1
|
Sriwichai N, Sangcharoen R, Saithong T, Simpson D, Goryanin I, Boonapatcharoen N, Kalapanulak S, Panichnumsin P. Optimization of microbial fuel cell performance application to high sulfide industrial wastewater treatment by modulating microbial function. PLoS One 2024; 19:e0305673. [PMID: 38889113 PMCID: PMC11185453 DOI: 10.1371/journal.pone.0305673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Microbial fuel cells (MFCs) are innovative eco-friendly technologies that advance a circular economy by enabling the conversion of both organic and inorganic substances in wastewater to electricity. While conceptually promising, there are lingering questions regarding the performance and stability of MFCs in real industrial settings. To address this research gap, we investigated the influence of specific operational settings, regarding the hydraulic retention time (HRT) and organic loading rate (OLR) on the performance of MFCs used for treating sulfide-rich wastewater from a canned pineapple factory. Experiments were performed at varying hydraulic retention times (2 days and 4 days) during both low and high seasonal production. Through optimization, we achieved a current density generation of 47±15 mA/m2, a COD removal efficiency of 91±9%, and a sulfide removal efficiency of 86±10%. Microbiome analysis revealed improved MFC performance when there was a substantial presence of electrogenic bacteria, sulfide-oxidizing bacteria, and methanotrophs, alongside a reduced abundance of sulfate-reducing bacteria and methanogens. In conclusion, we recommend the following operational guidelines for applying MFCs in industrial wastewater treatment: (i) Careful selection of the microbial inoculum, as this step significantly influences the composition of the MFC microbial community and its overall performance. (ii) Initiating MFC operation with an appropriate OLR is essential. This helps in establishing an effective and adaptable microbial community within the MFCs, which can be beneficial when facing variations in OLR due to seasonal production changes. (iii) Identifying and maintaining MFC-supporting microbes, including those identified in this study, should be a priority. Keeping these microbes as an integral part of the system's microbial composition throughout the operation enhances and stabilizes MFC performance.
Collapse
Affiliation(s)
- Nattawet Sriwichai
- Center for Agricultural Systems Biology, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
| | - Rutrawee Sangcharoen
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
| | - Treenut Saithong
- Center for Agricultural Systems Biology, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
| | - David Simpson
- Biological Systems Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Igor Goryanin
- Biological Systems Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Nimaradee Boonapatcharoen
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
| | - Saowalak Kalapanulak
- Center for Agricultural Systems Biology, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
| | - Pornpan Panichnumsin
- Excellent Center of Waste Utilization and Management, National Center for Genetic Engineering and Biotechnology, National Sciences and Technology Development Agency at King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| |
Collapse
|
2
|
Kieu TQH, Nguyen TY, Do CL. Treatment of Organic and Sulfate/Sulfide Contaminated Wastewater and Bioelectricity Generation by Sulfate-Reducing Bioreactor Coupling with Sulfide-Oxidizing Fuel Cell. Molecules 2023; 28:6197. [PMID: 37687026 PMCID: PMC10488401 DOI: 10.3390/molecules28176197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/19/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
A wastewater treatment system has been established based on sulfate-reducing and sulfide-oxidizing processes for treating organic wastewater containing high sulfate/sulfide. The influence of COD/SO42- ratio and hydraulic retention time (HRT) on removal efficiencies of sulfate, COD, sulfide and electricity generation was investigated. The continuous operation of the treatment system was carried out for 63 days with the optimum COD/SO42- ratio and HRT. The result showed that the COD and sulfate removal efficiencies were stable, reaching 94.8 ± 0.6 and 93.0 ± 1.3% during the operation. A power density level of 18.0 ± 1.6 mW/m2 was obtained with a sulfide removal efficiency of 93.0 ± 1.2%. However, the sulfide removal efficiency and power density decreased gradually after 45 days. The results from scanning electron microscopy (SEM) with an energy dispersive X-ray (EDX) show that sulfur accumulated on the anode, which could explain the decline in sulfide oxidation and electricity generation. This study provides a promising treatment system to scale up for its actual applications in this type of wastewater.
