1
|
Liu X, Yu E, Zhao Q, Han H, Li Q. Enzymes as green and sustainable tools for DNA data storage. Chem Commun (Camb) 2025; 61:2891-2905. [PMID: 39834292 DOI: 10.1039/d4cc06351a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
DNA is considered as an ideal supramolecular material for information storage with high storage density and long-term stability. Enzymes, as green and sustainable tools, offer several unique advantages for DNA-based information storage. These advantages include low cost and reduced generation of hazardous wastes during DNA synthesis, as well as the improvements in data reading speed and data recovery accuracy. Moreover, enzymes could achieve scalable data steganography. In this review, we introduced the exciting application strategies of enzymatic tools in each step of DNA information storage (writing, storing, retrieval and reading). We further address the challenges and opportunities associated with enzymatic tools for DNA information storage, aiming at developing new techniques to overcome these obstacles.
Collapse
Affiliation(s)
- Xutong Liu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Enyang Yu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Qixuan Zhao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Haobo Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
2
|
Madalosso HB, Guindani C, Maniglia BC, Hermes de Araújo PH, Sayer C. Collagen-decorated electrospun scaffolds of unsaturated copolyesters for bone tissue regeneration. J Mater Chem B 2024; 12:3047-3062. [PMID: 38421173 DOI: 10.1039/d3tb02665e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Many efforts have been devoted to bone tissue to regenerate damaged tissues, and the development of new biocompatible materials that match the biological, mechanical, and chemical features required for this application is crucial. Herein, a collagen-decorated scaffold was prepared via electrospinning using a synthesized unsaturated copolyester (poly(globalide-co-pentadecalactone)), followed by two coupling reactions: thiol-ene functionalization with cysteine and further conjugation via EDC/NHS chemistry with collagen, aiming to design a bone tissue regeneration device with improved hydrophilicity and cell viability. Comonomer ratios were varied, affecting the copolymer's thermal and chemical properties and highlighting the tunable features of this copolyester. Functionalization with cysteine created new carboxyl and amine groups needed for bioconjugation with collagen, which is responsible for providing biological and structural integrity to the extra-cellular matrix. Bioconjugation with collagen turned the scaffold highly hydrophilic, decreasing its contact angle from 107 ± 2° to 0°, decreasing the copolymer crystallinity by 71%, and improving cell viability by 85% compared with the raw scaffold, thus promoting cell growth and proliferation. The highly efficient and biosafe strategy to conjugate polymers and proteins created a promising device for bone repair in tissue engineering.
Collapse
Affiliation(s)
- Heloísa Bremm Madalosso
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Campus Trindade, 88040-900, Florianópolis, Brazil.
| | - Camila Guindani
- Chemical Engineering Program/COPPE, Federal University of Rio de Janeiro, Cidade Universitária, CP: 68502, Rio de Janeiro, 21941-972 RJ, Brazil
| | - Bianca Chieregato Maniglia
- São Carlos Institute of Chemistry, University of São Paulo - USP, Campus São Carlos, 13566-590, São Carlos, SP, Brazil
| | - Pedro Henrique Hermes de Araújo
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Campus Trindade, 88040-900, Florianópolis, Brazil.
| | - Claudia Sayer
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Campus Trindade, 88040-900, Florianópolis, Brazil.
| |
Collapse
|
3
|
Abellanas-Perez P, Carballares D, Rocha-Martin J, Fernandez-Lafuente R. The effects of the chemical modification on immobilized lipase features are affected by the enzyme crowding in the support. Biotechnol Prog 2024; 40:e3394. [PMID: 37828788 DOI: 10.1002/btpr.3394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/07/2023] [Accepted: 09/22/2023] [Indexed: 10/14/2023]
Abstract
In this article, we have analyzed the interactions between enzyme crowding on a given support and its chemical modification (ethylenediamine modification via the carbodiimide route and picryl sulfonic (TNBS) modification of the primary amino groups) on the enzyme activity and stability. Lipase from Thermomyces lanuginosus (TLL) and lipase B from Candida antarctica (CALB) were immobilized on octyl-agarose beads at two very different enzyme loadings, one of them exceeding the capacity of the support, one well under this capacity. Chemical modifications of the highly loaded and lowly loaded biocatalysts gave very different results in terms of activity and stability, which could increase or decrease enzyme activity depending on the enzyme support loading. For example, both lowly loaded biocatalysts increased their activity after modification while the effect was the opposite for the highly loaded biocatalysts. Additionally, the modification with TNBS of highly loaded CALB biocatalyst increased its stability while decrease the activity.
Collapse
Affiliation(s)
| | - Diego Carballares
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain
| | - Javier Rocha-Martin
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | | |
Collapse
|
4
|
Godinho B, Gama N, Ferreira A. Different methods of synthesizing poly(glycerol sebacate) (PGS): A review. Front Bioeng Biotechnol 2022; 10:1033827. [PMID: 36532580 PMCID: PMC9748623 DOI: 10.3389/fbioe.2022.1033827] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/10/2022] [Indexed: 08/24/2023] Open
Abstract
Poly(glycerol sebacate) (PGS) is a biodegradable elastomer that has attracted increasing attention as a potential material for applications in biological tissue engineering. The conventional method of synthesis, first described in 2002, is based on the polycondensation of glycerol and sebacic acid, but it is a time-consuming and energy-intensive process. In recent years, new approaches for producing PGS, PGS blends, and PGS copolymers have been reported to not only reduce the time and energy required to obtain the final material but also to adjust the properties and processability of the PGS-based materials based on the desired applications. This review compiles more than 20 years of PGS synthesis reports, reported inconsistencies, and proposed alternatives to more rapidly produce PGS polymer structures or PGS derivatives with tailor-made properties. Synthesis conditions such as temperature, reaction time, reagent ratio, atmosphere, catalysts, microwave-assisted synthesis, and PGS modifications (urethane and acrylate groups, blends, and copolymers) were revisited to present and discuss the diverse alternatives to produce and adapt PGS.
Collapse
Affiliation(s)
- Bruno Godinho
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Nuno Gama
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Artur Ferreira
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
- ESTGA-Águeda School of Technology and Management, Águeda, Portugal
| |
Collapse
|
5
|
Posada NC, Sierra CA, Perez LD. An Evaluation of the Effect of Reaction Conditions in the Enzymatically Catalyzed Synthesis of Poly(ϵ‐Caprolactone). ChemistrySelect 2022. [DOI: 10.1002/slct.202202372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Cesar A. Sierra
- Departamento de Química Universidad Nacional de Colombia Bogotá D.C
| | - Leon D. Perez
- Departamento de Química Universidad Nacional de Colombia Bogotá D.C
| |
Collapse
|
6
|
Almeida BC, Figueiredo PR, Dourado DF, Paul S, Sousa AF, Silvestre AJ, Quinn DJ, Moody TS, Carvalho AT. Development of Enzymatic Variants for the Synthesis of Bioresorbable Polyesters. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Beatriz C. Almeida
- CNC─Center for Neuroscience and Cell Biology, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra 3004-504, Portugal
| | - Pedro R. Figueiredo
- CNC─Center for Neuroscience and Cell Biology, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra 3004-504, Portugal
| | - Daniel F.A.R. Dourado
- Almac Sciences, Department of Biocatalysis and Isotope Chemistry, Almac House, 20 Seagoe Industrial Estate, Craigavon, Northern Ireland BT63 5QD, U.K
| | - Stephanie Paul
- Almac Sciences, Department of Biocatalysis and Isotope Chemistry, Almac House, 20 Seagoe Industrial Estate, Craigavon, Northern Ireland BT63 5QD, U.K
| | - Andreia F. Sousa
- CICECO─Aveiro Institute of Materials and Department of Chemistry, Aveiro 3810-193, Portugal
| | - Armando J.D. Silvestre
- CICECO─Aveiro Institute of Materials and Department of Chemistry, Aveiro 3810-193, Portugal
| | - Derek J. Quinn
- Almac Sciences, Department of Biocatalysis and Isotope Chemistry, Almac House, 20 Seagoe Industrial Estate, Craigavon, Northern Ireland BT63 5QD, U.K
- Arran Chemical Company, Unit 1 Monksland Industrial Estate, Roscommon, Athlone, Co. N37 DN24, Ireland
| | - Thomas S. Moody
- Almac Sciences, Department of Biocatalysis and Isotope Chemistry, Almac House, 20 Seagoe Industrial Estate, Craigavon, Northern Ireland BT63 5QD, U.K
- Arran Chemical Company, Unit 1 Monksland Industrial Estate, Roscommon, Athlone, Co. N37 DN24, Ireland
| | - Alexandra T.P. Carvalho
- CNC─Center for Neuroscience and Cell Biology, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra 3004-504, Portugal
- Almac Sciences, Department of Biocatalysis and Isotope Chemistry, Almac House, 20 Seagoe Industrial Estate, Craigavon, Northern Ireland BT63 5QD, U.K
| |
Collapse
|
7
|
Liu Y, Song L, Feng N, Jiang W, Jin Y, Li X. Recent advances in the synthesis of biodegradable polyesters by sustainable polymerization: lipase-catalyzed polymerization. RSC Adv 2020; 10:36230-36240. [PMID: 35517080 PMCID: PMC9056969 DOI: 10.1039/d0ra07138b] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
Over the past three decades, enzymatic polymerization has dramatically developed and gradually broadened as a creative methodology in the construction of polymeric materials with tailor-made structures and properties. Compared with transition metal catalyst polymerizations, enzymatic polymerization is more attractive in the biomedicine field due to the metal-free residue, good biocompatibility, and few by-products. Meanwhile, enzymatic polymerization has far more activity towards macrolides. In this review, the synthesis of lipase-catalyzed polymer materials is systematically summarized, focusing on the synthesis of the complex and well-defined polymers. The enzymatic polyester synthesis was then discussed concerning the different reaction types, including ring-opening polymerization, polycondensation, a combination of ring-opening polymerization with polycondensation, and chemoenzymatic polymerization. Besides, exploration of novel biocatalysts and reaction media was also described, with particular emphasis on the enzymes obtained via immobilization or protein engineering strategies, green solvents, and reactors. Finally, recent developments in catalytic kinetics and mechanistic studies through the use of spectroscopy, mathematics, and computer techniques have been introduced. Besides, we addressed the remaining central issues in enzymatic polymerization and discussed current studies aimed at providing answers.
