [PMID: 34995547 DOI: 10.1016/j.envres.2021.112660] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/03/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Indole and phenol often coexist in the coking wastewater, while the effects of phenol on microbial communities of indole metabolism were less explored. In this study, the microbial interactions within activated sludge microbial communities stimulated by indole (group A) or by indole and phenol (group B) were systematically investigated in sequencing batch reactors (SBRs). The results showed that the removal of indole was increased by adding phenol. By using high-throughput sequencing technology, it was found that α-diversity was reduced in both groups. According to the relative abundance analysis, the indole-degrading genus Comamonas was the core genus in both groups (33.94% and 61.40%). But another indole-degrading genus Pseudomonas was only enriched in group A with 12.22% relative abundance. Meanwhile, common aromatic degrading genus Dyella and Thermomonas were enriched only in group B. It was found that the relative abundance of cytochrome P450 and styrene degradation enzymes were increased in group B by PICRUSt analysis. Based on the phylogenetic molecular ecological networks (pMENs), module hub OTU_1149 (Burkholderia) was only detected in group B, and the positive interactions between the key functional genus Burkholderia and other bacteria were increased. This study provides new insights into our understanding of indole metabolism communities stimulated by phenol, which would provide useful information for practical coking wastewater treatment.
Collapse
Affiliation(s)
- Jing Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Chunxiao Dai
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Weize Wu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Shuling Fan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Shengyang Lian
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yuanyuan Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
4
|
Xu A, Zhang X, Wu S, Xu N, Huang Y, Yan X, Zhou J, Cui Z, Dong W. Pollutant Degrading Enzyme: Catalytic Mechanisms and Their Expanded Applications. Molecules 2021; 26:4751. [PMID: 34443339 PMCID: PMC8401168 DOI: 10.3390/molecules26164751] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/03/2021] [Accepted: 07/30/2021] [Indexed: 11/16/2022] Open
Abstract
The treatment of environmental pollution by microorganisms and their enzymes is an innovative and socially acceptable alternative to traditional remediation approaches. Microbial biodegradation is often characterized with high efficiency as this process is catalyzed via degrading enzymes. Various naturally isolated microorganisms were demonstrated to have considerable ability to mitigate many environmental pollutants without external intervention. However, only a small fraction of these strains are studied in detail to reveal the mechanisms at the enzyme level, which strictly limited the enhancement of the degradation efficiency. Accordingly, this review will comprehensively summarize the function of various degrading enzymes with an emphasis on catalytic mechanisms. We also inspect the expanded applications of these pollutant-degrading enzymes in industrial processes. An in-depth understanding of the catalytic mechanism of enzymes will be beneficial for exploring and exploiting more degrading enzyme resources and thus ameliorate concerns associated with the ineffective biodegradation of recalcitrant and xenobiotic contaminants with the help of gene-editing technology and synthetic biology.
Collapse
Affiliation(s)
- Anming Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; (A.X.); (X.Z.); (S.W.); (N.X.); (J.Z.)
| | - Xiaoxiao Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; (A.X.); (X.Z.); (S.W.); (N.X.); (J.Z.)
| | - Shilei Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; (A.X.); (X.Z.); (S.W.); (N.X.); (J.Z.)
| | - Ning Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; (A.X.); (X.Z.); (S.W.); (N.X.); (J.Z.)
| | - Yan Huang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.H.); (X.Y.)
| | - Xin Yan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.H.); (X.Y.)
| | - Jie Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; (A.X.); (X.Z.); (S.W.); (N.X.); (J.Z.)
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.H.); (X.Y.)
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; (A.X.); (X.Z.); (S.W.); (N.X.); (J.Z.)
