1
|
Siatka T, Mát'uš M, Moravcová M, Harčárová P, Lomozová Z, Matoušová K, Suwanvecho C, Krčmová LK, Mladěnka P. Biological, dietetic and pharmacological properties of vitamin B 9. NPJ Sci Food 2025; 9:30. [PMID: 40075081 PMCID: PMC11904035 DOI: 10.1038/s41538-025-00396-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
Humans must obtain vitamin B9 (folate) from plant-based diet. The sources as well as the effect of food processing are discussed in detail. Industrial production, fortification and biofortification, kinetics, and physiological role in humans are described. As folate deficiency leads to several pathological states, current opinions toward prevention through fortification are discussed. Claimed risks of increased folate intake are mentioned as well as analytical ways for measurement of folate.
Collapse
Affiliation(s)
- Tomáš Siatka
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Marek Mát'uš
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232, Bratislava, Slovak Republic
| | - Monika Moravcová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Patrícia Harčárová
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Zuzana Lomozová
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Kateřina Matoušová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05, Hradec Králové, Czech Republic
| | - Chaweewan Suwanvecho
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05, Hradec Králové, Czech Republic
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Lenka Kujovská Krčmová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05, Hradec Králové, Czech Republic
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic.
| |
Collapse
|
2
|
James A, Yao T, Ke H, Wang Y. Microbiota for production of wine with enhanced functional components. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
3
|
Mehlomakulu NN, Moyo SM, Kayitesi E. Yeast derived metabolites and their impact on nutritional and bioactive properties of African fermented maize products. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
Meng Z, Yi L, Hu Q, Lin Z, Ramaswamy HS, Wang C. Optimized Extraction and Characterization of Folates From Date Palm Fruits and Their Tracking During Fruits Wine Fermentation. Front Nutr 2021; 8:699555. [PMID: 34557510 PMCID: PMC8452929 DOI: 10.3389/fnut.2021.699555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/03/2021] [Indexed: 11/15/2022] Open
Abstract
Folates belong to the essential B vitamins group and participate in one-carbon metabolism. Date palm fruits (Phoenix dactilyfera L. family Arecaceae) are consumed by millions of people and are good sources of folates. To date, no detailed study has been carried out on suitable methods for folate extraction from date palm fruits. In the present study, an experimental design using response surface methodology (RSM) was used to maximize the extraction yield of folates from date palm fruits by including enzymatic depectinization. By applying this new strategy and a UHPLC-MS/MS technique for analysis, total folate and different folate vitamers of three cultivars of date palm fruits (Muzafti, Zahdi, and Rubai), brewer's yeast, and fermented date wine were analyzed. The optimized extraction conditions of folates from date palm fruits were found to be a pectinase activity of 47.7 U, an incubation temperature of 40°C, and an incubation time of 38 min, which yielded a total folate content of 191–301 μg/100 g. In brewer's yeast, the extracted total folate content was very high (4,870 μg/100 g), and, in the resulting date wine, it reached a maximum of 700 μg/L on the fifth day. The predominant folate vitamers in date fruit and fruit wine were 5-formyltetrahydrofolate (5-CHO-THF) and 5-methyltetrahydrofolate (5-CH3-THF). During date palm fruit fermentation for up to 8 days, the 5-CHO-THF content gradually decreased by 20%, while 5-CH3-THF increased linearly from day 1 to day 5 (y = 0.058 x + 0.0284, R2 = 0.9614). This study shows that date palm fruit and fruit wine are excellent sources of folate, and further study can be focused on different methods to improve folate stability during wine storage.