Collapse
Affiliation(s)
- Ying Liu
- College of Chemistry, Jilin University No. 2699, Qianjin Road Changchun Jilin 130012 PR China
| | - Lijie Song
- First Clinical Hospital, Jilin Province Academy of Traditional Chinese Medicine Changchun 130021 China
| | - Na Feng
- Department of Molecular Pathology, Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Academy of Medical Sciences Zhengzhou Henan 450052 China
| | - Wei Jiang
- Department of Molecular Pathology, Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Academy of Medical Sciences Zhengzhou Henan 450052 China
| | - Yongri Jin
- College of Chemistry, Jilin University No. 2699, Qianjin Road Changchun Jilin 130012 PR China
| | - Xuwen Li
- College of Chemistry, Jilin University No. 2699, Qianjin Road Changchun Jilin 130012 PR China
| |
Collapse
|
8
|
Figueiredo PR, Almeida BC, Dourado DFAR, Sousa AF, Silvestre AJD, Carvalho ATP. Enzymatic Synthesis of Poly(caprolactone): A QM/MM Study. ChemCatChem 2020. [DOI: 10.1002/cctc.202000780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Pedro R. Figueiredo
- CNC – Center for Neuroscience and Cell Biology Institute for Interdisciplinary Research (IIIUC) University of Coimbra 3004-504 Coimbra Portugal
| | - Beatriz C. Almeida
- CNC – Center for Neuroscience and Cell Biology Institute for Interdisciplinary Research (IIIUC) University of Coimbra 3004-504 Coimbra Portugal
| | - Daniel F. A. R. Dourado
- Almac Sciences Department of Biocatalysis and Isotope Chemistry Almac House 20 Seagoe Industrial Estate Craigavon BT63 5QD Northern Ireland UK
| | | | | | - Alexandra T. P. Carvalho
- CNC – Center for Neuroscience and Cell Biology Institute for Interdisciplinary Research (IIIUC) University of Coimbra 3004-504 Coimbra Portugal
| |
Collapse
|
9
|
Kuang L, Liu M, Lin Z, Zhu Y, Li J. The effect of single CNTs/GNPs and complexes on promoting the interfacial catalytic activity of lipase in conventional emulsions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:3192-3203. [PMID: 32105343 DOI: 10.1002/jsfa.10355] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/23/2020] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND The interfacial activation mechanism of lipase enables it to exhibit high catalytic activity in water-in-oil (W/O) microemulsions. However, W/O microemulsions have obvious defects such as a small water pool and a large demand for surfactants. The present study investigated the substitutability of conventional oil-in-water (O/W) and W/O emulsions as lipase catalytic systems. Carbon nanotubes (CNTs)/gold nanoparticles (GNPs) or CNT-GNP electrostatically bonded complexes were added into the conventional emulsion system. RESULTS The simulated biphasic system and fluorescence study showed different and even contradictory results for the interfacial behavior of CNTs and CNT-GNP complexes due to the variation of the dispersibility of CNTs in cetyltrimethylammonium bromide (CTAB). Results also showed that conventional O/W emulsions were more suitable for lipase catalysis than conventional W/O emulsions. When CNTs or CNTCATB -GNP complexes were added in a conventional O/W emulsion system, the catalytic activity of lipase was significantly promoted (up to 4.8-fold using CNTs and 3.5-fold using CNTCATB -GNP complexes compared with free lipase). CONCLUSIONS The possible reason for this promotion may be due to the increase in the interface area. The current study was not only the latest exploration of lipase activity promotion via nanomaterials, but also explored a new lipase catalytic system and provides further insight into improving the catalytic performance of lipase in conventional emulsions. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lei Kuang
- School of Food and Health, Beijing Technology and Business University, Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, P.R. China
| | - Mengjie Liu
- School of Food and Health, Beijing Technology and Business University, Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, P.R. China
| | - Zefeng Lin
- School of Food and Health, Beijing Technology and Business University, Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, P.R. China
| | - Yunping Zhu
- School of Food and Health, Beijing Technology and Business University, Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, P.R. China
| | - Jinlong Li
- School of Food and Health, Beijing Technology and Business University, Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, P.R. China
| |
Collapse
|
10
|
Figueiredo P, Almeida BC, Carvalho ATP. Enzymatic Polymerization of PCL-PEG Co-polymers for Biomedical Applications. Front Mol Biosci 2019; 6:109. [PMID: 31681797 PMCID: PMC6811512 DOI: 10.3389/fmolb.2019.00109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/04/2019] [Indexed: 11/25/2022] Open
Abstract
Biodegradable polymers, obtained via chemical synthesis, are currently employed in a wide range of biomedical applications. However, enzymatic polymerization is an attractive alternative because it is more sustainable and safer. Many lipases can be employed in ring-opening polymerization (ROP) of biodegradable polymers. Nevertheless, the harsh conditions required in industrial context are not always compatible with their enzymatic activity. In this work, we have studied a thermophilic carboxylesterase and the commonly used Lipase B from Candida antarctica (CaLB) for tailored synthesis of amphiphilic polyesters for biomedical applications. We have conducted Molecular Dynamics (MD) and Quantum Mechanics/Molecular Mechanics (QM/MM) MD simulations of the synthesis of Polycaprolactone-Polyethylene Glycol (PCL-PEG) model co-polymers. Our insights about the reaction mechanisms are important for the design of customized enzymes capable to synthesize different polyesters for biomedical applications.
Collapse
Affiliation(s)
| | | | - Alexandra T. P. Carvalho
- Center for Neuroscience and Cell Biology, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
11
|
Swainson SME, Styliari ID, Taresco V, Garnett MC. Poly (glycerol adipate) (PGA), an Enzymatically Synthesized Functionalizable Polyester and Versatile Drug Delivery Carrier: A Literature Update. Polymers (Basel) 2019; 11:polym11101561. [PMID: 31557875 PMCID: PMC6835762 DOI: 10.3390/polym11101561] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/09/2019] [Accepted: 09/20/2019] [Indexed: 01/09/2023] Open
Abstract
The enzymatically synthesized poly (glycerol adipate) (PGA) has demonstrated all the desirable key properties required from a performing biomaterial to be considered a versatile “polymeric-tool” in the broad field of drug delivery. The step-growth polymerization pathway catalyzed by lipase generates a highly functionalizable platform while avoiding tedious steps of protection and deprotection. Synthesis requires only minor purification steps and uses cheap and readily available reagents. The final polymeric material is biodegradable, biocompatible and intrinsically amphiphilic, with a good propensity to self-assemble into nanoparticles (NPs). The free hydroxyl group lends itself to a variety of chemical derivatizations via simple reaction pathways which alter its physico-chemical properties with a possibility to generate an endless number of possible active macromolecules. The present work aims to summarize the available literature about PGA synthesis, architecture alterations, chemical modifications and its application in drug and gene delivery as a versatile carrier. Following on from this, the evolution of the concept of enzymatically-degradable PGA-drug conjugation has been explored, reporting recent examples in the literature.