| |
Collapse
|
5
|
Panchenko L, Muratova A, Biktasheva L, Galitskaya P, Golubev S, Dubrovskaya E, Selivanovskaya S, Turkovskaya O. Study of Boraginaceae plants for phytoremediation of oil-contaminated soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:215-223. [PMID: 34098813 DOI: 10.1080/15226514.2021.1932729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Long-term field observations of the natural vegetation cover in industrial and adjacent areas has revealed that the Boraginaceae was one of the main plant family representatives of which were noted in oil-contaminated area. In this study against the background of the previously well characterized plant families Poaceae and Fabaceae, the phytoremediation potential of Boraginaceae plants was investigated under the field conditions and described. Among the members of this family, Lithospermum arvense, Nonea pulla, Asperugo procumbens, Lappula myosotis, and Echium vulgare were the most common in oil-contaminated areas. N. pulla was the most tolerant to hydrocarbons and, along with L. arvense and E. vulgare, actively stimulated the soil microorganisms, including hydrocarbon-oxidizing ones, in their rhizosphere. A comparative assay confirmed that the plants of the Fabaceae family as a whole more efficiently enrich the soil both with available nitrogen and with pollutant degradation genes. Nevertheless, the comparatively high ammonium nitrogen content in the rhizosphere of N. pulla and E. vulgare allows these species to be singled out to explain their high rhizosphere effect, and to suggest their remediation potential for oil-contaminated soil.Novelty statement Against the background of the previously well characterized plant families Poaceae and Fabaceae, the remediation potential of Boraginaceae plants was described for the first time. Overall, this study contributes to understanding the differences in remediation potential of plants at the family level and suggests the monitoring pollutant degradation genes as an informative tool to the search for plant promising for use in the cleanup of oil-contaminated soil.
Collapse
Affiliation(s)
- Leonid Panchenko
- Laboratory of Environmental Biotechnology, Institute of Biochemistry and Physiology of Plants and Microorganisms RAS, Saratov, Russia
| | - Anna Muratova
- Laboratory of Environmental Biotechnology, Institute of Biochemistry and Physiology of Plants and Microorganisms RAS, Saratov, Russia
| | - Lilia Biktasheva
- Institute of Environmental Sciences, Kazan Federal University, Kazan, Russia
| | - Polina Galitskaya
- Institute of Environmental Sciences, Kazan Federal University, Kazan, Russia
| | - Sergey Golubev
- Laboratory of Environmental Biotechnology, Institute of Biochemistry and Physiology of Plants and Microorganisms RAS, Saratov, Russia
| | - Ekaterina Dubrovskaya
- Laboratory of Environmental Biotechnology, Institute of Biochemistry and Physiology of Plants and Microorganisms RAS, Saratov, Russia
| | | | - Olga Turkovskaya
- Laboratory of Environmental Biotechnology, Institute of Biochemistry and Physiology of Plants and Microorganisms RAS, Saratov, Russia
| |
Collapse
|
6
|
Production of Tyrian purple indigoid dye from tryptophan in Escherichia coli. Nat Chem Biol 2020; 17:104-112. [PMID: 33139950 DOI: 10.1038/s41589-020-00684-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 09/29/2020] [Indexed: 12/21/2022]
Abstract
Tyrian purple, mainly composed of 6,6'-dibromoindigo (6BrIG), is an ancient dye extracted from sea snails and was recently demonstrated as a biocompatible semiconductor material. However, its synthesis remains limited due to uncharacterized biosynthetic pathways and the difficulty of regiospecific bromination. Here, we introduce an effective 6BrIG production strategy in Escherichia coli using tryptophan 6-halogenase SttH, tryptophanase TnaA and flavin-containing monooxygenase MaFMO. Since tryptophan halogenases are expressed in highly insoluble forms in E. coli, a flavin reductase (Fre) that regenerates FADH2 for the halogenase reaction was used as an N-terminal soluble tag of SttH. A consecutive two-cell reaction system was designed to overproduce regiospecifically brominated precursors of 6BrIG by spatiotemporal separation of bromination and bromotryptophan degradation. These approaches led to 315.0 mg l-1 6BrIG production from tryptophan and successful synthesis of regiospecifically dihalogenated indigos. Furthermore, it was demonstrated that 6BrIG overproducing cells can be directly used as a bacterial dye.
