1
|
Dong G, Zhao Y, Ding W, Xu S, Zhang Q, Zhao H, Shi S. Metabolic engineering of Saccharomyces cerevisiae for de novo production of odd-numbered medium-chain fatty acids. Metab Eng 2024; 82:100-109. [PMID: 38325640 DOI: 10.1016/j.ymben.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/18/2023] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
Odd-numbered fatty acids (FAs) have been widely used in nutrition, agriculture, and chemical industries. Recently, some studies showed that they could be produced from bacteria or yeast, but the products are almost exclusively odd-numbered long-chain FAs. Here we report the design and construction of two biosynthetic pathways in Saccharomyces cerevisiae for de novo production of odd-numbered medium-chain fatty acids (OMFAs) via ricinoleic acid and 10-hydroxystearic acid, respectively. The production of OMFAs was enabled by introducing a hydroxy fatty acid cleavage pathway, including an alcohol dehydrogenase from Micrococcus luteus, a Baeyer-Villiger monooxygenase from Pseudomonas putida, and a lipase from Pseudomonas fluorescens. These OMFA biosynthetic pathways were optimized by eliminating the rate-limiting step, generating heptanoic acid, 11-hydroxyundec-9-enoic acid, nonanoic acid, and 9-hydroxynonanoic acid at 7.83 mg/L, 9.68 mg/L, 9.43 mg/L and 13.48 mg/L, respectively. This work demonstrates the biological production of OMFAs in a sustainable manner in S. cerevisiae.
Collapse
Affiliation(s)
- Genlai Dong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China; Key Laboratory of Natural Products, Henan Academy of Sciences, Zhengzhou, 450002, China
| | - Ying Zhao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wentao Ding
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shijie Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qi Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
2
|
Ebrecht AC, Mofokeng TM, Hollmann F, Smit MS, Opperman DJ. Lactones from Unspecific Peroxygenase-Catalyzed In-Chain Hydroxylation of Saturated Fatty Acids. Org Lett 2023; 25:4990-4995. [PMID: 37389482 PMCID: PMC10353034 DOI: 10.1021/acs.orglett.3c01601] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Indexed: 07/01/2023]
Abstract
γ- and δ-lactones are valuable flavor and fragrance compounds. Their synthesis depends on the availability of suitable hydroxy fatty acid precursors. Three short unspecific peroxygenases were identified that selectively hydroxylate the C4 and C5 positions of C8-C12 fatty acids to yield after lactonization the corresponding γ- and δ-lactones. A preference for C4 over C5 hydroxylation gave γ-lactones as the major products. Overoxidation of the hydroxy fatty acids was addressed via the reduction of the resulting oxo acids using an alcohol dehydrogenase in a bienzymatic cascade reaction.
Collapse
Affiliation(s)
- Ana C. Ebrecht
- Department
of Microbiology and Biochemistry, University
of the Free State, Bloemfontein 9300, South Africa
| | - Thato M. Mofokeng
- Department
of Microbiology and Biochemistry, University
of the Free State, Bloemfontein 9300, South Africa
| | - Frank Hollmann
- Department
of Biotechnology, Delft University of Technology, Delft 2629HZ, The Netherlands
| | - Martha S. Smit
- Department
of Microbiology and Biochemistry, University
of the Free State, Bloemfontein 9300, South Africa
| | - Diederik J. Opperman
- Department
of Microbiology and Biochemistry, University
of the Free State, Bloemfontein 9300, South Africa
| |
Collapse
|
3
|
Liu Y, Wu Z, Deska J. Coding Synthetic Chemistry Strategies for Furan Valorization into Bacterial Designer Cells. CHEMSUSCHEM 2023; 16:e202201790. [PMID: 36416391 PMCID: PMC10107124 DOI: 10.1002/cssc.202201790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 05/11/2023]
Abstract
Following a synthetic chemistry blueprint for the valorization of lignocellulosic platform chemicals, this study showcases a so far unprecedented approach to implement non-natural enzyme modules in vivo. For the design of a novel functional whole cell tool, two purely abiotic transformations, a styrene monooxygenase-catalyzed Achmatowicz rearrangement and an alcohol dehydrogenase-mediated borrowing hydrogen redox isomerization, were incorporated into a recombinant bacterial host. Introducing this type of chemistry otherwise unknown in biosynthesis, the cellular factories were enabled to produce complex lactone building blocks in good yield from bio-based furan substrates. This whole cell system streamlined the synthetic cascade, eliminated isolation and purification steps, and provided a high degree of stereoselectivity that has so far been elusive in the chemical methodology.
Collapse
Affiliation(s)
- Yu‐Chang Liu
- Department of ChemistryUniversity of HelsinkiA.I. Virtasen aukio 100560HelsinkiFinland
- Department of ChemistryAalto UniversityKemistintie 102150EspooFinland
| | - Zhong‐Liu Wu
- CAS Key Laboratory of Environmental and Applied MicrobiologyEnvironmental Microbiology Key Laboratory of Sichuan ProvinceChengdu Institute of BiologyChinese Academy of SciencesChengdu610041P. R. China
| | - Jan Deska
- Department of ChemistryUniversity of HelsinkiA.I. Virtasen aukio 100560HelsinkiFinland
- Department of ChemistryAalto UniversityKemistintie 102150EspooFinland
| |
Collapse
|
4
|
Zhang GX, You ZN, Yu JM, Liu YY, Pan J, Xu JH, Li CX. Discovery and Engineering of a Novel Baeyer-Villiger Monooxygenase with High Normal Regioselectivity. Chembiochem 2020; 22:1190-1195. [PMID: 33205522 DOI: 10.1002/cbic.202000478] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/12/2020] [Indexed: 11/07/2022]
Abstract
Baeyer-Villiger monooxygenases (BVMOs) are remarkable biocatalysts for the Baeyer-Villiger oxidation of ketones to generate esters or lactones. The regioselectivity of BVMOs is essential for determining the ratio of the two regioisomeric products ("normal" and "abnormal") when catalyzing asymmetric ketone substrates. Starting from a known normal-preferring BVMO sequence from Pseudomonas putida KT2440 (PpBVMO), a novel BVMO from Gordonia sihwensis (GsBVMO) with higher normal regioselectivity (up to 97/3) was identified. Furthermore, protein engineering increased the specificity constant (kcat /KM ) 8.9-fold to 484 s-1 mM-1 for 10-ketostearic acid derived from oleic acid. Consequently, by using the variant GsBVMOC308L as an efficient biocatalyst, 10-ketostearic acid was efficiently transformed into 9-(nonanoyloxy)nonanoic acid, with a space-time yield of 60.5 g L-1 d-1 . This study showed that the mutant with higher regioselectivity and catalytic efficiency could be applied to prepare medium-chain ω-hydroxy fatty acids through biotransformation of long-chain aliphatic keto acids derived from renewable plant oils.