Collapse
Affiliation(s)
- Thi Quynh Hoa Kieu
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam
| | - Thi Yen Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam
| | - Chi Linh Do
- Institute of Material Sciences, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam
| |
Collapse
|
3
|
Zhao Q, Liu Y, Liao C, Yan X, Tian L, Li T, Li N, Wang X. Reduction of S 0 deposited on electroactive biofilm under an oxidative potential. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163698. [PMID: 37094684 DOI: 10.1016/j.scitotenv.2023.163698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
The inevitable deposition of S0 on the electroactive biofilm (EAB) via anodic sulfide oxidation affects the stability of bioelectrochemical systems (BESs) when an accidental discharge of sulfide occurred, leading to the inhibition of electroacitivity, because the potential of anode (e.g., 0 V versus Ag/AgCl) is ~500 mV more positive than the redox potential of S2-/S0. Here we found that S0 deposited on the EAB can be spontaneously reduced under this oxidative potential independent of microbial community variation, leading to a self-recovery of electroactivity (> 100 % in current density) with biofilm thickening (~210 μm). Transcriptomics of pure culture indicated that Geobacter highly expressed genes involving in S0 metabolism, which had an additional benefit to improve the viability (25 % - 36 %) of bacterial cells in biofilm distant from the anode and the cellular metabolic activity via electron shuttle pair of S0/S2-(Sx2-). Our findings highlighted the importance of spatially heterogeneous metabolism to its stability when EABs encountered with the problem of S0 deposition, and that in turn improved the electroactivity of EABs.
Collapse
Affiliation(s)
- Qian Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Ying Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Chengmei Liao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xuejun Yan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Lili Tian
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Tian Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Nan Li
- School of Environmental Science and Engineering, Tianjin University, No. 135 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| |
Collapse
|
4
|
Dai S, Harnisch F, Bin-Hudari MS, Keller NS, Vogt C, Korth B. Improving the performance of bioelectrochemical sulfate removal by applying flow mode. Microb Biotechnol 2023; 16:595-604. [PMID: 36259447 PMCID: PMC9948226 DOI: 10.1111/1751-7915.14157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/26/2022] Open
Abstract
Treatment of wastewater contaminated with high sulfate concentrations is an environmental imperative lacking a sustainable and environmental friendly technological solution. Microbial electrochemical technology (MET) represents a promising approach for sulfate reduction. In MET, a cathode is introduced as inexhaustible electron source for promoting sulfate reduction via direct or mediated electron transfer. So far, this is mainly studied in batch mode representing straightforward and easy-to-use systems, but their practical implementation seems unlikely, as treatment capacities are limited. Here, we investigated bioelectrochemical sulfate reduction in flow mode and achieved removal efficiencies (Esulfate , 89.2 ± 0.4%) being comparable to batch experiments, while sulfate removal rates (Rsulfate , 3.1 ± 0.2 mmol L-1 ) and Coulombic efficiencies (CE, 85.2 ± 17.7%) were significantly increased. Different temperatures and hydraulic retention times (HRT) were applied and the best performance was achieved at HRT 3.5 days and 30°C. Microbial community analysis based on amplicon sequencing demonstrated that sulfate reduction was mainly performed by prokaryotes belonging to the genera Desulfomicrobium, Desulfovibrio, and Desulfococcus, indicating that hydrogenotrophic and heterotrophic sulfate reduction occurred by utilizing cathodically produced H2 or acetate produced by homoacetogens (Acetobacterium). The advantage of flow operation for bioelectrochemical sulfate reduction is likely based on higher absolute biomass, stable pH, and selection of sulfate reducers with a higher sulfide tolerance, and improved ratio between sulfate-reducing prokaryotes and homoacetogens.