Collapse
|
7
|
Dai C, Ma Q, Li Y, Zhou D, Yang B, Qu Y. Application of an efficient indole oxygenase system from Cupriavidus sp. SHE for indigo production. Bioprocess Biosyst Eng 2019; 42:1963-1971. [PMID: 31482396 DOI: 10.1007/s00449-019-02189-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 08/03/2019] [Indexed: 10/26/2022]
Abstract
Indigo, one of the most widely used dyes, is mainly produced by chemical processes, which generate amounts of pollutants and need high energy consumption. Microbial production of indigo from indole has attracted much attention; however, the indole oxygenase has never been explored and applied for indigo production. In the present study, the indole oxygenase indAB genes were successfully cloned from Cupriavidus sp. SHE and heterologously expressed in Escherichia coli BL21(DE3) (designated as IND_AB). Strain IND_AB produced primarily indigo in tryptophan medium by high-performance liquid chromatography-mass spectroscopy (HPLC-MS) analysis. The preferable conditions for indigo production were pH 6.5 (normal pH), 30 °C, 150 rpm, strain inoculation concentration OD600 0.08, and induction with 1 mM IPTG at the time of inoculation. The optimal culture medium compositions were further determined as tryptophan 1.0 g/L, NaCl 3.55 g/L, and yeast extract 5.12 g/L based on single-factor experiment and response surface methodology. The highest indigo yield was 307 mg/L, which was 4.39-fold higher than the original value. This is the first study investigating indigo production using the indole oxygenase system and the results highlighted its potential in bio-indigo industrial application.
Collapse
Affiliation(s)
- Chunxiao Dai
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Qiao Ma
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Yan Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Duandi Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Bingyu Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yuanyuan Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
8
|
Ma Q, Zhang X, Qu Y. Biodegradation and Biotransformation of Indole: Advances and Perspectives. Front Microbiol 2018; 9:2625. [PMID: 30443243 PMCID: PMC6221969 DOI: 10.3389/fmicb.2018.02625] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 10/15/2018] [Indexed: 11/17/2022] Open
Abstract
Indole is long regarded as a typical N-heterocyclic aromatic pollutant in industrial and agricultural wastewater, and recently it has been identified as a versatile signaling molecule with wide environmental distributions. An exponentially growing number of researches have been reported on indole due to its significant roles in bacterial physiology, pathogenesis, animal behavior and human diseases. From the viewpoint of both environmental bioremediation and biological studies, the researches on metabolism and fates of indole are important to realize environmental treatment and illuminate its biological function. Indole can be produced from tryptophan by tryptophanase in many bacterial species. Meanwhile, various bacterial strains have obtained the ability to transform and degrade indole. The characteristics and pathways for indole degradation have been investigated for a century, and the functional genes for indole aerobic degradation have also been uncovered recently. Interestingly, many oxygenases have proven to be able to oxidize indole to indigo, and this historic and motivating case for biological applications has attracted intensive attention for decades. Herein, the bacteria, enzymes and pathways for indole production, biodegradation and biotransformation are systematically summarized, and the future researches on indole-microbe interactions are also prospected.
Collapse
Affiliation(s)
- Qiao Ma
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China
| | - Xuwang Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Food and Environment, Dalian University of Technology, Panjin, China
| | - Yuanyuan Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| |
Collapse
|
9
|
Zhang X, Qu Y, Ma Q, Li S, Dai C, Lian S, Zhou J. Performance and Microbial Community Analysis of Bioaugmented Activated Sludge System for Indigo Production from Indole. Appl Biochem Biotechnol 2018; 187:1437-1447. [DOI: 10.1007/s12010-018-2879-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 09/09/2018] [Indexed: 11/29/2022]
|
10
|
Qu Y, Ma Q, Liu Z, Wang W, Tang H, Zhou J, Xu P. Unveiling the biotransformation mechanism of indole in a Cupriavidus sp. strain. Mol Microbiol 2017; 106:905-918. [PMID: 28963777 DOI: 10.1111/mmi.13852] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2017] [Indexed: 01/13/2023]
Abstract
Indole, an important signaling molecule as well as a typical N-heterocyclic aromatic pollutant, is widespread in nature. However, the biotransformation mechanisms of indole are still poorly studied. Here, we sought to unlock the genetic determinants of indole biotransformation in strain Cupriavidus sp. SHE based on genomics, proteomics and functional studies. A total of 177 proteins were notably altered (118 up- and 59 downregulated) in cells grown in indole mineral salt medium when compared with that in sodium citrate medium. RT-qPCR and gene knockout assays demonstrated that an indole oxygenase gene cluster was responsible for the indole upstream metabolism. A functional indole oxygenase, termed IndA, was identified in the cluster, and its catalytic efficiency was higher than those of previously reported indole oxidation enzymes. Furthermore, the indole downstream metabolism was found to proceed via the atypical CoA-thioester pathway rather than conventional gentisate and salicylate pathways. This unusual pathway was catalyzed by a conserved 2-aminobenzoyl-CoA gene cluster, among which the 2-aminobenzoyl-CoA ligase initiated anthranilate transformation. This study unveils the genetic determinants of indole biotransformation and will provide new insights into our understanding of indole biodegradation in natural environments and its functional studies.