Collapse
Affiliation(s)
- Guang-Xiang Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Zhi-Neng You
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Jia-Mei Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yuan-Yang Liu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Jiang Pan
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, P. R. China.,Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Chun-Xiu Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
5
|
Ahn J, Kim H, Yang KM. ω-hydroxyundec-9-enoic acid induction of breast cancer cells apoptosis through generation of mitochondrial ROS and phosphorylation of AMPK. Arch Pharm Res 2020; 43:735-743. [PMID: 32720162 DOI: 10.1007/s12272-020-01254-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/22/2020] [Indexed: 12/15/2022]
Abstract
This study was performed to evaluate the anticancer effect of ω-hydroxyundec-9-enoic acid (ω-HUA), a microbial bio-catalyst product in breast cancer cells, through AMP-activated protein kinase (AMPK) regulation. ω-HUA mediated apoptosis was induced in breast cancer cells by AMPK activation, loss of mitochondrial membrane potential, and reactive oxygen species (ROS) generation. ω-HUA treatment of breast cancer cells increased the AMPK phosphorylation levels, cleaved caspase-3, and poly (ADP-ribose) polymerase (PARP) proteins. In addition, anti-apoptotic members, such as Bcl-2, were downregulated, while Bax, a pro-apoptotic member, was upregulated. ω-HUA decreased the mitochondrial membrane potential while increasing the expression of cytochrome c (cyt c). Treating the cells with compound C, an AMPK inhibitor, reversed the phenomena, leading to an increase in cell viability and a decrease in apoptosis induction. Treating the cells with an ROS scavenger, N-acetyl cysteine (NAC), led to AMPK inactivation and apoptosis inhibition, allowing the recovery of cell health. In conclusion, ω-HUA sequentially caused the production of mitochondrial ROS and the consequent AMPK activation, thereby inducing apoptosis in breast cancer cells. Thus, ω-HUA may prove useful as an anticancer agent that targets AMPK in breast cancer cells.
Collapse
Affiliation(s)
- Joungjwa Ahn
- Department of Food Science and Industry, Jungwon University, 85, Munmu-ro, Goesan-eup, Goesan-gun, Chungcheongbuk-do, 28024, Republic of Korea
| | - Hyesung Kim
- Institute of Biomedical Science, Apple Tree Dental Hospital, 1450, Jungang-ro, Ilsanseo-gu, Goyang-si, Gyeonggi-do, 10387, Republic of Korea
| | - Kyung Mi Yang
- Institute of Biomedical Science, Apple Tree Dental Hospital, 1450, Jungang-ro, Ilsanseo-gu, Goyang-si, Gyeonggi-do, 10387, Republic of Korea.
| |
Collapse
|
6
|
Kim T, Kang S, Park J, Oh D. Construction of an engineered biocatalyst system for the production of medium‐chain α,ω‐dicarboxylic acids from medium‐chain ω‐hydroxycarboxylic acids. Biotechnol Bioeng 2020; 117:2648-2657. [DOI: 10.1002/bit.27433] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/13/2020] [Accepted: 05/16/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Tae‐Hun Kim
- Department of Bioscience and BiotechnologyKonkuk University Seoul Republic of Korea
| | - Su‐Hwan Kang
- Department of Bioscience and BiotechnologyKonkuk University Seoul Republic of Korea
| | - Jin‐Byung Park
- Department of Food Science and EngineeringEwha Womans University Seoul Republic of Korea
| | - Deok‐Kun Oh
- Department of Bioscience and BiotechnologyKonkuk University Seoul Republic of Korea
| |
Collapse
|
7
|
Kim TH, Kang SH, Han JE, Seo EJ, Jeon EY, Choi GE, Park JB, Oh DK. Multilayer Engineering of Enzyme Cascade Catalysis for One-Pot Preparation of Nylon Monomers from Renewable Fatty Acids. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05426] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Tae-Hun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Su-Hwan Kang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Jeong-Eun Han
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Eun-Ji Seo
- Department of Food Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Eun-Yeong Jeon
- Department of Food Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Go-Eun Choi
- Department of Food Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jin-Byung Park
- Department of Food Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
8
|
Cha H, Hwang S, Lee D, Kumar AR, Kwon Y, Voß M, Schuiten E, Bornscheuer UT, Hollmann F, Oh D, Park J. Whole‐Cell Photoenzymatic Cascades to Synthesize Long‐Chain Aliphatic Amines and Esters from Renewable Fatty Acids. Angew Chem Int Ed Engl 2020; 59:7024-7028. [DOI: 10.1002/anie.201915108] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Hee‐Jeong Cha
- Department of Food Science & Engineering Ewha Womans University Seoul 03760 Republic of Korea
| | - Se‐Yeun Hwang
- Department of Food Science & Engineering Ewha Womans University Seoul 03760 Republic of Korea
| | - Da‐Som Lee
- Department of Food Science & Engineering Ewha Womans University Seoul 03760 Republic of Korea
| | - Akula Ravi Kumar
- Department of Food Science & Engineering Ewha Womans University Seoul 03760 Republic of Korea
- Department of Chemistry and Nanoscience Ewha Womans University Seoul 03760 Republic of Korea
| | - Yong‐Uk Kwon
- Department of Chemistry and Nanoscience Ewha Womans University Seoul 03760 Republic of Korea
| | - Moritz Voß
- Institute of Biochemistry Department of Biotechnology & Enzyme Catalysis Greifswald University 17487 Greifswald Germany
| | - Eva Schuiten
- Institute of Biochemistry Department of Biotechnology & Enzyme Catalysis Greifswald University 17487 Greifswald Germany