Collapse
Affiliation(s)
- Sadie M E Swainson
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Ioanna D Styliari
- School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK.
| | - Vincenzo Taresco
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Martin C Garnett
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| |
Collapse
|
12
|
Engel J, Cordellier A, Huang L, Kara S. Enzymatic Ring‐Opening Polymerization of Lactones: Traditional Approaches and Alternative Strategies. ChemCatChem 2019. [DOI: 10.1002/cctc.201900976] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jennifer Engel
- Department of Engineering Biological and Chemical Engineering Biocatalysis and Bioprocessing GroupAarhus University Gustav Wieds Vej 10 C 8000 Aarhus Denmark
| | - Alex Cordellier
- Department of Engineering Biological and Chemical Engineering Biocatalysis and Bioprocessing GroupAarhus University Gustav Wieds Vej 10 C 8000 Aarhus Denmark
| | - Lei Huang
- Department of Engineering Biological and Chemical Engineering Biocatalysis and Bioprocessing GroupAarhus University Gustav Wieds Vej 10 C 8000 Aarhus Denmark
| | - Selin Kara
- Department of Engineering Biological and Chemical Engineering Biocatalysis and Bioprocessing GroupAarhus University Gustav Wieds Vej 10 C 8000 Aarhus Denmark
| |
Collapse
|
13
|
Statistical optimization of cultural medium composition of thermoalkalophilic lipase produced by a chemically induced mutant strain of Bacillus atrophaeus FSHM2. 3 Biotech 2019; 9:268. [PMID: 31218179 DOI: 10.1007/s13205-019-1789-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 06/03/2019] [Indexed: 12/17/2022] Open
Abstract
Extremophilic microbial derived lipases have been widely applied in different biotechnological processes due to their resistance to harsh conditions such as high salt concentration, elevated temperature, and extreme acidic or alkaline pH. The present study was designed to overproduce the halophilic, thermoalkalophilic lipase of Bacillus atrophaeus FSHM2 through chemically induced random mutagenesis and optimization of cultural medium components assisted by statistical experimental design. At first, improvement of lipase production ability of B. atrophaeus FSHM2 was performed through exposure of the wild bacterial strain to ethidium bromide for 5-90 min to obtain a suitable mutant of lipase producer (designated as EB-5, 4301.1 U/l). Afterwards, Plackett-Burman experimental design augmented to D-optimal design was employed to optimize medium components (olive oil, maltose, glucose, sucrose, tryptone, urea, (NH4)2SO4, NaCl, CaCl2, and ZnSO4) for lipase production by the EB-5 mutant. A maximum lipase production of 14,824.3 U/l was predicted in the optimum medium containing 5% of olive oil, 0.5% of glucose, 0.5% of sucrose, 2% of maltose, 2.5 g/l of yeast extract, 1.75 g/l of urea, 1.75 g/l of (NH4)2SO4, 2.5 g/l of tryptone, 2 g/l of NaCl, 1 g/l of CaCl2, and 1 g/l of ZnSO4. A mean value of 14,773 ± 576.9 U/l of lipase was acquired from real experiments.
Collapse
|
14
|
Reuse of Lipase from Pseudomonas fluorescens via Its Step-by-Step Coimmobilization on Glyoxyl-Octyl Agarose Beads with Least Stable Lipases. Catalysts 2019. [DOI: 10.3390/catal9050487] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Coimmobilization of lipases may be interesting in many uses, but this means that the stability of the least stable enzyme determines the stability of the full combilipase. Here, we propose a strategy that permits the reuse the most stable enzyme. Lecitase Ultra (LU) (a phospholipase) and the lipases from Rhizomucor miehei (RML) and from Pseudomonas fluorescens (PFL) were immobilized on octyl agarose, and their stabilities were studied under a broad range of conditions. Immobilized PFL was found to be the most stable enzyme under all condition ranges studied. Furthermore, in many cases it maintained full activity, while the other enzymes lost more than 50% of their initial activity. To coimmobilize these enzymes without discarding fully active PFL when LU or RML had been inactivated, PFL was covalently immobilized on glyoxyl-agarose beads. After biocatalysts reduction, the other enzyme was coimmobilized just by interfacial activation. After checking that glyoxyl-octyl-PFL was stable in 4% Triton X-100, the biocatalysts of PFL coimmobilized with LU or RML were submitted to inactivation under different conditions. Then, the inactivated least stable coimmobilized enzyme was desorbed (using 4% detergent) and a new enzyme reloading (using in some instances RML and in some others employing LU) was performed. The initial activity of immobilized PFL was maintained intact for several of these cycles. This shows the great potential of this lipase coimmobilization strategy.
Collapse
|
15
|
Abstract
Aliphatic polyesters are thermoplastic and biodegradable polymers with promising potentials to substitute synthetic polymers derived from petrochemicals. In particular, polylactides (PLAs) and other polylactones can be renewable and biocompatible. A more benign approach for polyester synthesis is the enzymatic polycondensation or ring-opening polymerization (ROP) reactions, whose outcomes largely depend on the reaction conditions including solvents, water content and temperature. This chapter illustrates several examples of enzymatic polymerization to polyesters using various solvents (i.e., organic solvents, supercritical fluids, ionic liquids, and aqueous biphasic systems). Hydrophobic solvents containing little water tend to promote the enzymatic polymerization and lead to high molecular masses of polyesters. Since some enzymatic polymerization reactions are performed at high temperatures (such as ring-opening polymerization of lactide at >100°C), these processes demand solvents with high boiling points (such as many ionic liquids). Supercritical fluids (such as supercritical CO2) can be "green" solvents, but their compatibility with enzymes and their practicability of scaling up remain as challenges. On the other hand, ionic liquids can be tailored to be compatible with enzymes and to have high thermal stability although the studies of their uses in enzymatic polycondensation and ROP reactions are still at an early stage.
Collapse
Affiliation(s)
- Hua Zhao
- Department of Chemistry and Biochemistry, University of Northern Colorado, Greeley, CO, United States.
| |
Collapse
|
16
|
Facin BR, Melchiors MS, Valério A, Oliveira JV, Oliveira DD. Driving Immobilized Lipases as Biocatalysts: 10 Years State of the Art and Future Prospects. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00448] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Bruno R. Facin
- Department of Chemical and Food Engineering, UFSC, P.O. Box 476, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Marina S. Melchiors
- Department of Chemical and Food Engineering, UFSC, P.O. Box 476, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Alexsandra Valério
- Department of Chemical and Food Engineering, UFSC, P.O. Box 476, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - J. Vladimir Oliveira
- Department of Chemical and Food Engineering, UFSC, P.O. Box 476, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Débora de Oliveira
- Department of Chemical and Food Engineering, UFSC, P.O. Box 476, 88040-900, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
17
|
Brännström S, Johansson M, Malmström E. Enzymatically Synthesized Vinyl Ether-Disulfide Monomer Enabling an Orthogonal Combination of Free Radical and Cationic Chemistry toward Sustainable Functional Networks. Biomacromolecules 2019; 20:1308-1316. [DOI: 10.1021/acs.biomac.8b01710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Sara Brännström
- KTH Royal Institute of Technology, Department of Fibre and Polymer Technology, SE-100 44 Stockholm, Sweden
| | - Mats Johansson
- KTH Royal Institute of Technology, Department of Fibre and Polymer Technology, SE-100 44 Stockholm, Sweden
| | - Eva Malmström
- KTH Royal Institute of Technology, Department of Fibre and Polymer Technology, SE-100 44 Stockholm, Sweden
| |
Collapse
|
18
|
Zhao X, Noro J, Fu J, Silva C, Cavaco-Paulo A. Strategies for the synthesis of fluorinated polyesters. RSC Adv 2019; 9:1799-1806. [PMID: 35516098 PMCID: PMC9059763 DOI: 10.1039/c8ra10341k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 01/07/2019] [Indexed: 11/21/2022] Open
Abstract