Collapse
Affiliation(s)
- Shixiang Dai
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Falk Harnisch
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Mohammad Sufian Bin-Hudari
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Nina Sophie Keller
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Carsten Vogt
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Benjamin Korth
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| |
Collapse
|
5
|
Nosek D, Mikołajczyk T, Cydzik-Kwiatkowska A. Anode Modification with Fe 2O 3 Affects the Anode Microbiome and Improves Energy Generation in Microbial Fuel Cells Powered by Wastewater. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2580. [PMID: 36767954 PMCID: PMC9916399 DOI: 10.3390/ijerph20032580] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
This study investigated how anode electrode modification with iron affects the microbiome and electricity generation of microbial fuel cells (MFCs) fed with municipal wastewater. Doses of 0.0 (control), 0.05, 0.1, 0.2, and 0.4 g Fe2O3 per the total anode electrode area were tested. Fe2O3 doses from 0.05 to 0.2 g improved electricity generation; with a dose of 0.10 g Fe2O3, the cell power was highest (1.39 mW/m2), and the internal resistance was lowest (184.9 Ω). Although acetate was the main source of organics in the municipal wastewater, propionic and valeric acids predominated in the outflows from all MFCs. In addition, Fe-modification stimulated the growth of the extracellular polymer producers Zoogloea sp. and Acidovorax sp., which favored biofilm formation. Electrogenic Geobacter sp. had the highest percent abundance in the anode of the control MFC, which generated the least electricity. However, with 0.05 and 0.10 g Fe2O3 doses, Pseudomonas sp., Oscillochloris sp., and Rhizobium sp. predominated in the anode microbiomes, and with 0.2 and 0.4 g doses, the electrogens Dechloromonas sp. and Desulfobacter sp. predominated. This is the first study to holistically examine how different amounts of Fe on the anode affect electricity generation, the microbiome, and metabolic products in the outflow of MFCs fed with synthetic municipal wastewater.
Collapse
Affiliation(s)
- Dawid Nosek
- Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, Słoneczna 45 G, 10-709 Olsztyn, Poland
| | - Tomasz Mikołajczyk
- Department of Chemistry, University of Warmia and Mazury in Olsztyn, plac Łódzki 4, 10-721 Olsztyn, Poland
| | - Agnieszka Cydzik-Kwiatkowska
- Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, Słoneczna 45 G, 10-709 Olsztyn, Poland
| |
Collapse
|
6
|
Zhang X, Wei S, Zhang D, Lu P, Huang Y. Efficient sulfur cycling improved the performance of flowback water treatment in a microbial fuel cell. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116368. [PMID: 36261973 DOI: 10.1016/j.jenvman.2022.116368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
The sulfate-reducing mediate microbial fuel cell (MFC) shows advantages in treating recalcitrant flowback water (FW) from shale gas extraction, but the stability under fluctuant concentrations of sulfate in FW remains unknown. Herein, we investigated the impact of fluctuant sulfate concentrations on the performance of FW treatment in MFCs. Sulfate concentration showed a significant role in the MFC treating FW, with a COD removal of 69.8 ± 9.7% and a peak power density of 2164 ± 396 mW/m3 under 247.5 mg/L sulfate, but only 39.1% and 1216 mW/m3 under 50 mg/L sulfate. The fluctuation of sulfate in a short time allowed to a stable performance, but a longtime intermittent decrease of feeding sulfate concentration significantly inhibited power generation to no more than 512 mW/m3. The sulfur cycling between sulfate and sulfide existed in the system, but the cycling rate became much lower after the longtime intermittent decrease, with resulting to the decreased power generation. Abundant sulfur-oxidizing bacteria (SOB) of Desulfuromonadaceae and Helicobacteraceae in the MFC stably feeding with 247.5 mg/L sulfate supported a high sulfur cycling rate. With the cooperation of abundant sulfate-reducing bacteria (SRB) of Desulfovibrionaceae (capable of producing electricity) on the anode and Desulfobacteraceae in anolyte, this sulfur cycling endowed the MFC with high sulfate tolerance and critically contributed to recalcitrant organics removal and power generation. However, much less SOB of Helicobacteraceae and Campylobacteraceae on the anode with high S0 accumulation on the surface after the longtime intermittent decrease of sulfate likely led to the low sulfur cycling rate. With also less SRB of Marinilabiaceae (capable of producing electricity) and Synergistaceae in the system, this low sulfur cycling rate thus hampered power generation. This research provides an important reference for the bioelectrochemical treatment of wastewater containing recalcitrant organics and sulfate.