| | - Uwe T. Bornscheuer
- Institute of Biochemistry Department of Biotechnology & Enzyme Catalysis Greifswald University 17487 Greifswald Germany
| | - Frank Hollmann
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629HZ Delft The Netherlands
| | - Deok‐Kun Oh
- Department of Bioscience and Biotechnology Konkuk University Seoul 05029 Republic of Korea
| | - Jin‐Byung Park
- Department of Food Science & Engineering Ewha Womans University Seoul 03760 Republic of Korea
| |
Collapse
|
9
|
Cha H, Hwang S, Lee D, Kumar AR, Kwon Y, Voß M, Schuiten E, Bornscheuer UT, Hollmann F, Oh D, Park J. Whole‐Cell Photoenzymatic Cascades to Synthesize Long‐Chain Aliphatic Amines and Esters from Renewable Fatty Acids. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915108] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hee‐Jeong Cha
- Department of Food Science & EngineeringEwha Womans University Seoul 03760 Republic of Korea
| | - Se‐Yeun Hwang
- Department of Food Science & EngineeringEwha Womans University Seoul 03760 Republic of Korea
| | - Da‐Som Lee
- Department of Food Science & EngineeringEwha Womans University Seoul 03760 Republic of Korea
| | - Akula Ravi Kumar
- Department of Food Science & EngineeringEwha Womans University Seoul 03760 Republic of Korea
- Department of Chemistry and NanoscienceEwha Womans University Seoul 03760 Republic of Korea
| | - Yong‐Uk Kwon
- Department of Chemistry and NanoscienceEwha Womans University Seoul 03760 Republic of Korea
| | - Moritz Voß
- Institute of BiochemistryDepartment of Biotechnology & Enzyme CatalysisGreifswald University 17487 Greifswald Germany
| | - Eva Schuiten
- Institute of BiochemistryDepartment of Biotechnology & Enzyme CatalysisGreifswald University 17487 Greifswald Germany
| | - Uwe T. Bornscheuer
- Institute of BiochemistryDepartment of Biotechnology & Enzyme CatalysisGreifswald University 17487 Greifswald Germany
| | - Frank Hollmann
- Department of BiotechnologyDelft University of Technology Van der Maasweg 9 2629HZ Delft The Netherlands
| | - Deok‐Kun Oh
- Department of Bioscience and BiotechnologyKonkuk University Seoul 05029 Republic of Korea
| | - Jin‐Byung Park
- Department of Food Science & EngineeringEwha Womans University Seoul 03760 Republic of Korea
| |
Collapse
|
10
|
Schmidt S, Bornscheuer UT. Baeyer-Villiger monooxygenases: From protein engineering to biocatalytic applications. FLAVIN-DEPENDENT ENZYMES: MECHANISMS, STRUCTURES AND APPLICATIONS 2020; 47:231-281. [DOI: 10.1016/bs.enz.2020.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Song JW, Seo JH, Oh DK, Bornscheuer UT, Park JB. Design and engineering of whole-cell biocatalytic cascades for the valorization of fatty acids. Catal Sci Technol 2020. [DOI: 10.1039/c9cy01802f] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This review presents the key factors to construct a productive whole-cell biocatalytic cascade exemplified for the biotransformation of renewable fatty acids.
Collapse
Affiliation(s)
- Ji-Won Song
- Department of Food Science and Engineering
- Ewha Womans University
- Seoul 03760
- Republic of Korea
| | - Joo-Hyun Seo
- Department of Bio and Fermentation Convergence Technology
- Kookmin University
- Seoul 02707
- Republic of Korea
| | - Doek-Kun Oh
- Department of Bioscience and Biotechnology
- Konkuk University
- Seoul 143-701
- Republic of Korea
| | - Uwe T. Bornscheuer
- Institute of Biochemistry
- Department of Biotechnology & Enzyme Catalysis
- Greifswald University
- 17487 Greifswald
- Germany
| | - Jin-Byung Park
- Department of Food Science and Engineering
- Ewha Womans University
- Seoul 03760
- Republic of Korea
- Institute of Molecular Microbiology and Biosystems Engineering
| |
Collapse
|
12
|
Lazarini-Martínez A, Pérez-Valdespino A, Martínez FH, Ordaz NR, Galíndez-Mayer J, Juárez-Ramírez C, Curiel-Quesada E. Assembly of an atrazine catabolic operon and its introduction to Gram-negative hosts for robust and stable degradation of triazine herbicides. FEMS Microbiol Lett 2019; 366:5634263. [DOI: 10.1093/femsle/fnz233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/19/2019] [Indexed: 01/24/2023] Open
Abstract
ABSTRACTIn 1995, Pseudomonas sp. ADP, capable of metabolizing atrazine, was isolated from contaminated soil. Genes responsible for atrazine mineralization were found scattered in the 108.8 kb pADP-1 plasmid carried by this strain, some of them flanked by insertion sequences rendering them unstable. The goal of this work was to construct a transcriptional unit containing the atz operon in an easy to transfer manner, to be introduced and inherited stably by Gram-negative bacteria. atz genes were PCR amplified, joined into an operon and inserted onto the mobilizable plasmid pBAMD1–2. Primers were designed to add efficient transcription and translation signals. Plasmid bearing the atz operon was transferred to different Gram-negative strains by conjugation, which resulted in Tn5 transposase-mediated chromosomal insertion of the atz operon. To test the operon activity, atrazine degradation by transposants was assessed both colorimetrically and by high-performance liquid chromatography (HPLC). Transposants mineralized atrazine more efficiently than wild-type Pseudomonas sp. ADP and did not accumulate cyanuric acid. Atrazine degradation was not repressed by simple nitrogen sources. Genes conferring atrazine-mineralizing capacities were stable and had little or null effect on the fitness of different transposants. Introduction of catabolic operons in a stable fashion could be used to develop bacteria with better degrading capabilities useful in bioremediation.