In this work we synthetized three fluorinated polyesters from dimethyl tetrafluorosuccinate (DMTFS), dimethyl hexafluoroglutarate (DMHFG), and dimethyl octafluoroadipate (DMOFA) and ethylene glycol. The influence of parameters like monomer's size, temperature, vacuum, ultrasound and catalyst, on the polyesters synthesis was evaluated. The conversion rates were assessed considering 1H NMR data and the results disclose the role of ultrasound (US) as crucial to attain high reaction conversion rates (≈20% of increase relatively to the reactions performed in absence of US). The effect of US was more relevant for the higher molecular weight monomers (DMHFG and DMOFA). The use of Candida antarctica lipase (immobilized CALB) marginally favors the synthesis reactions when fixing the other conditions. The size of the starting monomers influenced greatly the reaction conversion rates, as shorter monomers gave rise to high amount of product recovering. All the produced polyesters were isolated and fully characterized by NMR (1H and 19F), FTIR, TGA and MALDI-TOF. In this work we synthetized three fluorinated polyesters from dimethyl tetrafluorosuccinate (DMTFS), dimethyl hexafluoroglutarate (DMHFG), and dimethyl octafluoroadipate (DMOFA) and ethylene glycol.![]()
Collapse
Affiliation(s)
- Xiaoman Zhao
- Jiangsu Engineering Technology Research Center for Functional Textiles, Jiangnan University Wuxi 214122 P. R. China.,International Joint Research Laboratory for Textile and Fiber Bioprocesses, Jiangnan University Wuxi 214122 P. R. China
| | - Jennifer Noro
- Centre of Biological Engineering, University of Minho, Campus de Gualtar Braga 4710-057 Portugal
| | - Jiajia Fu
- Jiangsu Engineering Technology Research Center for Functional Textiles, Jiangnan University Wuxi 214122 P. R. China.,International Joint Research Laboratory for Textile and Fiber Bioprocesses, Jiangnan University Wuxi 214122 P. R. China
| | - Carla Silva
- Centre of Biological Engineering, University of Minho, Campus de Gualtar Braga 4710-057 Portugal
| | - Artur Cavaco-Paulo
- Jiangsu Engineering Technology Research Center for Functional Textiles, Jiangnan University Wuxi 214122 P. R. China.,International Joint Research Laboratory for Textile and Fiber Bioprocesses, Jiangnan University Wuxi 214122 P. R. China.,Centre of Biological Engineering, University of Minho, Campus de Gualtar Braga 4710-057 Portugal
| |
Collapse
|
19
|
Dzhardimalieva GI, Uflyand IE. Synthetic Methodologies for Chelating Polymer Ligands: Recent Advances and Future Development. ChemistrySelect 2018. [DOI: 10.1002/slct.201802516] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Gulzhian I. Dzhardimalieva
- Laboratory of MetallopolymersThe Institute of Problems of Chemical Physics RAS Academician Semenov avenue 1, Chernogolovka, Moscow Region 142432 Russian Federation
| | - Igor E. Uflyand
- Department of ChemistrySouthern Federal University B. Sadovaya str. 105/42, Rostov-on-Don 344006 Russian Federation
| |
Collapse
|
20
|
Nandu N, Salih Hizir M, Roberston NM, Ozturk B, Yigit MV. Masking the Peroxidase‐Like Activity of the Molybdenum Disulfide Nanozyme Enables Label‐Free Lipase Detection. Chembiochem 2018; 20:1861-1867. [DOI: 10.1002/cbic.201800471] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Nidhi Nandu
- Department of Chemistry University at Albany, State University of New York 1400 Washington Avenue Albany NY 12222 USA
| | - Mustafa Salih Hizir
- Department of Chemistry University at Albany, State University of New York 1400 Washington Avenue Albany NY 12222 USA
| | - Neil M. Roberston
- Department of Chemistry University at Albany, State University of New York 1400 Washington Avenue Albany NY 12222 USA
| | - Birol Ozturk
- Department of Physics and Engineering Physics Morgan State University 1700 E. Cold Spring Ln. Baltimore MD 21251 USA
| | - Mehmet V. Yigit
- Department of Chemistry University at Albany, State University of New York 1400 Washington Avenue Albany NY 12222 USA
- The RNA Institute University at Albany, State University of New York 1400 Washington Avenue Albany NY 12222 USA
| |
Collapse
|
21
|
Immobilization of Eversa Lipase on Octyl Agarose Beads and Preliminary Characterization of Stability and Activity Features. Catalysts 2018. [DOI: 10.3390/catal8110511] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Eversa is an enzyme recently launched by Novozymes to be used in a free form as biocatalyst in biodiesel production. This paper shows for first time the immobilization of Eversa (a commercial lipase) on octyl and aminated agarose beads and the comparison of the enzyme properties to those of the most used lipase, the isoform B from Candida antarctica (CALB) immobilized on octyl agarose beads. Immobilization on octyl and aminated supports of Eversa has not had a significant effect on enzyme activity versus p-nitrophenyl butyrate (pNPB) under standard conditions (pH 7), but immobilization on octyl agarose beads greatly enhanced the stability of the enzyme under all studied conditions, much more than immobilization on aminated support. Octyl-Eversa was much more stable than octyl-CALB at pH 9, but it was less stable at pH 5. In the presence of 90% acetonitrile or dioxane, octyl-Eversa maintained the activity (even increased the activity) after 45 days of incubation in a similar way to octyl-CALB, but in 90% of methanol, results are much worse, and octyl-CALB became much more stable than Eversa. Coating with PEI has not a clear effect on octyl-Eversa stability, although it affected enzyme specificity and activity response to the changes in the pH. Eversa immobilized octyl supports was more active than CALB versus triacetin or pNPB, but much less active versus methyl mandelate esters. On the other hand, Eversa specificity and response to changes in the medium were greatly modulated by the immobilization protocol or by the coating of the immobilized enzyme with PEI. Thus, Eversa may be a promising biocatalyst for many processes different to the biodiesel production and its properties may be greatly improved following a suitable immobilization protocol, and in some cases is more stable and active than CALB.
Collapse
|
22
|
Brännström S, Finnveden M, Razza N, Martinelle M, Malmström E, Sangermano M, Johansson M. Tailoring Thermo-Mechanical Properties of Cationically UV-Cured Systems by a Rational Design of Vinyl Ether Ester Oligomers using Enzyme Catalysis. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sara Brännström
- S. Brännström, Prof. E. Malmström, Prof. M. Johansson; Department of Fibre and Polymer Technology; KTH Royal Institute of Technology; Teknikringen 56-58 SE-100 44 Stockholm Sweden
| | - Maja Finnveden
- M. Finnveden, Prof. M. Martinelle; Department of Industrial Biotechnology; KTH Royal Institute of Technology; AlbaNova University Centre; SE-106 91 Stockholm Sweden
| | - Nicolò Razza
- N. Razza, Prof. M. Sangermano; Department of Applied Science and Technology; Politecnico di Torino; Corso Duca degli Abruzzi 24 10129 Torino Italy
| | - Mats Martinelle
- M. Finnveden, Prof. M. Martinelle; Department of Industrial Biotechnology; KTH Royal Institute of Technology; AlbaNova University Centre; SE-106 91 Stockholm Sweden
| | - Eva Malmström
- S. Brännström, Prof. E. Malmström, Prof. M. Johansson; Department of Fibre and Polymer Technology; KTH Royal Institute of Technology; Teknikringen 56-58 SE-100 44 Stockholm Sweden
| | - Marco Sangermano
- N. Razza, Prof. M. Sangermano; Department of Applied Science and Technology; Politecnico di Torino; Corso Duca degli Abruzzi 24 10129 Torino Italy
| | - Mats Johansson
- S. Brännström, Prof. E. Malmström, Prof. M. Johansson; Department of Fibre and Polymer Technology; KTH Royal Institute of Technology; Teknikringen 56-58 SE-100 44 Stockholm Sweden
| |
Collapse
|
23
|
Yang J, Liu Y, Liang X, Yang Y, Li Q. Enantio-, Regio-, and Chemoselective Lipase-Catalyzed Polymer Synthesis. Macromol Biosci 2018; 18:e1800131. [PMID: 29870576 DOI: 10.1002/mabi.201800131] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 04/30/2018] [Indexed: 12/19/2022]
Abstract
In contrast to chemical routes, enzymatic polymerization possesses favorable characteristics of mild reaction conditions, few by-products, and high activity toward cyclic lactones which make it a promising technique for constructing polymeric materials. Meanwhile, it can avoid the trace residue of metallic catalysts and potential toxicity, and thus exhibits great potential in the biomedical fields. More importantly, lipase-catalyzed polymer synthesis usually shows favorable enantio-, regio-, and chemoselectivity. Here, the history and recent developments in lipase-catalyzed selective polymerization for constructing polymers with unique structures and properties are highlighted. In particular, the synthesis of polymeric materials which are difficult to prepare in a chemical route and the construction of polymers through the combination of selective enzymatic and chemical methods are focused. In addition, the future direction is proposed especially based on the rapid developments in computational chemistry and protein engineering techniques.