Collapse
Affiliation(s)
- Yuanyuan Qu
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Qiao Ma
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Ziyan Liu
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Weiwei Wang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Jiti Zhou
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
11
|
Cometabolic Degradation of Dibenzofuran and Dibenzothiophene by a Naphthalene-Degrading Comamonas sp. JB. Curr Microbiol 2017; 74:1411-1416. [PMID: 28821932 DOI: 10.1007/s00284-017-1334-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 08/10/2017] [Indexed: 10/19/2022]
Abstract
Comamonas sp. JB was used to investigate the cometabolic degradation of dibenzofuran (DBF) and dibenzothiophene (DBT) with naphthalene as the primary substrate. Dehydrogenase and ATPase activity of the growing system with the presence of DBF and DBT were decreased when compared to only naphthalene in the growing system, indicating that the presence of DBF and DBT inhibited the metabolic activity of strain JB. The pathways and enzymes involved in the cometabolic degradation were tested. Examination of metabolites elucidated that strain JB cometabolically degraded DBF to 1,2-dihydroxydibenzofuran, subsequently to 2-hydroxy-4-(3'-oxo-3'H-benzofuran-2'-yliden)but-2-enoic acid, and finally to catechol. Meanwhile, strain JB cometabolically degraded DBT to 1,2-dihydroxydibenzothiophene and subsequently to the ring cleavage product. A series of naphthalene-degrading enzymes including naphthalene dioxygenase, 1,2-dihydroxynaphthalene dioxygenase, salicylaldehyde dehydrogenase, salicylate hydroxylase, and catechol 2,3-oxygenase have been detected, confirming that naphthalene was the real inducer of expression the degradation enzymes and metabolic pathways were controlled by naphthalene-degrading enzymes.
Collapse
|
12
|
Microbial Community Dynamics and Activity Link to Indigo Production from Indole in Bioaugmented Activated Sludge Systems. PLoS One 2015; 10:e0138455. [PMID: 26372223 PMCID: PMC4570806 DOI: 10.1371/journal.pone.0138455] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/31/2015] [Indexed: 12/02/2022] Open
Abstract
Biosynthesis of the popular dyestuff indigo from indole has been comprehensively studied using pure cultures, but less has been done to characterize the indigo production by microbial communities. In our previous studies, a wild strain Comamonas sp. MQ was isolated from activated sludge and the recombinant Escherichia colinagAc carrying the naphthalene dioxygenase gene (nag) from strain MQ was constructed, both of which were capable of producing indigo from indole. Herein, three activated sludge systems, G1 (non-augmented control), G2 (augmented with Comamonas sp. MQ), and G3 (augmented with recombinant E. colinagAc), were constructed to investigate indigo production. After 132-day operation, G3 produced the highest yields of indigo (99.5 ± 3.0 mg/l), followed by G2 (27.3 ± 1.3 mg/l) and G1 (19.2 ± 1.2 mg/l). The microbial community dynamics and activities associated with indigo production were analyzed by Illumina Miseq sequencing of 16S rRNA gene amplicons. The inoculated strain MQ survived for at least 30 days, whereas E. colinagAc was undetectable shortly after inoculation. Quantitative real-time PCR analysis suggested the abundance of naphthalene dioxygenase gene (nagAc) from both inoculated strains was strongly correlated with indigo yields in early stages (0–30 days) (P < 0.001) but not in later stages (30–132 days) (P > 0.10) of operation. Based on detrended correspondence analysis (DCA) and dissimilarity test results, the communities underwent a noticeable shift during the operation. Among the four major genera (> 1% on average), the commonly reported indigo-producing populations Comamonas and Pseudomonas showed no positive relationship with indigo yields (P > 0.05) based on Pearson correlation test, while Alcaligenes and Aquamicrobium, rarely reported for indigo production, were positively correlated with indigo yields (P < 0.05). This study should provide new insights into our understanding of indigo bio-production by microbial communities.