Collapse
Affiliation(s)
- Alfredo Lazarini-Martínez
- Department of Biochemistry, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás. CP11340 Mexico City, Mexico
| | - Abigail Pérez-Valdespino
- Department of Biochemistry, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás. CP11340 Mexico City, Mexico
| | - Fernando Hernández Martínez
- Department of Biochemistry, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás. CP11340 Mexico City, Mexico
| | - Nora Ruiz Ordaz
- Department of Biochemical Engineering, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional. Av. Wilfrido Massieu 399, Unidad Adolfo López Mateos, CP07738 Mexico City, Mexico
| | - Juvencio Galíndez-Mayer
- Department of Biochemical Engineering, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional. Av. Wilfrido Massieu 399, Unidad Adolfo López Mateos, CP07738 Mexico City, Mexico
| | - Cleotilde Juárez-Ramírez
- Department of Biochemical Engineering, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional. Av. Wilfrido Massieu 399, Unidad Adolfo López Mateos, CP07738 Mexico City, Mexico
| | - Everardo Curiel-Quesada
- Department of Biochemistry, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás. CP11340 Mexico City, Mexico
| |
Collapse
|
13
|
Ménil S, Petit J, Courvoisier‐Dezord E, Debard A, Pellouin V, Reignier T, Sergent M, Deyris V, Duquesne K, Berardinis V, Alphand V. Tuning of the enzyme ratio in a neutral redox convergent cascade: A key approach for an efficient one‐pot/two‐step biocatalytic whole‐cell system. Biotechnol Bioeng 2019; 116:2852-2863. [DOI: 10.1002/bit.27133] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/22/2019] [Accepted: 07/27/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Sidiky Ménil
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 Marseille France
| | - Jean‐Louis Petit
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRSUniversite Evry, Université Paris‐Saclay Evry France
| | | | - Adrien Debard
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRSUniversite Evry, Université Paris‐Saclay Evry France
| | - Virginie Pellouin
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRSUniversite Evry, Université Paris‐Saclay Evry France
| | - Thomas Reignier
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 Marseille France
| | - Michelle Sergent
- Aix Marseille Univ, Univ Avignon, CNRS, IRD, IMBE Marseille France
| | - Valérie Deyris
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 Marseille France
| | - Katia Duquesne
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 Marseille France
| | - Véronique Berardinis
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRSUniversite Evry, Université Paris‐Saclay Evry France
| | | |
Collapse
|
14
|
Meng S, Guo J, Nie K, Tan T, Xu H, Liu L. Chemoenzymatic Synthesis of Fragrance Compounds from Stearic Acid. Chembiochem 2019; 20:2232-2235. [PMID: 30983113 DOI: 10.1002/cbic.201900210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Indexed: 11/09/2022]
Abstract
Fatty acids are versatile precursors for fuels, fine chemicals, polymers, perfumes, etc. The properties and applications of fatty acid derivatives depend on chain length and on functional groups and their positions. To tailor fatty acids for desired properties, an engineered P450 monooxygenase has been employed here for enhanced selective hydroxylation of fatty acids. After oxidation of the hydroxy groups to the corresponding ketones, Baeyer-Villiger oxidation could be applied to introduce an oxygen atom into the hydrocarbon chains to form esters, which were finally hydrolyzed to afford either hydroxylated fatty acids or dicarboxylic fatty acids. Using this strategy, we have demonstrated that the high-value-added flavors exaltolide and silvanone supra can be synthesized from stearic acid through a hydroxylation/carbonylation/esterification/hydrolysis/lactonization reaction sequence with isolated yields of about 36 % (for ω-1 hydroxylated stearic acid; 100, 60, 80, 75 % yields for the individual reactions, respectively) or 24 % (for ω-2 hydroxylated stearic acid). Ultimately, we obtained 7.91 mg of exaltolide and 13.71 mg of silvanone supra from 284.48 mg stearic acid.
Collapse
Affiliation(s)
- Shuaiqi Meng
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beisanhuan EastRoad 15, Beijing, 100029, China
| | - Jia Guo
- State Key Laboratory of Special Functional Waterproof Materials, Beijing Oriental Yuhong Waterproof Technology Co. Ltd, Shunping Road 2, Beijing, 1000123, China
| | - Kaili Nie
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beisanhuan EastRoad 15, Beijing, 100029, China
| | - Tianwei Tan
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beisanhuan EastRoad 15, Beijing, 100029, China
| | - Haijun Xu
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beisanhuan EastRoad 15, Beijing, 100029, China
| | - Luo Liu
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beisanhuan EastRoad 15, Beijing, 100029, China
| |
Collapse
|
15
|
Biosynthesis of ω-hydroxy fatty acids and related chemicals from natural fatty acids by recombinant Escherichia coli. Appl Microbiol Biotechnol 2018; 103:191-199. [DOI: 10.1007/s00253-018-9503-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 10/27/2022]
|
16
|
Improving catalytic activity of the Baeyer-Villiger monooxygenase-based Escherichia coli biocatalysts for the overproduction of (Z)-11-(heptanoyloxy)undec-9-enoic acid from ricinoleic acid. Sci Rep 2018; 8:10280. [PMID: 29980730 PMCID: PMC6035261 DOI: 10.1038/s41598-018-28575-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/21/2018] [Indexed: 12/21/2022] Open
Abstract
Baeyer–Villiger monooxygenases (BVMOs) can be used for the biosynthesis of lactones and esters from ketones. However, the BVMO-based biocatalysts are not so stable under process conditions. Thereby, this study focused on enhancing stability of the BVMO-based biocatalysts. The biotransformation of ricinoleic acid into (Z)-11-(heptanoyloxy)undec-9-enoic acid by the recombinant Escherichia coli expressing the BVMO from Pseudomonas putida and an alcohol dehydrogenase from Micrococcus luteus was used as a model system. After thorough investigation of the key factors to influence stability of the BVMO, Cys302 was identified as an engineering target. The substitution of Cys302 to Leu enabled the engineered enzyme (i.e., E6BVMOC302L) to become more stable toward oxidative and thermal stresses. The catalytic activity of E6BVMOC302L-based E. coli biocatalysts was also greater than the E6BVMO-based biocatalysts. Another factor to influence biocatalytic performance of the BVMO-based whole-cell biocatalysts was availability of carbon and energy source during biotransformations. Glucose feeding into the reaction medium led to a marked increase of final product concentrations. Overall, the bioprocess engineering to improve metabolic stability of host cells in addition to the BVMO engineering allowed us to produce (Z)-11-(heptanoyloxy)undec-9-enoic acid to a concentration of 132 mM (41 g/L) from 150 mM ricinoleic acid within 8 h.