Collapse
Affiliation(s)
- Xiaoting Zhang
- College of Resources and Environment, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400715, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China
| | - Shiqiang Wei
- College of Resources and Environment, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400715, China
| | - Daijun Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China; Department of Environmental Science, Chongqing University, Chongqing, 400044, China.
| | - Peili Lu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China; Department of Environmental Science, Chongqing University, Chongqing, 400044, China
| | - Yongkui Huang
- National and Local Joint Engineering Research Center of Shale Gas Exploration and Development, Chongqing Institute of Geology and Mineral Resources, Chongqing, 401120, China
| |
Collapse
|
7
|
Zhao L, Zhao D. Hydrolyzed polyacrylamide biotransformation during the formation of anode biofilm in microbial fuel cell biosystem: Bioelectricity, metabolites and functional microorganisms. BIORESOURCE TECHNOLOGY 2022; 360:127581. [PMID: 35798169 DOI: 10.1016/j.biortech.2022.127581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/26/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
The anode biofilm serves as the core dominating the performance of microbial fuel cell (MFC) biosystem. This research provides new insights into hydrolyzed polyacrylamide (HPAM) biotransformation during the formation of anode biofilm. The current density, coulombic efficiency, voltage, power density, volatile fatty acid (VFA) production and total nitrogen (TN) removal enhanced with the thickening of biofilm (1-6 cm), and the maximums achieved 146 mA·m-2, 47.3%, 8.76 V, 1.28 W·m-2, 184 mg·L-1 and 84.6%, respectively. HPAM concentration descended from 508 mg·L-1 to 83.3 mg·L-1 after 60 days. HPAM was metabolized into VFAs, N2, NO2--N and NO3--N, thereby releasing electrons. Laccase and tyrosine/tryptophan protein induced HPAM metabolism and bioelectricity production. The microbial functions involving HPAM biotransformation and bioelectricity generation were clarified. The alternative resource recovery, techno-economic comparison and development direction of MFC biosystem were discussed to achieve the synchronization of HPAM-containing wastewater treatment and bioelectricity generation based on MFC biosystem.
Collapse
Affiliation(s)
- Lanmei Zhao
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Dong Zhao
- Sinopec Shengli Petroleum Administration, Dongying 257000, China
| |
Collapse
|
8
|
Wu S, Zhang X, Lu P, Zhang D. Copper removal and elemental sulfur recovery from fracturing flowback water in a microbial fuel cell with an extra electrochemical anode. CHEMOSPHERE 2022; 303:135128. [PMID: 35636600 DOI: 10.1016/j.chemosphere.2022.135128] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/22/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Fracturing flowback water (FFW) from the shale gas exploitation resulted in environmental burden. FFW could be treated by a microbial fuel cell (MFC), but the challenge for the precipitation of ultrafine particles due to the supersaturation of sulfide remains to be addressed. Herein, we reported a Dual-anode MFC (DA-MFC), in which the FFW remediation and elemental sulfur recovery could be performed by regulating potential of the electrochemical anode. The removal of COD and sulfate was 70.0 ± 1.2% and 75.5 ± 0.4% in DA-MFCs by controlling potential at -0.1 V (vs. SHE) for 36 h. Meanwhile, the efficiency of copper removal and elemental sulfur recovery was up to 99.9 ± 0.5% and 75.6 ± 1.8%, respectively, which was attributed by the electrochemical oxidation of sulfide to elemental sulfur. Trichococcus, unclassified Prolixibacteraceae and unclassified Cloacimonadales enriched on the bioanodes of DA-MFCs were sensitive to potential regulation and favorable for degrading complex organics. UnclassifiedSynergistaceae, Desulfobacterium, Desulfovibrio, unclassified bacteria and Syner-01 was conducive to sulfate removal. Moreover, the elimination of Azoarcus due to potential regulation suppressed the biological oxidation of sulfide. Thus, organics were efficiently removed through the biological oxidation and sulfate reduction on bioanode, the copper ions were combined with the sulfide from sulfate reduction to precipitate effectively, and then the excessive sulfide in the system was converted into elemental sulfur attached on the electrochemical anode. The results provide new sights on bio-electrochemical technology for treatment of wastewater containing complex organics, heavy metals and sulfates.