Collapse
Affiliation(s)
- Jiebing Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Changchun, 130012, China
| | - Yong Liu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Changchun, 130012, China
| | - Xiao Liang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Changchun, 130012, China
| | - Yan Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Changchun, 130012, China
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Changchun, 130012, China
| |
Collapse
|
24
|
Brännström S, Finnveden M, Johansson M, Martinelle M, Malmström E. Itaconate based polyesters: Selectivity and performance of esterification catalysts. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.04.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
25
|
Höck H, Engel S, Weingarten S, Keul H, Schwaneberg U, Möller M, Bocola M. Comparison of Candida antarctica Lipase B Variants for Conversion of ε-Caprolactone in Aqueous Medium-Part 2. Polymers (Basel) 2018; 10:E524. [PMID: 30966558 PMCID: PMC6415414 DOI: 10.3390/polym10050524] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 04/26/2018] [Accepted: 05/10/2018] [Indexed: 12/22/2022] Open
Abstract
Enzyme-catalyzed ring-opening polymerization of lactones is a method of increasing interest for the synthesis of polyesters. In the present work, we investigated which changes in the structure of Candida antarctica lipase B (CaLB) shift the catalytic equilibrium between esterification and hydrolysis towards polymerization. Therefore, we present two concepts: (i) removing the glycosylation of CaLB to increase the surface hydrophobicity; and (ii) introducing a hydrophobic lid adapted from Pseudomonas cepacia lipase (PsCL) to enhance the interaction of a growing polymer chain to the elongated lid helix. The deglycosylated CaLB (CaLB-degl) was successfully generated by site-saturation mutagenesis of asparagine 74. Furthermore, computational modeling showed that the introduction of a lid helix at position Ala148 was structurally feasible and the geometry of the active site remained intact. Via overlap extension PCR the lid was successfully inserted, and the variant was produced in large scale in Pichia pastoris with glycosylation (CaLB-lid) and without (CaLB-degl-lid). While the lid variants show a minor positive effect on the polymerization activity, CaLB-degl showed a clearly reduced hydrolytic and enhanced polymerization activity. Immobilization in a hydrophobic polyglycidol-based microgel intensified this effect such that a higher polymerization activity was achieved, compared to the "gold standard" Novozym® 435.
Collapse
Affiliation(s)
- Heidi Höck
- DWI-Leibniz Institute for Interactive Materials and Institute of Biotechnology, RWTH Aachen University, Forckenbeckstraße 50, D-52056 Aachen, Germany.
| | - Stefan Engel
- DWI-Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstraße 50, D-52056 Aachen, Germany.
| | - Simone Weingarten
- DWI-Leibniz Institute for Interactive Materials and Institute of Biotechnology, RWTH Aachen University, Forckenbeckstraße 50, D-52056 Aachen, Germany.
| | - Helmut Keul
- DWI-Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstraße 50, D-52056 Aachen, Germany.
| | - Ulrich Schwaneberg
- DWI-Leibniz Institute for Interactive Materials and Institute of Biotechnology, RWTH Aachen University, Forckenbeckstraße 50, D-52056 Aachen, Germany.
| | - Martin Möller
- DWI-Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstraße 50, D-52056 Aachen, Germany.
| | - Marco Bocola
- DWI-Leibniz Institute for Interactive Materials and Institute of Biotechnology, RWTH Aachen University, Forckenbeckstraße 50, D-52056 Aachen, Germany.
| |
Collapse
|
26
|
A review on enzymatic polymerization to produce polycondensation polymers: The case of aliphatic polyesters, polyamides and polyesteramides. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2017.10.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Pinheiro MP, Rios NS, Fonseca TDS, Bezerra FDA, Rodríguez-Castellón E, Fernandez-Lafuente R, Carlos de Mattos M, dos Santos JCS, Gonçalves LRB. Kinetic resolution of drug intermediates catalyzed by lipase B fromCandida antarcticaimmobilized on immobead-350. Biotechnol Prog 2018. [DOI: 10.1002/btpr.2630] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Maísa Pessoa Pinheiro
- Dept. de Engenharia Química; Universidade Federal do Ceará, CEP 60455-760; Fortaleza CE Brazil
| | - Nathalia Saraiva Rios
- Dept. de Engenharia Química; Universidade Federal do Ceará, CEP 60455-760; Fortaleza CE Brazil
| | - Thiago de S. Fonseca
- Dept. de Química Orgânica e Inorgânica, Laboratório de Biotecnologia e Síntese Orgânica (LABS); Universidade Federal do Ceará, Campus do Pici; Fortaleza CE 60455-970 Brazil
| | - Francisco de Aquino Bezerra
- Dept. de Química Orgânica e Inorgânica, Laboratório de Biotecnologia e Síntese Orgânica (LABS); Universidade Federal do Ceará, Campus do Pici; Fortaleza CE 60455-970 Brazil
| | - Enrique Rodríguez-Castellón
- Dept. de Química Inorgánica, Facultad de Ciencias; Universidad de Málaga, Campus de Teatinos, Boulevard Louis Pasteur; Málaga 29010 Spain
| | | | - Marcos Carlos de Mattos
- Dept. de Química Orgânica e Inorgânica, Laboratório de Biotecnologia e Síntese Orgânica (LABS); Universidade Federal do Ceará, Campus do Pici; Fortaleza CE 60455-970 Brazil
| | - José C. S. dos Santos
- Departament of Chemical Engineering; Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, CEP 62785-000; Acarape CE Brazil
| | - Luciana R. B. Gonçalves
- Dept. de Engenharia Química; Universidade Federal do Ceará, Campus do Pici, CEP 60455-760; Fortaleza CE Brazil
| |
Collapse
|
28
|
Todea A, Aparaschivei D, Badea V, Boeriu CG, Peter F. Biocatalytic Route for the Synthesis of Oligoesters of Hydroxy-Fatty acids and ϵ-Caprolactone. Biotechnol J 2018. [PMID: 29542861 DOI: 10.1002/biot.201700629] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Developments of past years placed the bio-based polyesters as competitive substitutes for fossil-based polymers. Moreover, enzymatic polymerization using lipase catalysts has become an important green alternative to chemical polymerization for the synthesis of polyesters with biomedical applications, as several drawbacks related to the presence of traces of metal catalysts, toxicity and higher temperatures could be avoided. Copolymerization of ϵ-caprolactone (CL) with four hydroxy-fatty acids (HFA) from renewable sources, 10-hydroxystearic acid, 12-hydroxystearic acid, ricinoleic acid, and 16-hydroxyhexadecanoic acid, was carried out using commercially available immobilized lipases from Candida antarctica B, Thermomyces lanuginosus, and Pseudomonas stutzeri, as well as a native lipase. MALDI-TOF-MS and 2D-NMR analysis confirmed the formation of linear/branched and cyclic oligomers with average molecular weight around 1200 and polymerization degree up to 15. The appropriate selection of the biocatalyst and reaction temperature allowed the tailoring of the non-cyclic/cyclic copolymer ratio and increase of the total copolymer content in the reaction product above 80%. The catalytic efficiency of the best performing biocatalyst (Lipozyme TL) is evaluated during four reaction cycles, showing excellent operational stability. The thermal stability of the reaction products is assessed based on TG and DSC analysis. This new synthetic route for biobased oligomers with novel functionalities and properties could have promising biomedical applications.
Collapse
Affiliation(s)
- Anamaria Todea
- Faculty of Industrial Chemistry and Environmental Engineering, University Politehnica Timişoara, Carol Telbisz 6, 300001 Timişoara, Romania
| | - Diana Aparaschivei
- Faculty of Industrial Chemistry and Environmental Engineering, University Politehnica Timişoara, Carol Telbisz 6, 300001 Timişoara, Romania
| | - Valentin Badea
- Faculty of Industrial Chemistry and Environmental Engineering, University Politehnica Timişoara, Carol Telbisz 6, 300001 Timişoara, Romania
| | - Carmen G Boeriu
- Wageningen Food & Biobased Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Francisc Peter
- Faculty of Industrial Chemistry and Environmental Engineering, University Politehnica Timişoara, Carol Telbisz 6, 300001 Timişoara, Romania
| |
Collapse
|
29
|
Chiaradia V, Polloni AE, de Oliveira D, de Oliveira JV, Araújo PHH, Sayer C. Polyester nanoparticles from macrolactones via miniemulsion enzymatic ring-opening polymerization. Colloid Polym Sci 2018. [DOI: 10.1007/s00396-018-4306-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Zhao X, Noro J, Fu J, Wang H, Silva C, Cavaco-Paulo A. “In-situ” lipase-catalyzed cotton coating with polyesters from ethylene glycol and glycerol. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Orrego AH, Ghobadi R, Moreno-Perez S, Mendoza AJ, Fernandez-Lorente G, Guisan JM, Rocha-Martin J. Stabilization of Immobilized Lipases by Intense Intramolecular Cross-Linking of Their Surfaces by Using Aldehyde-Dextran Polymers. Int J Mol Sci 2018; 19:E553. [PMID: 29439521 PMCID: PMC5855775 DOI: 10.3390/ijms19020553] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 11/16/2022] Open
Abstract
Immobilized enzymes have a very large region that is not in contact with the support surface and this region could be the target of new stabilization strategies. The chemical amination of these regions plus further cross-linking with aldehyde-dextran polymers is proposed here as a strategy to increase the stability of immobilized enzymes. Aldehyde-dextran is not able to react with single amino groups but it reacts very rapidly with polyaminated surfaces. Three lipases-from Thermomyces lanuginosus (TLL), Rhizomucor miehiei (RML), and Candida antarctica B (CALB)-were immobilized using interfacial adsorption on the hydrophobic octyl-Sepharose support, chemically aminated, and cross-linked. Catalytic activities remained higher than 70% with regard to unmodified conjugates. The increase in the amination degree of the lipases together with the increase in the density of aldehyde groups in the dextran-aldehyde polymer promoted a higher number of cross-links. The sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis of those conjugates demonstrates the major role of the intramolecular cross-linking on the stabilization of the enzymes. The highest stabilization was achieved by the modified RML immobilized on octyl-Sepharose, which was 250-fold more stable than the unmodified conjugate. The TLL and the CALB were 40-fold and 4-fold more stable than the unmodified conjugate.