Collapse
|
17
|
Cho YH, Kim SJ, Kim JY, Lee DH, Park K, Park YC. Effect of PelB signal sequences on Pfe1 expression and ω-hydroxyundec-9-enoic acid biotransformation in recombinant Escherichia coli. Appl Microbiol Biotechnol 2018; 102:7407-7416. [DOI: 10.1007/s00253-018-9139-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 05/23/2018] [Indexed: 11/29/2022]
|
18
|
Artificial Biocatalytic Linear Cascades to Access Hydroxy Acids, Lactones, and α- and β-Amino Acids. Catalysts 2018. [DOI: 10.3390/catal8050205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
α-, β-, and ω-Hydroxy acids, amino acids, and lactones represent common building blocks and intermediates for various target molecules. This review summarizes artificial cascades published during the last 10 years leading to these products. Renewables as well as compounds originating from fossil resources have been employed as starting material. The review provides an inspiration for new cascade designs and may be the basis to design variations of these cascades starting either from alternative substrates or extending them to even more sophisticated products.
Collapse
|
19
|
Microbial synthesis of undec-9-enoic acid, heptyl ester from renewable fatty acids using recombinant Corynebacterium glutamicum-based whole-cell biocatalyst. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Cha HJ, Seo EJ, Song JW, Jo HJ, Kumar AR, Park JB. Simultaneous Enzyme/Whole-Cell Biotransformation of C18 Ricinoleic Acid into (R
)-3-Hydroxynonanoic Acid, 9-Hydroxynonanoic Acid, and 1,9-Nonanedioic Acid. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201701029] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hee-Jeong Cha
- Department of Food Science and Engineering; Ewha Womans University; Seoul 03760 Republic of Korea
| | - Eun-Ji Seo
- Department of Food Science and Engineering; Ewha Womans University; Seoul 03760 Republic of Korea
| | - Ji-Won Song
- Department of Food Science and Engineering; Ewha Womans University; Seoul 03760 Republic of Korea
| | - Hye-Jin Jo
- Department of Food Science and Engineering; Ewha Womans University; Seoul 03760 Republic of Korea
| | - Akula Ravi Kumar
- Department of Chemistry and Nanoscience; Ewha Womans University; Seoul 03760 Republic of Korea
| | - Jin-Byung Park
- Department of Food Science and Engineering; Ewha Womans University; Seoul 03760 Republic of Korea
- Institute of Molecular Microbiology and Biosystems Engineering; Ewha Womans University; Seoul 03760 Republic of Korea
| |
Collapse
|
21
|
Cho YH, Kim SJ, Kim HW, Kim JY, Gwak JS, Chung D, Kim KH, Park K, Park YC. Continuous supply of glucose and glycerol enhances biotransformation of ricinoleic acid to ( E )-11-(heptanoyloxy) undec-9-enoic acid in recombinant Escherichia coli. J Biotechnol 2017; 253:34-39. [DOI: 10.1016/j.jbiotec.2017.05.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 04/29/2017] [Accepted: 05/19/2017] [Indexed: 11/25/2022]
|
22
|
Abstract
Whole-cell biocatalysts provide unique advantages and have been widely used for the efficient biosynthesis of value-added fine and bulk chemicals, as well as pharmaceutically active ingredients. What is more, advances in synthetic biology and metabolic engineering, together with the rapid development of molecular genetic tools, have brought about a renaissance of whole-cell biocatalysis. These rapid advancements mean that whole-cell biocatalysts can increasingly be rationally designed. Genes of heterologous enzymes or synthetic pathways are increasingly being introduced into microbial hosts, and depending on the complexity of the synthetic pathway or the target products, they can enable the production of value-added chemicals from cheap feedstock. Metabolic engineering and synthetic biology efforts aimed at optimizing the existing microbial cell factories concentrate on improving heterologous pathway flux, precursor supply, and cofactor balance, as well as other aspects of cellular metabolism, to enhance the efficiency of biocatalysts. In the present review, we take a critical look at recent developments in whole-cell biocatalysis, with an emphasis on strategies applied to designing and optimizing the organisms that are increasingly modified for efficient production of chemicals.
Collapse
Affiliation(s)
- Baixue Lin
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.
| | - Yong Tao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.
| |
Collapse
|
23
|
Bioprocess engineering to produce 9-(nonanoyloxy) nonanoic acid by a recombinant Corynebacterium glutamicum-based biocatalyst. J Ind Microbiol Biotechnol 2017; 44:1301-1311. [PMID: 28567672 DOI: 10.1007/s10295-017-1945-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 04/16/2017] [Indexed: 10/19/2022]
Abstract
Here, Corynebacterium glutamicum ATCC13032 expressing Baeyer-Villiger monooxygenase from Pseudomonas putida KT2440 was designed to produce 9-(nonanoyloxy) nonanoic acid from 10-ketostearic acid. Diverse parameters including cultivation and reaction temperatures, type of detergent, and pH were found to improve biotransformation efficiency. The optimal temperature of cultivation for the production of 9-(nonanoyloxy) nonanoic acid from 10-ketostearic acid using whole cells of recombinant C. glutamicum was 15 °C, but the reaction temperature was optimal at 30 °C. Enhanced conversion efficiency was obtained by supplying 0.05 g/L of Tween 80 at pH 7.5. Under these optimal conditions, recombinant C. glutamicum produced 0.28 mM of 9-(nonanoyloxy) nonanoic acid with a 75.6% (mol/mol) conversion yield in 2 h. This is the first report on the biotransformation of 10-ketostearic acid to 9-(nonanoyloxy) nonanoic acid with a recombinant whole-cell C. glutamicum-based biocatalyst and the results demonstrate the feasibility of using C. glutamicum as a whole-cell biocatalyst.