Collapse
Affiliation(s)
- Ziyi Meng
- Department of Food Science and Technology, Jinan University, Guangzhou, China
| | - Ling Yi
- Department of Food Science and Technology, Jinan University, Guangzhou, China
| | - Qingxin Hu
- Department of Food Science and Technology, Jinan University, Guangzhou, China
| | - Zhiyi Lin
- Department of Food Science and Technology, Jinan University, Guangzhou, China
| | - Hosahalli S Ramaswamy
- Department of Food Science and Agricultural Chemistry, Macdonald Campus of McGill University, Montréal, QC, Canada
| | - Chao Wang
- Department of Food Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
5
|
Yang H, Zhang X, Liu Y, Liu L, Li J, Du G, Chen J. Synthetic biology-driven microbial production of folates: Advances and perspectives. BIORESOURCE TECHNOLOGY 2021; 324:124624. [PMID: 33434873 DOI: 10.1016/j.biortech.2020.124624] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
With the development and application of synthetic biology, significant progress has been made in the production of folate by microbial fermentation using cell factories, especially for using generally regarded as safe (GRAS) microorganism as production host. In this review, the physiological functions and applications of folates were firstly discussed. Second, the current advances of folate-producing GRAS strains development were summarized. Third, the applications of synthetic biology-based metabolic regulatory tools in GRAS strains were introduced, and the progress in the application of these tools for folate production were summarized. Finally, the challenges to folates efficient production and corresponding emerging strategies to overcome them by synthetic biology were discussed, including the construction of biosensors using tetrahydrofolate riboswitches to regulate metabolic pathways, adaptive evolution to overcome the flux limitations of the folate pathway. The combination of new strategies and tools of synthetic biology is expected to further improve the efficiency of microbial folate synthesis.
Collapse
Affiliation(s)
- Han Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiaolong Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; Qingdao Special Food Research Institute, Qingdao 266109, China.
| |
Collapse
|
6
|
Leo VV, Viswanath V, Deka P, Zothanpuia, Ramji DR, Pachuau L, Carrie W, Malvi Y, Singh G, Singh BP. Saccharomyces and Their Potential Applications in Food and Food Processing Industries. Fungal Biol 2021. [DOI: 10.1007/978-3-030-67561-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Rai AK, Pandey A, Sahoo D. Biotechnological potential of yeasts in functional food industry. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.11.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Revuelta JL, Serrano-Amatriain C, Ledesma-Amaro R, Jiménez A. Formation of folates by microorganisms: towards the biotechnological production of this vitamin. Appl Microbiol Biotechnol 2018; 102:8613-8620. [PMID: 30073396 PMCID: PMC6153639 DOI: 10.1007/s00253-018-9266-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 01/12/2023]
Abstract
Folates (vitamin B9) are essential micronutrients which function as cofactors in one-carbon transfer reactions involved in the synthesis of nucleotides and amino acids. Folate deficiency is associated with important diseases such as cancer, anemia, cardiovascular diseases, or neural tube defects. Epidemiological data show that folate deficiency is still highly prevalent in many populations. Hence, food fortification with synthetic folic acid (i.e., folic acid supplementation) has become mandatory in many developed countries. However, folate biofortification of staple crops and dairy products as well as folate bioproduction using metabolically engineered microorganisms are promising alternatives to folic acid supplementation. Here, we review the current strategies aimed at overproducing folates in microorganisms, in view to implement an economic feasible process for the biotechnological production of the vitamin.
Collapse
Affiliation(s)
- José Luis Revuelta
- Metabolic Engineering Group, Department of Microbiology and Genetics, University of Salamanca, Campus Miguel de Unamuno, E-37007, Salamanca, Spain.
| | - Cristina Serrano-Amatriain
- Metabolic Engineering Group, Department of Microbiology and Genetics, University of Salamanca, Campus Miguel de Unamuno, E-37007, Salamanca, Spain
| | - Rodrigo Ledesma-Amaro
- Imperial College Centre for Synthetic Biology and Department of Bioengineering, Imperial College London, London, UK
| | - Alberto Jiménez
- Metabolic Engineering Group, Department of Microbiology and Genetics, University of Salamanca, Campus Miguel de Unamuno, E-37007, Salamanca, Spain
| |
Collapse
|
9
|
Greppi A, Saubade F, Botta C, Humblot C, Guyot JP, Cocolin L. Potential probiotic Pichia kudriavzevii strains and their ability to enhance folate content of traditional cereal-based African fermented food. Food Microbiol 2016; 62:169-177. [PMID: 27889145 DOI: 10.1016/j.fm.2016.09.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 06/23/2016] [Accepted: 09/18/2016] [Indexed: 12/13/2022]
Abstract
With the aim of selecting starter cultures with interesting probiotic potential and with the ability to produce folate in a food matrix, yeast strains isolated from fermented cereal-based African foods were investigated. A total of 93 yeast strains were screened for their tolerance to pH 2 and 0.3% of bile salts. Pichia kudriavzevii isolates gave the best results. Selected P. kudriavzevii strains were tested for survival to the simulated human digestion and for adhesion to Caco-2 cells. Moreover, presence of folate biosynthesis genes was verified and production of extra and intra-cellular folate determined during growth in culture medium. 31% of yeast strains could tolerate pH 2, while 99% bile salts. Survival rate after simulated digestion ranged between 11 and 45%, while adhesion rate between 12 and 40%. Folate production was mainly intracellular, maximum after 24 h of growth. To be closer to traditional cereal-based fermentations, a P. kudriavzevii strain with good probiotic potential was co-inoculated with Lactobacillus fermentum strains in a pearl millet gruel. This resulted in in situ folate production that peaked after 4 h. The use of strains with both probiotic and nutritional enrichment properties may have a greater impact for the consumers.