Collapse
Affiliation(s)
- Alejandro H Orrego
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry, Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain.
| | - Rohollah Ghobadi
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry, Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain.
- Department of Chemistry, Kharazmi University, 1417466191 Tehran, Iran.
| | - Sonia Moreno-Perez
- Pharmacy and Biotechnology Department, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain.
| | - Adriana Jaime Mendoza
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry, Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain.
- Departamento de Química, Universidad de Guadalajara, Guadalajara 44430, Jalisco, Mexico.
| | - Gloria Fernandez-Lorente
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry, Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain.
| | - Jose M Guisan
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry, Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain.
| | - Javier Rocha-Martin
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry, Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain.
| |
Collapse
|
32
|
Zhao H. Enzymatic Ring-Opening Polymerization (ROP) of Polylactones: Roles of Non-Aqueous Solvents. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY (OXFORD, OXFORDSHIRE : 1986) 2018; 93:9-19. [PMID: 31929672 PMCID: PMC6953973 DOI: 10.1002/jctb.5444] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/17/2017] [Indexed: 06/10/2023]
Abstract
Aliphatic polyesters such as polylactides (PLAs) and other polylactones are thermoplastic, renewable and biocompatible polymers with high potentials to replace petro-chemical-based synthetic polymers. A benign route for synthesizing these polyesters is through the enzyme-catalyzed ring-opening polymerization (ROP) reaction; this type of enzymatic process is very sensitive to reaction conditions such as solvents, water content and temperature. This review systematically discusses the crucial roles of different solvents (such as solvent-free or in bulk, organic solvents, supercritical fluids, ionic liquids, and aqueous biphasic systems) on the degree of polymerization and polydispersity. In general, many studies suggest that hydrophobic organic solvents with minimum water contents lead to efficient enzymatic polymerization and subsequently high molecular weights of polyesters; the selection of solvents is also limited by the reaction temperature, e.g. the ROP of lactide is often conducted at above 100 °C, therefore, the solvent typically needs to have its boiling point above this temperature. The use of supercritical fluids could be limited by its scaling-up potential, while ionic liquids have exhibited many advantages include their low-volatility, high thermal stability, controllable enzyme-compatibility, and a wide range of choices. However, the fundamental and mechanistic understanding of the specific roles of ionic liquids in enzymatic ROP reactions is still lacking. Furthermore, the lipase specificity towards l- and d-lactide is also surveyed, followed by the discussion of engineered lipases with improved enantioselectivity and thermal stability. In addition, the preparation of polyester-derived materials such as polyester-grafted cellulose by the enzymatic ROP method is briefly reviewed.
Collapse
Affiliation(s)
- Hua Zhao
- Department of Chemistry and Biochemistry, University of Northern Colorado, Greeley, CO 80639, USA
- Department of Chemistry and Forensic Science, Savannah State University, Savannah, GA 31404, USA
| |
Collapse
|
33
|
Finnveden M, Brännström S, Johansson M, Malmström E, Martinelle M. Novel sustainable synthesis of vinyl ether ester building blocks, directly from carboxylic acids and the corresponding hydroxyl vinyl ether, and their photopolymerization. RSC Adv 2018; 8:24716-24723. [PMID: 35542160 PMCID: PMC9082454 DOI: 10.1039/c8ra04636k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/02/2018] [Indexed: 01/26/2023] Open
Abstract
Synthesis of bifunctional vinyl ether ester monomers directly from the corresponding alcohol and carboxylic acid.
Collapse
Affiliation(s)
- Maja Finnveden
- Department of Industrial Biotechnology
- KTH Royal Institute of Technology
- AlbaNova University Centre
- SE-106 91 Stockholm
- Sweden
| | - Sara Brännström
- Department of Fibre and Polymer Technology
- KTH Royal Institute of Technology
- SE-100 44 Stockholm
- Sweden
| | - Mats Johansson
- Department of Fibre and Polymer Technology
- KTH Royal Institute of Technology
- SE-100 44 Stockholm
- Sweden
| | - Eva Malmström
- Department of Fibre and Polymer Technology
- KTH Royal Institute of Technology
- SE-100 44 Stockholm
- Sweden
| | - Mats Martinelle
- Department of Industrial Biotechnology
- KTH Royal Institute of Technology
- AlbaNova University Centre
- SE-106 91 Stockholm
- Sweden
| |
Collapse
|
34
|
Dong M, Chen J, Yang J, Jiang W, Han H, Li Q, Yang Y. Chemoenzymatic synthesis of a cholesterol-g-poly(amine-co-ester) carrier for p53 gene delivery to inhibit the proliferation and migration of tumor cells. NEW J CHEM 2018. [DOI: 10.1039/c8nj02574f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An amphiphilic cholesterol-g-poly(amine-co-ester) synthesizedviaa chemoenzymatic route has been successfully applied as a carrier in p53 gene delivery.
Collapse
Affiliation(s)
- Mengmeng Dong
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Jiawen Chen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Jiebing Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Wei Jiang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Haobo Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Yan Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| |
Collapse
|
35
|
Chen J, Jiang W, Han H, Yang J, Chen W, Wang Y, Tang J, Li Q. Chemoenzymatic Synthesis of Cholesterol- g-Poly(amine- co-ester) Amphiphilic Copolymer as a Carrier for miR-23b Delivery. ACS Macro Lett 2017; 6:523-528. [PMID: 35610880 DOI: 10.1021/acsmacrolett.7b00211] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The lipase-catalyzed polymerization of N-methyldiethanolamine, diethyl sebacate and ω-pentadecanolide was performed to construct a cationic poly(amine-co-ester), and a hydrophobic N-(2-bromoethyl)carbamoyl cholesterol was then grafted onto its main chain through a quaternization reaction to prepare the amphiphilic copolymer Chol-g-PMSC-PPDL. The copolymer efficiently bound and condensed miR-23b to form stable nanocomplexes, which showed favorable cellular uptake and miR-23b transfection efficacy due to the introduction of the hydrophobic segment. After miR-23b delivery, an obvious inhibition of cell proliferation could be induced, which was attributed to the induction of cell apoptosis and cell cycle arrest. Moreover, the carrier-mediated miR-23b delivery could inhibit the migration and invasion of tumor cells. Overall, the work provides a novel chemoenzymatic strategy for constructing biodegradable and biocompatible poly(amine-co-ester) derivatives, which are promising carriers for oligonucleotide delivery to achieve tumor gene therapy.