Collapse
|
24
|
Schrittwieser JH, Velikogne S, Hall M, Kroutil W. Artificial Biocatalytic Linear Cascades for Preparation of Organic Molecules. Chem Rev 2017; 118:270-348. [DOI: 10.1021/acs.chemrev.7b00033] [Citation(s) in RCA: 371] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Joerg H. Schrittwieser
- Institute
of Chemistry, Organic and Bioorganic Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Stefan Velikogne
- ACIB
GmbH, Department of Chemistry, University of Graz, Heinrichstrasse
28, 8010 Graz, Austria
| | - Mélanie Hall
- Institute
of Chemistry, Organic and Bioorganic Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute
of Chemistry, Organic and Bioorganic Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, Heinrichstrasse 28, 8010 Graz, Austria
- ACIB
GmbH, Department of Chemistry, University of Graz, Heinrichstrasse
28, 8010 Graz, Austria
| |
Collapse
|
25
|
Hydrolase BioH knockout in E. coli enables efficient fatty acid methyl ester bioprocessing. ACTA ACUST UNITED AC 2017; 44:339-351. [DOI: 10.1007/s10295-016-1890-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/16/2016] [Indexed: 01/19/2023]
Abstract
Abstract
Fatty acid methyl esters (FAMEs) originating from plant oils are most interesting renewable feedstocks for biofuels and bio-based materials. FAMEs can also be produced and/or functionalized by engineered microbes to give access to, e.g., polymer building blocks. Yet, they are often subject to hydrolysis yielding free fatty acids, which typically are degraded by microbes. We identified BioH as the key enzyme responsible for the hydrolysis of medium-chain length FAME derivatives in different E. coli K-12 strains. E. coli ΔbioH strains showed up to 22-fold reduced FAME hydrolysis rates in comparison with respective wild-type strains. Knockout strains showed, beside the expected biotin auxotrophy, unchanged growth behavior and biocatalytic activity. Thus, high specific rates (~80 U gCDW −1) for terminal FAME oxyfunctionalization catalyzed by a recombinant alkane monooxygenase could be combined with reduced hydrolysis. Biotransformations in process-relevant two-liquid phase systems profited from reduced fatty acid accumulation and/or reduced substrate loss via free fatty acid metabolization. The BioH knockout strategy was beneficial in all tested strains, although its effect was found to differ according to specific strain properties, such as FAME hydrolysis and FFA degradation activities. BioH or functional analogs can be found in virtually all microorganisms, making bioH deletion a broadly applicable strategy for efficient microbial bioprocessing involving FAMEs.
Collapse
|
26
|
Jeon EY, Seo JH, Kang WR, Kim MJ, Lee JH, Oh DK, Park JB. Simultaneous Enzyme/Whole-Cell Biotransformation of Plant Oils into C9 Carboxylic Acids. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01884] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Eun-Yeong Jeon
- Department
of Food Science and Engineering, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Joo-Hyun Seo
- Department
of Food Science and Engineering, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Woo-Ri Kang
- Department
of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea
| | - Min-Ji Kim
- Department
of Food Science and Engineering, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Jung-Hoo Lee
- Department
of Food Science and Engineering, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Deok-Kun Oh
- Department
of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea
| | - Jin-Byung Park
- Department
of Food Science and Engineering, Ewha Womans University, Seoul 120-750, Republic of Korea
| |
Collapse
|
27
|
Woo JM, Kim JW, Song JW, Blank LM, Park JB. Activation of the Glutamic Acid-Dependent Acid Resistance System in Escherichia coli BL21(DE3) Leads to Increase of the Fatty Acid Biotransformation Activity. PLoS One 2016; 11:e0163265. [PMID: 27681369 PMCID: PMC5040553 DOI: 10.1371/journal.pone.0163265] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 09/05/2016] [Indexed: 01/29/2023] Open
Abstract
The biosynthesis of carboxylic acids including fatty acids from biomass is central in envisaged biorefinery concepts. The productivities are often, however, low due to product toxicity that hamper whole-cell biocatalyst performance. Here, we have investigated factors that influence the tolerance of Escherichia coli to medium chain carboxylic acid (i.e., n-heptanoic acid)-induced stress. The metabolic and genomic responses of E. coli BL21(DE3) and MG1655 grown in the presence of n-heptanoic acid indicated that the GadA/B-based glutamic acid-dependent acid resistance (GDAR) system might be critical for cellular tolerance. The GDAR system, which is responsible for scavenging intracellular protons by catalyzing decarboxylation of glutamic acid, was inactive in E. coli BL21(DE3). Activation of the GDAR system in this strain by overexpressing the rcsB and dsrA genes, of which the gene products are involved in the activation of GadE and RpoS, respectively, resulted in acid tolerance not only to HCl but also to n-heptanoic acid. Furthermore, activation of the GDAR system allowed the recombinant E. coli BL21(DE3) expressing the alcohol dehydrogenase of Micrococcus luteus and the Baeyer-Villiger monooxygenase of Pseudomonas putida to reach 60% greater product concentration in the biotransformation of ricinoleic acid (i.e., 12-hydroxyoctadec-9-enoic acid (1)) into n-heptanoic acid (5) and 11-hydroxyundec-9-enoic acid (4). This study may contribute to engineering E. coli-based biocatalysts for the production of carboxylic acids from renewable biomass.
