1
|
Ibrahim SRM, Fadil SA, Fadil HA, Eshmawi BA, Mohamed SGA, Mohamed GA. Fungal Naphthalenones; Promising Metabolites for Drug Discovery: Structures, Biosynthesis, Sources, and Pharmacological Potential. Toxins (Basel) 2022; 14:154. [PMID: 35202181 PMCID: PMC8879409 DOI: 10.3390/toxins14020154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/10/2022] Open
Abstract
Fungi are well-known for their abundant supply of metabolites with unrivaled structure and promising bioactivities. Naphthalenones are among these fungal metabolites, that are biosynthesized through the 1,8-dihydroxy-naphthalene polyketide pathway. They revealed a wide spectrum of bioactivities, including phytotoxic, neuro-protective, cytotoxic, antiviral, nematocidal, antimycobacterial, antimalarial, antimicrobial, and anti-inflammatory. The current review emphasizes the reported naphthalenone derivatives produced by various fungal species, including their sources, structures, biosynthesis, and bioactivities in the period from 1972 to 2021. Overall, more than 167 references with 159 metabolites are listed.
Collapse
Affiliation(s)
- Sabrin R. M. Ibrahim
- Department of Chemistry, Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Sana A. Fadil
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.A.F.); (G.A.M.)
| | - Haifa A. Fadil
- Department of Clinical and Hospital Pharmacy, Faculty of Pharmacy, Taibah University, Almadinah Almunawarah 30078, Saudi Arabia;
| | - Bayan A. Eshmawi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Shaimaa G. A. Mohamed
- Faculty of Dentistry, British University, El Sherouk City, Suez Desert Road, Cairo 11837, Egypt;
| | - Gamal A. Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.A.F.); (G.A.M.)
| |
Collapse
|
2
|
Li T, Ding T, Li J. Medicinal Purposes: Bioactive Metabolites from Marine-derived Organisms. Mini Rev Med Chem 2019; 19:138-164. [PMID: 28969543 DOI: 10.2174/1389557517666170927113143] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/25/2017] [Accepted: 06/17/2017] [Indexed: 12/20/2022]
Abstract
The environment of marine occupies about 95% biosphere of the world and it can be a critical source of bioactive compounds for humans to be explored. Special environment such as high salt, high pressure, low temperature, low nutrition and no light, etc. has made the production of bioactive substances different from terrestrial organisms. Natural ingredients secreted by marine-derived bacteria, fungi, actinomycetes, Cyanobacteria and other organisms have been separated as active pharmacophore. A number of evidences have demonstrated that bioactive ingredients isolated from marine organisms can be other means to discover novel medicines, since enormous natural compounds from marine environment were specified to be anticancer, antibacterial, antifungal, antitumor, cytotoxic, cytostatic, anti-inflammatory, antiviral agents, etc. Although considerable progress is being made within the field of chemical synthesis and engineering biosynthesis of bioactive compounds, marine environment still remains the richest and the most diverse sources for new drugs. This paper reviewed the natural compounds discovered recently from metabolites of marine organisms, which possess distinct chemical structures that may form the basis for the synthesis of new drugs to combat resistant pathogens of human life. With developing sciences and technologies, marine-derived bioactive compounds are still being found, showing the hope of solving the problems of human survival and sustainable development of resources and environment.
Collapse
Affiliation(s)
- Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian, Liaoning, 116600, China
| | - Ting Ding
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,College of Food Science and Technology, Bohai University; Food Safety Key Lab of Liaoning Province; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products; Jinzhou, Liaoning, 121013, China
| | - Jianrong Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,College of Food Science and Technology, Bohai University; Food Safety Key Lab of Liaoning Province; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products; Jinzhou, Liaoning, 121013, China
| |
Collapse
|
3
|
Sadorn K, Saepua S, Boonyuen N, Boonruangprapa T, Rachtawee P, Pittayakhajonwut P. Antimicrobial activity and cytotoxicity of xanthoquinodin analogs from the fungus Cytospora eugeniae BCC42696. PHYTOCHEMISTRY 2018; 151:99-109. [PMID: 29677644 DOI: 10.1016/j.phytochem.2018.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 03/29/2018] [Accepted: 04/09/2018] [Indexed: 06/08/2023]
Abstract
Eleven previously undescribed compounds, including cytosporanthraxanthone, xanthoquinodins A7-A10, ketoxanthoquinodin A6, xanthoquinodins B6-B8, and spiroxanthoquinodins A and B, and one synthetically known compound, 2-methoxy pinselin, as well as ten known compounds, including xanthoquinodins A4-A6, B4, and B5, chrysophanol, physcion, (4S)-5-hydroxy-4-methoxy-α-tetralone, (4S)-4,8-dihydroxy-α-tetralone (or isosclerone), and gonytolide C were isolated from the fungus Cytospora eugeniae BCC42696. Their chemical structures were determined based on the analysis of NMR spectroscopic and mass spectrometric data. Moreover, the absolute configurations of the unknown compounds were established by using NOESY and NOEDIFF NMR experiments along with CD spectroscopic data. The isolated xanthoquinodins exhibited a broad range of antimalarial, antibacterial, and fungicidal activities as well as cytotoxicity. Xanthoquinodins A6, B4, and B5 showed strong activity to Plasmodium falciparum, K1 strain (IC50 0.52-0.92 μM) and displayed anti-Bacillus cereus (MIC 1.56 μg/mL). Xanthoquinodin A6 also showed anti-Curvularia lunata (MIC 3.13 μg/mL). In addition, xanthoquinodins A4, A6, B4, and B5 and ketoxanthoquinodin A6 showed cytotoxicity against both cancerous (MCF-7, KB, NCI-H187) and non-cancerous (Vero) cells.