Collapse
Affiliation(s)
- Jiawen Chen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry
of Education, School of Life Sciences, and ‡Department of Polymer Science, College
of Chemistry, Jilin University, Changchun 130012, China
| | - Wei Jiang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry
of Education, School of Life Sciences, and ‡Department of Polymer Science, College
of Chemistry, Jilin University, Changchun 130012, China
| | - Haobo Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry
of Education, School of Life Sciences, and ‡Department of Polymer Science, College
of Chemistry, Jilin University, Changchun 130012, China
| | - Jiebing Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry
of Education, School of Life Sciences, and ‡Department of Polymer Science, College
of Chemistry, Jilin University, Changchun 130012, China
| | - Wenqi Chen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry
of Education, School of Life Sciences, and ‡Department of Polymer Science, College
of Chemistry, Jilin University, Changchun 130012, China
| | - Yudi Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry
of Education, School of Life Sciences, and ‡Department of Polymer Science, College
of Chemistry, Jilin University, Changchun 130012, China
| | - Jun Tang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry
of Education, School of Life Sciences, and ‡Department of Polymer Science, College
of Chemistry, Jilin University, Changchun 130012, China
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry
of Education, School of Life Sciences, and ‡Department of Polymer Science, College
of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
36
|
Polloni AE, Rebelatto EA, Veneral JG, de Oliveira D, Oliveira JV, Araújo PH, Sayer C. Enzymatic ring opening polymerization of ω-Pentadecalactone in different solvents in a variable-volume view reactor. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28486] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- André E. Polloni
- Department of Chemical and Food Engineering; Federal University of Santa Catarina; (UFSC) P.O. Box 476, 88040-900 Florianópolis SC Brazil
| | - Evertan A. Rebelatto
- Department of Chemical and Food Engineering; Federal University of Santa Catarina; (UFSC) P.O. Box 476, 88040-900 Florianópolis SC Brazil
| | - Josamaique G. Veneral
- Department of Chemical and Food Engineering; Federal University of Santa Catarina; (UFSC) P.O. Box 476, 88040-900 Florianópolis SC Brazil
| | - Débora de Oliveira
- Department of Chemical and Food Engineering; Federal University of Santa Catarina; (UFSC) P.O. Box 476, 88040-900 Florianópolis SC Brazil
| | - J. Vladimir Oliveira
- Department of Chemical and Food Engineering; Federal University of Santa Catarina; (UFSC) P.O. Box 476, 88040-900 Florianópolis SC Brazil
| | - Pedro H.H. Araújo
- Department of Chemical and Food Engineering; Federal University of Santa Catarina; (UFSC) P.O. Box 476, 88040-900 Florianópolis SC Brazil
| | - Claudia Sayer
- Department of Chemical and Food Engineering; Federal University of Santa Catarina; (UFSC) P.O. Box 476, 88040-900 Florianópolis SC Brazil
| |
Collapse
|
37
|
Fodor C, Golkaram M, Woortman AJJ, van Dijken J, Loos K. Enzymatic approach for the synthesis of biobased aromatic–aliphatic oligo-/polyesters. Polym Chem 2017. [DOI: 10.1039/c7py01559c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aromatic moieties containing oligoesters and polyesters synthesized by enzymatic and conventional polymerizations of AB-type alkylenehydroxybenzoates.
Collapse
Affiliation(s)
- Csaba Fodor
- Macromolecular Chemistry and New Polymeric Materials
- Zernike Institute for Advanced Materials
- University of Groningen
- 9747 AG Groningen
- The Netherlands
| | - Milad Golkaram
- Macromolecular Chemistry and New Polymeric Materials
- Zernike Institute for Advanced Materials
- University of Groningen
- 9747 AG Groningen
- The Netherlands
| | - Albert J. J. Woortman
- Macromolecular Chemistry and New Polymeric Materials
- Zernike Institute for Advanced Materials
- University of Groningen
- 9747 AG Groningen
- The Netherlands
| | - Jur van Dijken
- Macromolecular Chemistry and New Polymeric Materials
- Zernike Institute for Advanced Materials
- University of Groningen
- 9747 AG Groningen
- The Netherlands
| | - Katja Loos
- Macromolecular Chemistry and New Polymeric Materials
- Zernike Institute for Advanced Materials
- University of Groningen
- 9747 AG Groningen
- The Netherlands
| |
Collapse
|
38
|
Engel S, Höck H, Bocola M, Keul H, Schwaneberg U, Möller M. CaLB Catalyzed Conversion of ε-Caprolactone in Aqueous Medium. Part 1: Immobilization of CaLB to Microgels. Polymers (Basel) 2016; 8:E372. [PMID: 30974648 PMCID: PMC6432092 DOI: 10.3390/polym8100372] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/06/2016] [Accepted: 10/10/2016] [Indexed: 11/16/2022] Open
Abstract
The enzymatic ring-opening polymerization of lactones is a method of increasing interest for the synthesis of biodegradable and biocompatible polymers. In the past it was shown that immobilization of Candida antarctica lipase B (CaLB) and the reaction medium play an important role in the polymerization ability especially of medium ring size lactones like ε-caprolactone (ε-CL). We investigated a route for the preparation of compartmentalized microgels based on poly(glycidol) in which CaLB was immobilized to increase its esterification ability. To find the ideal environment for CaLB, we investigated the acceptable water concentration and the accessibility for the monomer in model polymerizations in toluene and analyzed the obtained oligomers/polymers by NMR and SEC. We observed a sufficient accessibility for ε-CL to a toluene like hydrophobic phase imitating a hydrophobic microgel. Comparing free CaLB and Novozym® 435 we found that not the monomer concentration but rather the solubility of the enzyme, as well as the water concentration, strongly influences the equilibrium of esterification and hydrolysis. On the basis of these investigations, microgels of different polarity were prepared and successfully loaded with CaLB by physical entrapment. By comparison of immobilized and free CaLB, we demonstrated an effect of the hydrophobicity of the microenvironment of CaLB on its enzymatic activity.
Collapse
Affiliation(s)
- Stefan Engel
- DWI-Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstraße 50, D-52056 Aachen, Germany.
| | - Heidi Höck
- DWI-Leibniz Institute for Interactive Materials and Institute of Biotechnology, RWTH Aachen University, Forckenbeckstraße 50, D-52056 Aachen, Germany.
| | - Marco Bocola
- DWI-Leibniz Institute for Interactive Materials and Institute of Biotechnology, RWTH Aachen University, Forckenbeckstraße 50, D-52056 Aachen, Germany.
| | - Helmut Keul
- DWI-Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstraße 50, D-52056 Aachen, Germany.
| | - Ulrich Schwaneberg
- DWI-Leibniz Institute for Interactive Materials and Institute of Biotechnology, RWTH Aachen University, Forckenbeckstraße 50, D-52056 Aachen, Germany.
| | - Martin Möller
- DWI-Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstraße 50, D-52056 Aachen, Germany.
| |
Collapse
|
39
|
de Souza TC, de S. Fonseca T, da Costa JA, Rocha MVP, de Mattos MC, Fernandez-Lafuente R, Gonçalves LR, S. dos Santos JC. Cashew apple bagasse as a support for the immobilization of lipase B from Candida antarctica: Application to the chemoenzymatic production of (R)-Indanol. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.05.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
40
|
Llevot A, Dannecker PK, von Czapiewski M, Over LC, Söyler Z, Meier MAR. Renewability is not Enough: Recent Advances in the Sustainable Synthesis of Biomass-Derived Monomers and Polymers. Chemistry 2016; 22:11510-21. [PMID: 27355829 DOI: 10.1002/chem.201602068] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Indexed: 12/18/2022]
Abstract
Taking advantage of the structural diversity of different biomass resources, recent efforts were directed towards the synthesis of renewable monomers and polymers, either for the substitution of petroleum-based resources or for the design of novel polymers. Not only the use of biomass, but also the development of sustainable chemical approaches is a crucial aspect for the production of sustainable materials. This review discusses the recent examples of chemical modifications and polymerizations of abundant biomass resources with a clear focus on the sustainability of the described processes. Topics such as synthetic methodology, catalysis, and development of new solvent systems or greener alternative reagents are addressed. The chemistry of vegetable oil derivatives, terpenes, lignin, carbohydrates, and sugar-based platform chemicals was selected to highlight the trends in the active field of a sustainable use of renewable resources.
Collapse
Affiliation(s)
- Audrey Llevot
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Laboratory of Applied Chemistry, Fritz-Haber-Weg 6, Building 30.42, 76131, Karlsruhe, Germany.
| | - Patrick-Kurt Dannecker
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Laboratory of Applied Chemistry, Fritz-Haber-Weg 6, Building 30.42, 76131, Karlsruhe, Germany
| | - Marc von Czapiewski
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Laboratory of Applied Chemistry, Fritz-Haber-Weg 6, Building 30.42, 76131, Karlsruhe, Germany
| | - Lena C Over
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Laboratory of Applied Chemistry, Fritz-Haber-Weg 6, Building 30.42, 76131, Karlsruhe, Germany
| | - Zafer Söyler
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Laboratory of Applied Chemistry, Fritz-Haber-Weg 6, Building 30.42, 76131, Karlsruhe, Germany
| | - Michael A R Meier
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Laboratory of Applied Chemistry, Fritz-Haber-Weg 6, Building 30.42, 76131, Karlsruhe, Germany.
| |
Collapse
|
41
|
Ren H, Xing Z, Yang J, Jiang W, Zhang G, Tang J, Li Q. Construction of an Immobilized Thermophilic Esterase on Epoxy Support for Poly(ε-caprolactone) Synthesis. Molecules 2016; 21:molecules21060796. [PMID: 27322233 PMCID: PMC6272972 DOI: 10.3390/molecules21060796] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/14/2016] [Accepted: 06/16/2016] [Indexed: 11/16/2022] Open
Abstract
Developing an efficient immobilized enzyme is of great significance for improving the operational stability of enzymes in poly(ε-caprolactone) synthesis. In this paper, a thermophilic esterase AFEST from the archaeon Archaeoglobus fulgidus was successfully immobilized on the epoxy support Sepabeads EC-EP via covalent attachment, and the immobilized enzyme was then employed as a biocatalyst for poly(ε-caprolactone) synthesis. The enzyme loading and recovered activity of immobilized enzyme was measured to be 72 mg/g and 10.4 U/mg using p-nitrophenyl caprylate as the substrate at 80 °C, respectively. Through the optimization of reaction conditions (enzyme concentration, temperature, reaction time and medium), poly(ε-caprolactone) was obtained with 100% monomer conversion and low number-average molecular weight (Mn < 1300 g/mol). Further, the immobilized enzyme exhibited excellent reusability, with monomer conversion values exceeding 75% during 15 batch reactions. Finally, poly(ε-caprolactone) was enzymatically synthesized with an isolated yield of 75% and Mn value of 3005 g/mol in a gram-scale reaction.