Collapse
Affiliation(s)
- Ji-Min Woo
- Department of Food Science & Engineering, Ewha Womans University, Seoul, 120-750, Republic of Korea
| | - Ji-Won Kim
- Department of Food Science & Engineering, Ewha Womans University, Seoul, 120-750, Republic of Korea
| | - Ji-Won Song
- Department of Food Science & Engineering, Ewha Womans University, Seoul, 120-750, Republic of Korea
| | - Lars M. Blank
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
| | - Jin-Byung Park
- Department of Food Science & Engineering, Ewha Womans University, Seoul, 120-750, Republic of Korea
- * E-mail:
| |
Collapse
|
28
|
Koppireddi S, Seo JH, Jeon EY, Chowdhury PS, Jang HY, Park JB, Kwon YU. Combined Biocatalytic and Chemical Transformations of Oleic Acid to ω-Hydroxynonanoic Acid and α,ω-Nonanedioic Acid. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600216] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Satish Koppireddi
- Department of Chemistry and Nanoscience; Ewha Womans University; Seoul 03760 Republic of Korea
| | - Joo-Hyun Seo
- Department of Food Science and Engineering; Ewha Womans University; Seoul 03760 Republic of Korea
| | - Eun-Yeong Jeon
- Department of Food Science and Engineering; Ewha Womans University; Seoul 03760 Republic of Korea
| | | | - Hyun-Young Jang
- Department of Food Science and Engineering; Ewha Womans University; Seoul 03760 Republic of Korea
| | - Jin-Byung Park
- Department of Food Science and Engineering; Ewha Womans University; Seoul 03760 Republic of Korea
| | - Yong-Uk Kwon
- Department of Chemistry and Nanoscience; Ewha Womans University; Seoul 03760 Republic of Korea
| |
Collapse
|
29
|
Baeyer-Villiger oxidations: biotechnological approach. Appl Microbiol Biotechnol 2016; 100:6585-6599. [DOI: 10.1007/s00253-016-7670-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/02/2016] [Accepted: 06/07/2016] [Indexed: 10/21/2022]
|
30
|
Seo JH, Kim HH, Jeon EY, Song YH, Shin CS, Park JB. Engineering of Baeyer-Villiger monooxygenase-based Escherichia coli biocatalyst for large scale biotransformation of ricinoleic acid into (Z)-11-(heptanoyloxy)undec-9-enoic acid. Sci Rep 2016; 6:28223. [PMID: 27311560 PMCID: PMC4911592 DOI: 10.1038/srep28223] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 06/01/2016] [Indexed: 01/25/2023] Open
Abstract
Baeyer-Villiger monooxygenases (BVMOs) are able to catalyze regiospecific Baeyer-Villiger oxygenation of a variety of cyclic and linear ketones to generate the corresponding lactones and esters, respectively. However, the enzymes are usually difficult to express in a functional form in microbial cells and are rather unstable under process conditions hindering their large-scale applications. Thereby, we investigated engineering of the BVMO from Pseudomonas putida KT2440 and the gene expression system to improve its activity and stability for large-scale biotransformation of ricinoleic acid (1) into the ester (i.e., (Z)-11-(heptanoyloxy)undec-9-enoic acid) (3), which can be hydrolyzed into 11-hydroxyundec-9-enoic acid (5) (i.e., a precursor of polyamide-11) and n-heptanoic acid (4). The polyionic tag-based fusion engineering of the BVMO and the use of a synthetic promoter for constitutive enzyme expression allowed the recombinant Escherichia coli expressing the BVMO and the secondary alcohol dehydrogenase of Micrococcus luteus to produce the ester (3) to 85 mM (26.6 g/L) within 5 h. The 5 L scale biotransformation process was then successfully scaled up to a 70 L bioreactor; 3 was produced to over 70 mM (21.9 g/L) in the culture medium 6 h after biotransformation. This study demonstrated that the BVMO-based whole-cell reactions can be applied for large-scale biotransformations.
Collapse
Affiliation(s)
- Joo-Hyun Seo
- Department of Food Science and Engineering, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Hwan-Hee Kim
- Department of Food Science and Engineering, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Eun-Yeong Jeon
- Department of Food Science and Engineering, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Young-Ha Song
- AP Technology, Suwon, Kyunggi 443-702, Republic of Korea
| | - Chul-Soo Shin
- AP Technology, Suwon, Kyunggi 443-702, Republic of Korea
| | - Jin-Byung Park
- Department of Food Science and Engineering, Ewha Womans University, Seoul 120-750, Republic of Korea
| |
Collapse
|
31
|
Preparation of 11-hexyloxy-9-undecenoic acid from crude castor oil hydrolysates by recombinant Escherichia coli expressing alcohol dehydrogenase and Baeyer–Villiger monooxygenase. Process Biochem 2016. [DOI: 10.1016/j.procbio.2015.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Jung SM, Seo JH, Lee JH, Park JB, Seo JH. Fatty acid hydration activity of a recombinant Escherichia coli-based biocatalyst is improved through targeting the oleate hydratase into the periplasm. Biotechnol J 2015; 10:1887-93. [PMID: 26429801 DOI: 10.1002/biot.201500141] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/11/2015] [Accepted: 09/29/2015] [Indexed: 11/12/2022]
Abstract
Whole-cell biotransformation of fatty acids can be influenced by the activities of catalytic enzymes and by the efficiency of substrate transport into host cells. Here, we improved fatty acid hydration activity of the recombinant Escherichia coli expressing an oleate hydratase of Stenotrophomonas maltophilia by targeting the catalytic enzyme into the periplasm instead of the cytoplasm. Recombinant E. coli producing OhyA in the periplasm under guidance of the PelB signal sequence (E. coli OhyA_PP) exhibited significantly greater hydration activity with oleic acid and linoleic acid compared to a recombinant E. coli producing OhyA in the cytoplasm (E. coli OhyA_CS). For example, the oleate double bond hydration rate of E. coli OhyA_PP was >400 μmol/g dry cells/min (400 U/g dry cells), which is >10-fold higher than that of E. coli OhyA_CS. As the specific activities of the enzymes targeted into the cytoplasm and periplasm were comparable, we assumed that targeting OhyA into the periplasm could accelerate fatty acid transport to the catalytic enzymes by skipping the major mass transport barrier of the cytoplasmic membrane. Our results will contribute to the development of whole-cell biocatalysts for fatty acid biotransformation.