Collapse
|
13
|
Liu Q, Tang J, Bai Z, Hecker M, Giesy JP. Distribution of petroleum degrading genes and factor analysis of petroleum contaminated soil from the Dagang Oilfield, China. Sci Rep 2015; 5:11068. [PMID: 26086670 PMCID: PMC4478889 DOI: 10.1038/srep11068] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 05/14/2015] [Indexed: 11/09/2022] Open
Abstract
Genes that encode for enzymes that can degrade petroleum hydrocarbons (PHs) are critical for the ability of microorganisms to bioremediate soils contaminated with PHs. Distributions of two petroleum-degrading genes AlkB and Nah in soils collected from three zones of the Dagang Oilfield, Tianjin, China were investigated. Numbers of copies of AlkB ranged between 9.1 × 10(5) and 1.9 × 10(7) copies/g dry mass (dm) soil, and were positively correlated with total concentrations of PHs (TPH) (R(2) = 0.573, p = 0.032) and alkanes (C33 ~ C40) (R(2) = 0.914, p < 0.01). The Nah gene was distributed relatively evenly among sampling zones, ranging between 1.9 × 10(7) and 1.1 × 10(8) copies/g dm soil, and was negatively correlated with concentrations of total aromatic hydrocarbons (TAH) (R(2) = -0.567, p = 0.035) and ∑16 PAHs (R(2) = -0.599, p = 0.023). Results of a factor analysis showed that individual samples of soils were not ordinated as a function of the zones.
Collapse
Affiliation(s)
- Qinglong Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Pollution Diagnosis and Environmental Restoration, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Pollution Diagnosis and Environmental Restoration, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Zhihui Bai
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Markus Hecker
- 1] School of Environment and sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada [2] Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - John P Giesy
- 1] Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada [2] Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada [3] School of Biological Sciences, University of Hong Kong, Hong Kong, SAR, China [4] State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China [5] Department of Biology, Hong Kong Baptist University, Hong Kong, SAR, China
| |
Collapse
|
14
|
A Comprehensive Review of Aliphatic Hydrocarbon Biodegradation by Bacteria. Appl Biochem Biotechnol 2015; 176:670-99. [PMID: 25935219 DOI: 10.1007/s12010-015-1603-5] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 03/31/2015] [Indexed: 02/07/2023]
Abstract
Hydrocarbons are relatively recalcitrant compounds and are classified as high-priority pollutants. However, these compounds are slowly degraded by a large variety of microorganisms. Bacteria are able to degrade aliphatic saturated and unsaturated hydrocarbons via both aerobic and anaerobic pathways. Branched hydrocarbons and cyclic hydrocarbons are also degraded by bacteria. The aerobic bacteria use different types of oxygenases, including monooxygenase, cytochrome-dependent oxygenase and dioxygenase, to insert one or two atoms of oxygen into their targets. Anaerobic bacteria, on the other hand, employ a variety of simple organic and inorganic molecules, including sulphate, nitrate, carbonate and metals, for hydrocarbon oxidation.
Collapse
|
15
|
Wang J, Zhang X, Fan J, Zhang Z, Ma Q, Peng X. Indigoids Biosynthesis from Indole by Two Phenol-Degrading Strains, Pseudomonas sp. PI1 and Acinetobacter sp. PI2. Appl Biochem Biotechnol 2015; 176:1263-76. [DOI: 10.1007/s12010-015-1644-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 04/21/2015] [Indexed: 10/23/2022]
|
16
|
Illumina MiSeq Sequencing Reveals Diverse Microbial Communities of Activated Sludge Systems Stimulated by Different Aromatics for Indigo Biosynthesis from Indole. PLoS One 2015; 10:e0125732. [PMID: 25928424 PMCID: PMC4416020 DOI: 10.1371/journal.pone.0125732] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/25/2015] [Indexed: 11/24/2022] Open
Abstract
Indole, as a typical N-heteroaromatic compound existed in coking wastewater, can be used for bio-indigo production. The microbial production of indigo from indole has been widely reported during the last decades using culture-dependent methods, but few studies have been carried out by microbial communities. Herein, three activated sludge systems stimulated by different aromatics, i.e. naphthalene plus indole (G1), phenol plus indole (G2) and indole only (G3), were constructed for indigo production from indole. During the operation, G1 produced the highest indigo yield in the early stage, but it switched to G3 in the late stage. Based on LC-MS analysis, indigo was the major product in G1 and G3, while the purple product 2-(7-oxo-1H-indol-6(7H)-ylidene) indolin-3-one was dominant in G2. Illumina MiSeq sequencing of 16S rRNA gene amplicons was applied to analyze the microbial community structure and composition. Detrended correspondence analysis (DCA) and dissimilarity tests showed that the overall community structures of three groups changed significantly during the operation (P<0.05). Nevertheless, the bacteria assigned to phylum Proteobacteria, family Comamonadaceae, and genera Diaphorobacter, Comamonas and Aquamicrobium were commonly shared dominant populations. Pearson correlations were calculated to discern the relationship between microbial communities and indigo yields. The typical indigo-producing populations Comamonas and Pseudomonas showed no positive correlations with indigo yields, while there emerged many other genera that exhibited positive relationships, such as Aquamicrobium, Truepera and Pusillimonas, which had not been reported for indigo production previously. The present study should provide new insights into indigo bio-production by microbial communities from indole.