Collapse
Affiliation(s)
- Hui Ren
- Department of Colorectal Surgery, the Second Hospital of Jilin University, Changchun 130041, China.
| | - Zhen Xing
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Jiebing Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Wei Jiang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Gang Zhang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Jun Tang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
42
|
Rueda N, dos Santos CS, Rodriguez MD, Albuquerque TL, Barbosa O, Torres R, Ortiz C, Fernandez-Lafuente R. Reversible immobilization of lipases on octyl-glutamic agarose beads: A mixed adsorption that reinforces enzyme immobilization. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.03.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
43
|
Taresco V, Creasey R, Kennon J, Mantovani G, Alexander C, Burley J, Garnett M. Variation in structure and properties of poly(glycerol adipate) via control of chain branching during enzymatic synthesis. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.02.036] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Finnveden M, Nameer S, Johansson M, Martinelle M. One‐Component Thiol‐Alkene Functional Oligoester Resins Utilizing Lipase Catalysis. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201500490] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Maja Finnveden
- KTH Royal Institute of Technology School of Biotechnology Division of Industrial Biotechnology AlbaNova University Centre 106 91 Stockholm Sweden
| | - Samer Nameer
- KTH Royal Institute of Technology Department of Fibre and Polymer Technology Teknikringen 56‐58 100 44 Stockholm Sweden
| | - Mats Johansson
- KTH Royal Institute of Technology Department of Fibre and Polymer Technology Teknikringen 56‐58 100 44 Stockholm Sweden
| | - Mats Martinelle
- KTH Royal Institute of Technology School of Biotechnology Division of Industrial Biotechnology AlbaNova University Centre 106 91 Stockholm Sweden
| |
Collapse
|
45
|
Borowiecki P, Paprocki D, Dudzik A, Plenkiewicz J. Chemoenzymatic Synthesis of Proxyphylline Enantiomers. J Org Chem 2016; 81:380-95. [DOI: 10.1021/acs.joc.5b01840] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Paweł Borowiecki
- Warsaw University of Technology, Faculty of Chemistry,
Institute of Biotechnology, Koszykowa St. 3, 00-664 Warsaw, Poland
| | - Daniel Paprocki
- Warsaw University of Technology, Faculty of Chemistry,
Institute of Biotechnology, Koszykowa St. 3, 00-664 Warsaw, Poland
| | - Agnieszka Dudzik
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek St. 8, 30-239 Cracow, Poland
| | - Jan Plenkiewicz
- Warsaw University of Technology, Faculty of Chemistry,
Institute of Biotechnology, Koszykowa St. 3, 00-664 Warsaw, Poland
| |
Collapse
|
46
|
Jiang Y, Maniar D, Woortman AJJ, Loos K. Enzymatic synthesis of 2,5-furandicarboxylic acid-based semi-aromatic polyamides: enzymatic polymerization kinetics, effect of diamine chain length and thermal properties. RSC Adv 2016. [DOI: 10.1039/c6ra14585j] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Sustainable FDCA-based semi-aromatic polyamides are produced via enzymatic polymerization. The enzymatic polymerization kinetics, effect of diamine chain length, and thermal properties of the resulting polyamides are investigated.
Collapse
Affiliation(s)
- Yi Jiang
- Department of Polymer Chemistry
- Zernike Institute for Advanced Materials
- University of Groningen
- 9747 AG Groningen
- The Netherlands
| | - Dina Maniar
- Department of Polymer Chemistry
- Zernike Institute for Advanced Materials
- University of Groningen
- 9747 AG Groningen
- The Netherlands
| | - Albert J. J. Woortman
- Department of Polymer Chemistry
- Zernike Institute for Advanced Materials
- University of Groningen
- 9747 AG Groningen
- The Netherlands
| | - Katja Loos
- Department of Polymer Chemistry
- Zernike Institute for Advanced Materials
- University of Groningen
- 9747 AG Groningen
- The Netherlands
| |
Collapse
|
47
|
Curia S, Howdle SM. Towards sustainable polymeric nano-carriers and surfactants: facile low temperature enzymatic synthesis of bio-based amphiphilic copolymers in scCO2. Polym Chem 2016. [DOI: 10.1039/c6py00066e] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We demonstrate that useful bio-based amphiphilic polymers can be produced enzymatically at a mild temperature, in a solvent-free system and using renewably sourced monomers, by exploiting the unique properties of supercritical CO2(scCO2).
Collapse
Affiliation(s)
- S. Curia
- University of Nottingham
- School of Chemistry
- University Park
- Nottingham
- UK
| | - S. M. Howdle
- University of Nottingham
- School of Chemistry
- University Park
- Nottingham
- UK
| |
Collapse
|
48
|
Kumar A, Khan A, Malhotra S, Mosurkal R, Dhawan A, Pandey MK, Singh BK, Kumar R, Prasad AK, Sharma SK, Samuelson LA, Cholli AL, Len C, Richards NGJ, Kumar J, Haag R, Watterson AC, Parmar VS. Synthesis of macromolecular systems via lipase catalyzed biocatalytic reactions: applications and future perspectives. Chem Soc Rev 2016; 45:6855-6887. [DOI: 10.1039/c6cs00147e] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This review highlights the application of lipases in the synthesis of pharmaceutically important small molecules and polymers for diverse applications.
Collapse
|
49
|
Curia S, Barclay AF, Torron S, Johansson M, Howdle SM. Green process for green materials: viable low-temperature lipase-catalysed synthesis of renewable telechelics in supercritical CO2. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2015; 373:rsta.2015.0073. [PMID: 26574529 DOI: 10.1098/rsta.2015.0073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/29/2015] [Indexed: 06/05/2023]
Abstract
We present a novel near-ambient-temperature approach to telechelic renewable polyesters by exploiting the unique properties of supercritical CO(2) (scCO(2)). Bio-based commercially available monomers have been polymerized and functional telechelic materials with targeted molecular weight prepared by end-capping the chains with molecules containing reactive moieties in a one-pot reaction. The use of scCO(2) as a reaction medium facilitates the effective use of Candida antarctica Lipase B (CaLB) as a catalyst at a temperature as low as 35°C, hence avoiding side reactions, maintaining the end-capper functionality and preserving the enzyme activity. The functionalized polymer products have been characterized by (1)H nuclear magnetic resonance spectroscopy, matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry, gel permeation chromatography and differential scanning calorimetry in order to carefully assess their structural and thermal properties. We demonstrate that telechelic materials can be produced enzymatically at mild temperatures, in a solvent-free system and using renewably sourced monomers without pre-modification, by exploiting the unique properties of scCO(2). The macromolecules we prepare are ideal green precursors that can be further reacted to prepare useful bio-derived films and coatings.
Collapse
Affiliation(s)
- S Curia
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - A F Barclay
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - S Torron
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - M Johansson
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - S M Howdle
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| |
Collapse
|
50
|
Jiang W, An N, Zhang Q, Xiang S, Bai Z, Han H, Li X, Li Q, Tang J. One-Pot Combination of eROP and ROMP for the Synthesis of Block Copolymers. MACROMOL CHEM PHYS 2015. [DOI: 10.1002/macp.201500313] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wei Jiang
- College of Chemistry; Jilin University; Changchun 130012 China
| | - Ni An
- College of Chemistry; Jilin University; Changchun 130012 China
| | - Qiuping Zhang
- College of Chemistry; Jilin University; Changchun 130012 China
| | - Shidong Xiang
- College of Chemistry; Jilin University; Changchun 130012 China
| | - Zhenguo Bai
- College of Chemistry; Jilin University; Changchun 130012 China
| | - Haobo Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education; School of Life Sciences; Jilin University; Changchun 130012 China
| | - Xuesong Li
- College of Chemistry; Jilin University; Changchun 130012 China
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education; School of Life Sciences; Jilin University; Changchun 130012 China
| | - Jun Tang
- College of Chemistry; Jilin University; Changchun 130012 China
| |
Collapse
|