Collapse
Affiliation(s)
- Sang-Min Jung
- Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Joo-Hyun Seo
- Department of Food Science & Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Jung-Hoo Lee
- Department of Food Science & Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Jin-Byung Park
- Department of Food Science & Engineering, Ewha Womans University, Seoul, Republic of Korea.
| | - Jin-Ho Seo
- Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
33
|
Seo JH, Lee SM, Lee J, Park JB. Adding value to plant oils and fatty acids: Biological transformation of fatty acids into ω-hydroxycarboxylic, α,ω-dicarboxylic, and ω-aminocarboxylic acids. J Biotechnol 2015; 216:158-66. [PMID: 26546054 DOI: 10.1016/j.jbiotec.2015.10.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/22/2015] [Accepted: 10/30/2015] [Indexed: 10/22/2022]
Abstract
Not only short chain ω-hydroxycarboxylic acids, α,ω-dicarboxylic acids, and ω-aminocarboxylic acids but also medium to long chain carboxylic acids are widely used as building blocks and intermediates in the chemical, pharmaceutical, and food industries. Thereby, recent achievements in biological production of medium to long chain carboxylic acids are addressed here. ω-Hydroxycarboxylic and α,ω-dicarboxylic acids were synthesized via terminal CH bond oxygenation of fatty acids and/or internal oxidative cleavage of the fatty acid carbon skeletons. ω-Aminocarboxylic acids were enzymatically produced from ω-hydroxycarboxylic acids via ω-oxocarboxylic acids. Productivities and product yields of some of the products are getting close to the industrial requirements for large scale production.
Collapse
Affiliation(s)
- Joo-Hyun Seo
- Department of Food Science and Engineering, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Sun-Mee Lee
- Division of Food Science, Kyungil University, Gyeongsan 712-701, Republic of Korea
| | - Jinwon Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 121-742, Republic of Korea
| | - Jin-Byung Park
- Department of Food Science and Engineering, Ewha Womans University, Seoul 120-750, Republic of Korea.
| |
Collapse
|
34
|
Schmidt S, Büchsenschütz HC, Scherkus C, Liese A, Gröger H, Bornscheuer UT. Biocatalytic Access to Chiral Polyesters by an Artificial Enzyme Cascade Synthesis. ChemCatChem 2015. [DOI: 10.1002/cctc.201500823] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sandy Schmidt
- Institute of Biochemistry; Dept. of Biotechnology & Enzyme Catalysis; University of Greifswald; Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| | - Hanna C. Büchsenschütz
- Institute of Biochemistry; Dept. of Biotechnology & Enzyme Catalysis; University of Greifswald; Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| | - Christian Scherkus
- Institute of Technical Biocatalysis; Hamburg University of Technology; Denickestr. 15 21073 Hamburg Germany
| | - Andreas Liese
- Institute of Technical Biocatalysis; Hamburg University of Technology; Denickestr. 15 21073 Hamburg Germany
| | - Harald Gröger
- Organic Chemistry I, Faculty of Chemistry; Bielefeld University; P.O. Box 100131 33501 Bielefeld Germany
| | - Uwe T. Bornscheuer
- Institute of Biochemistry; Dept. of Biotechnology & Enzyme Catalysis; University of Greifswald; Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| |
Collapse
|
35
|
Production of 13S-hydroxy-9(Z)-octadecenoic acid from linoleic acid by whole recombinant cells expressing linoleate 13-hydratase from Lactobacillus acidophilus. J Biotechnol 2015; 208:1-10. [DOI: 10.1016/j.jbiotec.2015.05.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/20/2015] [Accepted: 05/13/2015] [Indexed: 11/15/2022]
|
36
|
Baek AH, Jeon EY, Lee SM, Park JB. Expression levels of chaperones influence biotransformation activity of recombinantEscherichia coliexpressingMicrococcus luteusalcohol dehydrogenase andPseudomonas putidaBaeyer-Villiger monooxygenase. Biotechnol Bioeng 2015; 112:889-95. [DOI: 10.1002/bit.25521] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/08/2014] [Indexed: 01/13/2023]
Affiliation(s)
- A-Hyong Baek
- Department of Food Science & Engineering; Ewha Womans University; Seoul 120-750 Republic of Korea
| | - Eun-Yeong Jeon
- Department of Food Science & Engineering; Ewha Womans University; Seoul 120-750 Republic of Korea
| | - Sun-Mee Lee
- School; of; Food; Science; Kyungil University; Kyungsan 712-701 Republic of Korea
| | - Jin-Byung Park
- Department of Food Science & Engineering; Ewha Womans University; Seoul 120-750 Republic of Korea
| |
Collapse
|
37
|
Enzyme fusion for whole-cell biotransformation of long-chain sec-alcohols into esters. Appl Microbiol Biotechnol 2015; 99:6267-75. [DOI: 10.1007/s00253-015-6392-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 01/06/2015] [Indexed: 10/24/2022]
|
38
|
Biotransformation of Linoleic Acid into Hydroxy Fatty Acids and Carboxylic Acids Using a Linoleate Double Bond Hydratase as Key Enzyme. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201400893] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
39
|
Lee YA, Jeon EY, Lee SM, Bornscheuer UT, Park JB. Engineering the substrate-binding domain of an esterase enhances its hydrolytic activity toward fatty acid esters. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.09.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
The microbial cell—functional unit for energy dependent multistep biocatalysis. Curr Opin Biotechnol 2014; 30:178-89. [DOI: 10.1016/j.copbio.2014.06.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/28/2014] [Accepted: 06/05/2014] [Indexed: 11/19/2022]
|
41
|
Song JW, Lee JH, Bornscheuer UT, Park JB. Microbial Synthesis of Medium-Chain α,ω-Dicarboxylic Acids and ω-Aminocarboxylic Acids from Renewable Long-Chain Fatty Acids. Adv Synth Catal 2014. [DOI: 10.1002/adsc.201300784] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|