Collapse
Affiliation(s)
- Shanshan Wu
- Department of Environmental Science, Chongqing University, Chongqing, 400044, China.
| | - Xiaoting Zhang
- Department of Environmental Science, Chongqing University, Chongqing, 400044, China; College of Resources and Environment, Southwest University, Chongqing, 400715, China.
| | - Peili Lu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China; Department of Environmental Science, Chongqing University, Chongqing, 400044, China.
| | - Daijun Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China; Department of Environmental Science, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
9
|
The Effect of Different Pretreatment of Chicken Manure for Electricity Generation in Membrane-Less Microbial Fuel Cell. Catalysts 2022. [DOI: 10.3390/catal12080810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The need for energy resources is growing all the time, which means that more fossil fuels are needed to provide them. People prefer to consume chicken as a source of protein, and this creates an abundance of waste. Thus, microbial fuel cells represent a new technological approach with the potential to generate electricity through the action of electrogenic bacteria toward chicken manure, while reducing the abundance of chicken manure. This study investigated the effect of different pretreatment (thermal, alkaline, and sonication pretreatment) of chicken manure to improve the performance of a membrane-less microbial fuel cell (ML-MFC). Statistical response surface methodology (RSM) through a central composite design (CCD) under a quadratic model was conducted for optimization of the ML-MFC performance focusing on the COD removal efficiency (R2 = 0.8917), biomass (R2 = 0.9101), and power density response (R2 = 0.8794). The study demonstrated that the highest COD removal (80.68%), biomass (7.8539 mg/L), and power density (220 mW/m2) were obtained when the pretreatment conditions were 140 °C, 20 kHz, and pH 10. The polarization curve of the best condition of ML-MFC was plotted to classify the behavior of the ML-MFC. The kinetic growth of Bacillus subtillis (BS) showed that, in treated chicken manure, the specific growth rate µ = 0.20 h−1 and doubling time Td = 3.43 h, whereas, in untreated chicken manure, µ = 0.11 h−1 and Td = 6.08.
Collapse
|
10
|
Influence of Fe2+ and Fe3+ on the Performance and Microbial Community Composition of a MFC Inoculated with Sulfate-Reducing Sludge and Acetate as Electron Donor. J CHEM-NY 2022. [DOI: 10.1155/2022/5685178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A sulfidogenic sludge supplemented with acetate was evaluated in the anodic chamber of microbial fuel cells (MFCs) in the presence of sulfate (SO4-2)/Fe3+ and sulfate (SO4-2)/Fe2+ to investigate the MFC performance and the effect of the iron ions on the composition of the microbial community since sulfate and iron ions are frequently present in wastewater derived from several anthropogenic activities. The current densities were up to 0.025 mA/cm2 and 0.017 mA/cm2 for MFCs with Fe2+ and Fe3+, respectively. Accordingly, the redox activity was slightly higher in the presence of Fe2+ than Fe3+. In general, the metabolic activity of the MFC supplemented with Fe2+ was higher than the system with Fe3+ reaching a percentage of sulfate reduction (% SR), sulfide concentration (mg/L HS-), and removal of chemical oxygen demand (% COD removal) of
,
, and
for % SR, HS-, and % COD, respectively, whereas in the MFC with Fe3+, the percentages were of
,
, and
for % SR, HS-, and % COD, respectively. The microbial population determined in each system was also correlated to the metabolic activity. Rhodospirillales, Caulobacterales, and Burkholderiales were the most abundant orders of bacteria in the MFC with Fe3+, whereas with Fe2+, Rhodobacterales, Sphingomonadales, and Rhizobiales. Desulfohalobiaceae and Desulfovibrionaceae were identified in the presence of Fe2+. Unexpected interactions and combinations of microorganisms were observed in a relatively short culturing time, demonstrating the importance of characterizing the anode biofilm prior to shifts in iron ion concentrations on a long-term basis.