Collapse
Affiliation(s)
- Karoon Sadorn
- Integrated Applied Chemistry Research Unit, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Chalongkrung Road, Ladkrabang, Bangkok 10520, Thailand; Department of Chemistry, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Chalongkrung Road, Ladkrabang, Bangkok 10520, Thailand.
| | - Siriporn Saepua
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phaholyothin Road, Klong Luang, Pathumthani 12120, Thailand
| | - Nattawut Boonyuen
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phaholyothin Road, Klong Luang, Pathumthani 12120, Thailand
| | - Tanapong Boonruangprapa
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phaholyothin Road, Klong Luang, Pathumthani 12120, Thailand
| | - Pranee Rachtawee
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phaholyothin Road, Klong Luang, Pathumthani 12120, Thailand
| | - Pattama Pittayakhajonwut
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phaholyothin Road, Klong Luang, Pathumthani 12120, Thailand
| |
Collapse
|
4
|
Zhang P, Jia C, Lang J, Li J, Luo G, Chen S, Yan S, Liu L. Mono- and Dimeric Naphthalenones from the Marine-Derived Fungus Leptosphaerulina chartarum 3608. Mar Drugs 2018; 16:md16050173. [PMID: 29883375 PMCID: PMC5983304 DOI: 10.3390/md16050173] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/08/2018] [Accepted: 05/11/2018] [Indexed: 01/05/2023] Open
Abstract
Five new naphthalenones, two enantiomers (−)-1 and (+)-1 leptothalenone A, (−)-4,8-dihydroxy-7-(2-hydroxy-ethyl)-6-methoxy-3,4-dihydro-2H-naphthalen-1-one ((−)-2), (4S, 10R, 4’S)-leptotha-lenone B (5), (4R, 10S, 4’S)-leptothalenone B (6), and a new isocoumarine, 6-hydroxy-5,8-dimethoxy-3-methyl-1H-isochromen-1-one (4), along with two known compounds (+)-4,8-dihydroxy-7-(2-hydroxy-ethyl)-6-methoxy-3,4-dihydro-2H-naphthalen-1-one ((+)-2) and (+)-10-norparvulenone (3) were isolated from the marine-derived fungus Leptosphaerulina chartarum 3608. The structures of new compounds were elucidated by HR-ESIMS, NMR, and ECD analysis. All compounds were evaluated for cytotoxicity and anti-inflammatory activity. Compound 6 showed moderate anti-inflammatory activity by inhibiting the production of nitric oxide (NO) in lipopolysaccharide-stimulated RAW264.7 cells, with an IC50 value of 44.5 μM.
Collapse
Affiliation(s)
- Panpan Zhang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Chunxiu Jia
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| | - Jiajia Lang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| | - Jing Li
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Guangyuan Luo
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Senhua Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Sujun Yan
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China.
- Key Laboratory of Functional Molecules from Oceanic Microorganisms (Sun Yat-sen University), Department of Education of Guangdong Province, Guangzhou 510080, China.
| |
Collapse
|
5
|
Deshmukh SK, Prakash V, Ranjan N. Marine Fungi: A Source of Potential Anticancer Compounds. Front Microbiol 2018; 8:2536. [PMID: 29354097 PMCID: PMC5760561 DOI: 10.3389/fmicb.2017.02536] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 12/06/2017] [Indexed: 11/13/2022] Open
Abstract
Metabolites from marine fungi have hogged the limelight in drug discovery because of their promise as therapeutic agents. A number of metabolites related to marine fungi have been discovered from various sources which are known to possess a range of activities as antibacterial, antiviral and anticancer agents. Although, over a thousand marine fungi based metabolites have already been reported, none of them have reached the market yet which could partly be related to non-comprehensive screening approaches and lack of sustained lead optimization. The origin of these marine fungal metabolites is varied as their habitats have been reported from various sources such as sponge, algae, mangrove derived fungi, and fungi from bottom sediments. The importance of these natural compounds is based on their cytotoxicity and related activities that emanate from the diversity in their chemical structures and functional groups present on them. This review covers the majority of anticancer compounds isolated from marine fungi during 2012-2016 against specific cancer cell lines.