Collapse
|
17
|
Qu Y, Zhang Z, Ma Q, Shen E, Shen W, Wang J, Cong L, Li D, Liu Z, Li H, Zhou J. Biotransformation of indole and its derivatives by a newly isolated Enterobacter sp. M9Z. Appl Biochem Biotechnol 2015; 175:3468-78. [PMID: 25725798 DOI: 10.1007/s12010-015-1518-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 01/21/2015] [Indexed: 11/25/2022]
Abstract
In this study, a novel bacterial strain M9Z with the ability of producing indigoids from indole and its derivatives was isolated from activated sludge and identified as Enterobacter sp. according to 16S ribosomal RNA (rRNA) sequence analysis. UV-vis spectrometry and high-performance liquid chromatography-mass spectrometry analysis indicated that the products produced from indole, 5-methylindole, 7-methylindole, and 5-methoxyindole were indigo with different substituent groups, and the possible biotransformation pathways of indole derivatives, i.e., indole(s)-cis-indole-2,3-dihydrodiol(s)-indoxyl(s)-indigoids, were proposed. The conditions of indole transformation and indigo biosynthesis by strain M9Z were optimized, and the maximal indigo yield (68.1 mg/L) was obtained when using 150 mg/L indole, 200 mg/L naphthalene, and 5 g/L yeast extract. The transformation rates of 5-methylindole, 7-methylindole, and 5-methoxyindole by strain M9Z were all close to 100 % under certain conditions, making strain M9Z an efficient indigoid producer. This is the first study of indole biotransformation and indigoid biosynthesis by genus Enterobacter.
Collapse
Affiliation(s)
- Yuanyuan Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Zhang X, Qu Y, Ma Q, Kong C, Zhou H, Cao X, Shen W, Shen E, Zhou J. Production of indirubin from tryptophan by recombinant Escherichia coli containing naphthalene dioxygenase genes from Comamonas sp. MQ. Appl Biochem Biotechnol 2014; 172:3194-206. [PMID: 24500796 DOI: 10.1007/s12010-014-0743-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 01/16/2014] [Indexed: 11/29/2022]
Abstract
Indirubin, a red isomer of indigo, can be used for the treatment of various chronic diseases. However, the microbial production of indirubin did not receive much attention probably due to its low yield compared with indigo. In this study, the recombinant Escherichia coli containing the naphthalene dioxygenase (NDO) genes from Comamonas sp. MQ was used to produce indirubin from tryptophan. To enhance the production of indirubin, the induction conditions for NDO expression were optimized. The optimal induction conditions were carried out with 0.5 mM isopropyl-β-D-thiogalactopyranoside at 30 °C when cells were grown to OD600 ≈ 1.20. Subsequently, the effects of medium composition on indirubin production were investigated by response surface methodology, and 9.37 ± 1.01 mg/l indirubin was produced from 3.28 g/l tryptophan. Meanwhile, the indirubin production was further improved by adding 2-oxindole and isatin to the tryptophan medium after induction. About 57.98 ± 2.62 mg/l indirubin was obtained by the addition of 500 mg/l 2-oxindole after 1-h induction, which was approximately 6.2-fold to that without additional 2-oxindole. The present study provided a possible way to improve the production of indirubin and should lay the foundation for the application of microbial indirubin production.
Collapse
Affiliation(s)
- Xuwang Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | | | | | | | | | | | | | | | | |
Collapse
|