Collapse
Affiliation(s)
- Anna Greppi
- Department of Agricultural, Forest and Food Science, University of Torino, Grugliasco, Italy.
| | - Fabien Saubade
- Institute of Research for Development (IRD), UMR 204 Nutripass, IRD/University of Montpellier/SupAgro, Montpellier, France
| | - Cristian Botta
- Department of Agricultural, Forest and Food Science, University of Torino, Grugliasco, Italy
| | - Christèle Humblot
- Institute of Research for Development (IRD), UMR 204 Nutripass, IRD/University of Montpellier/SupAgro, Montpellier, France
| | - Jean-Pierre Guyot
- Institute of Research for Development (IRD), UMR 204 Nutripass, IRD/University of Montpellier/SupAgro, Montpellier, France
| | - Luca Cocolin
- Department of Agricultural, Forest and Food Science, University of Torino, Grugliasco, Italy
| |
Collapse
|
10
|
Saini RK, Nile SH, Keum YS. Folates: Chemistry, analysis, occurrence, biofortification and bioavailability. Food Res Int 2016; 89:1-13. [PMID: 28460896 DOI: 10.1016/j.foodres.2016.07.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 07/18/2016] [Accepted: 07/22/2016] [Indexed: 01/27/2023]
Abstract
Folates (Vitamin B9) include both naturally occurring folates and synthetic folic acid used in fortified foods and dietary supplements. Folate deficiency causes severe abnormalities in one-carbon metabolism can result chronic diseases and developmental disorders, including neural tube defects. Mammalian cells cannot synthesize folates de novo; therefore, diet and dietary supplements are the only way to attain daily folate requirements. In the last decade, significant advancements have been made to enhance the folate content of rice, tomato, common bean and lettuce by using genetic engineering approaches. Strategies have been developed to improve the stability of folate pool in plants. Folate deglutamylation through food processing and thermal treatment has the potential to enhance the bioavailability of folate. This review highlights the recent developments in biosynthesis, composition, bioavailability, enhanced production by elicitation and metabolic engineering, and methods of analysis of folate in food. Additionally, future perspectives in this context are identified. Detailed knowledge of folate biosynthesis, degradation and salvage are the prime requirements to efficiently engineer the plants for the enhancement of overall folate content. Similarly, consumption of a folate-rich diet with enhanced bioavailability is the best way to maintain optimum folate levels in the body.
Collapse
Affiliation(s)
- Ramesh Kumar Saini
- Department of Bioresources and Food Science, College of Life and Environmental Sciences, Konkuk University, Seoul 143-701, Republic of Korea.
| | - Shivraj Hariram Nile
- Department of Bioresources and Food Science, College of Life and Environmental Sciences, Konkuk University, Seoul 143-701, Republic of Korea
| | - Young-Soo Keum
- Department of Bioresources and Food Science, College of Life and Environmental Sciences, Konkuk University, Seoul 143-701, Republic of Korea.
| |
Collapse
|
11
|
Liu Y, Walkey CJ, Green TJ, van Vuuren HJ, Kitts DD. Enhancing the natural folate level in wine using bioengineering and stabilization strategies. Food Chem 2016; 194:26-31. [DOI: 10.1016/j.foodchem.2015.07.138] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 07/07/2015] [Accepted: 07/29/2015] [Indexed: 10/23/2022]
|