Collapse
Affiliation(s)
- Sunil K. Deshmukh
- TERI–Deakin Nano Biotechnology Centre, The Energy and Resources Institute, New Delhi, India
| | - Ved Prakash
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India
| | - Nihar Ranjan
- TERI–Deakin Nano Biotechnology Centre, The Energy and Resources Institute, New Delhi, India
| |
Collapse
|
6
|
Azevedo L, Chagas-Paula DA, Kim H, Roque ACM, Dias KST, Machado JC, Soares MG, Mertens-Talcott SU. White mold (Sclerotinia sclerotiorum), friend or foe: Cytotoxic and mutagenic activities in vitro and in vivo. Food Res Int 2016. [DOI: 10.1016/j.foodres.2015.11.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Frisvad JC, Larsen TO. Extrolites of Aspergillus fumigatus and Other Pathogenic Species in Aspergillus Section Fumigati. Front Microbiol 2016; 6:1485. [PMID: 26779142 PMCID: PMC4703822 DOI: 10.3389/fmicb.2015.01485] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 12/09/2015] [Indexed: 11/13/2022] Open
Abstract
Aspergillus fumigatus is an important opportunistic human pathogen known for its production of a large array of extrolites. Up to 63 species have been described in Aspergillus section Fumigati, some of which have also been reliably reported to be pathogenic, including A. felis, A. fischeri, A. fumigatiaffinis, A. fumisynnematus, A. hiratsukae, A. laciniosus, A. lentulus, A. novofumigatus, A. parafelis, A. pseudofelis, A. pseudoviridinutans, A. spinosus, A. thermomutatus, and A. udagawae. These species share the production of hydrophobins, melanins, and siderophores and ability to grow well at 37°C, but they only share some small molecule extrolites, that could be important factors in pathogenicity. According to the literature gliotoxin and other exometabolites can be contributing factors to pathogenicity, but these exometabolites are apparently not produced by all pathogenic species. It is our hypothesis that species unable to produce some of these metabolites can produce proxy-exometabolites that may serve the same function. We tabulate all exometabolites reported from species in Aspergillus section Fumigati and by comparing the profile of those extrolites, suggest that those producing many different kinds of exometabolites are potential opportunistic pathogens. The exometabolite data also suggest that the profile of exometabolites are highly specific and can be used for identification of these closely related species.
Collapse
Affiliation(s)
- Jens C. Frisvad
- Section of Eukaryotic Biotechnology, Department of Systems Biology, Technical University of DenmarkKongens Lyngby, Denmark
| | | |
Collapse
|
8
|
Gomes NGM, Lefranc F, Kijjoa A, Kiss R. Can Some Marine-Derived Fungal Metabolites Become Actual Anticancer Agents? Mar Drugs 2015; 13:3950-91. [PMID: 26090846 PMCID: PMC4483665 DOI: 10.3390/md13063950] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/04/2015] [Accepted: 06/09/2015] [Indexed: 01/03/2023] Open
Abstract
Marine fungi are known to produce structurally unique secondary metabolites, and more than 1000 marine fungal-derived metabolites have already been reported. Despite the absence of marine fungal-derived metabolites in the current clinical pipeline, dozens of them have been classified as potential chemotherapy candidates because of their anticancer activity. Over the last decade, several comprehensive reviews have covered the potential anticancer activity of marine fungal-derived metabolites. However, these reviews consider the term "cytotoxicity" to be synonymous with "anticancer agent", which is not actually true. Indeed, a cytotoxic compound is by definition a poisonous compound. To become a potential anticancer agent, a cytotoxic compound must at least display (i) selectivity between normal and cancer cells (ii) activity against multidrug-resistant (MDR) cancer cells; and (iii) a preferentially non-apoptotic cell death mechanism, as it is now well known that a high proportion of cancer cells that resist chemotherapy are in fact apoptosis-resistant cancer cells against which pro-apoptotic drugs have more than limited efficacy. The present review thus focuses on the cytotoxic marine fungal-derived metabolites whose ability to kill cancer cells has been reported in the literature. Particular attention is paid to the compounds that kill cancer cells through non-apoptotic cell death mechanisms.
Collapse
Affiliation(s)
- Nelson G M Gomes
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Universidade do Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal.
| | - Florence Lefranc
- Service de Neurochirurgie, Hôpital Erasme, Université Libre de Bruxelles, 808 Route de Lennik, 1070 Brussels, Belgium.
| | - Anake Kijjoa
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Universidade do Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal.
| | - Robert Kiss
- Laboratoire de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles, Campus de la Plaine, CP205/1, Boulevard du Triomphe, 1050 Brussels, Belgium.
| |
Collapse
|