Collapse
|
11
|
From Waste to Watts: Updates on Key Applications of Microbial Fuel Cells in Wastewater Treatment and Energy Production. SUSTAINABILITY 2022. [DOI: 10.3390/su14020955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Due to fossil fuel depletion and the rapid growth of industry, it is critical to develop environmentally friendly and long-term alternative energy technologies. Microbial fuel cells (MFCs) are a powerful platform for extracting energy from various sources and converting it to electricity. As no intermediate steps are required to harness the electricity from the organic substrate’s stored chemical energy, MFC technology offers a sustainable alternative source of energy production. The generation of electricity from the organic substances contained in waste using MFC technology could provide a cost-effective solution to the issue of environmental pollution and energy shortages in the near future. Thus, technical advancements in bioelectricity production from wastewater are becoming commercially viable. Due to practical limitations, and although promising prospects have been reported in recent investigations, MFCs are incapable of upscaling and of high-energy production. In this review paper, intensive research has been conducted on MFCs’ applications in the treatment of wastewater. Several types of waste have been extensively studied, including municipal or domestic waste, industrial waste, brewery wastewater, and urine waste. Furthermore, the applications of MFCs in the removal of nutrients (nitrogen and sulphates) and precious metals from wastewater were also intensively reviewed. As a result, the efficacy of various MFCs in achieving sustainable power generation from wastewater has been critically addressed in this study.
Collapse
|
12
|
Ai T, Zou L, Cheng H, Luo Z, Al-Rekabi WS, Li H, Fu Q, He Q, Ai H. The potential of electrotrophic denitrification coupled with sulfur recycle in MFC and its responses to COD/SO 42- ratios. CHEMOSPHERE 2022; 287:132149. [PMID: 34496337 DOI: 10.1016/j.chemosphere.2021.132149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/27/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Electrotrophic denitrification is a promising novel nitrogen removal technique. In this study, the performance and the mechanism of electrotrophic denitrification coupled with sulfate-sulfide cycle were investigated under different anodic influent COD/SO42- ratios. The results showed that electrotrophic denitrification contributed to more than 22% total nitrogen removal in cathode chamber. Higher COD/SO42- ratios would deteriorate the sulfate reduction but enhance methane production. Further mass balance indicated that the electron flow utilized by methanogenic archaea (MA) increased while that utilized by sulfate-reducing bacteria (SRB) decreased as the COD/SO42- ratio increased from 0.44 to 1.11. However, higher COD/SO42- ratios would produce more electrons to strengthen electrotrophic denitrification. Microbial community analysis showed that the biocathode was predominantly covered by Thiobacillus that encoded with narG gene. These findings collectively suggest that electrotrophic denitrification could be a sustainable approach to simultaneously remove COD and nitrogen under suitable COD/SO42- ratio based on sulfur cycle in wastewater.
Collapse
Affiliation(s)
- Tao Ai
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Linzhi Zou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Hong Cheng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Zhongwu Luo
- 3rd Construction Co., LTD of China Construction 5th Engineering Bureau, PR China
| | - Wisam S Al-Rekabi
- Civil Engineering Department, College of Engineering, University of Basrah, Iraq
| | - Hua Li
- Chongqing Water Group Co. Ltd, PR China
| | - Qibin Fu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Qiang He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Hainan Ai
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China.
| |
Collapse
|
13
|
Hoang AT, Nižetić S, Ng KH, Papadopoulos AM, Le AT, Kumar S, Hadiyanto H, Pham VV. Microbial fuel cells for bioelectricity production from waste as sustainable prospect of future energy sector. CHEMOSPHERE 2022; 287:132285. [PMID: 34563769 DOI: 10.1016/j.chemosphere.2021.132285] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/23/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Microbial fuel cell (MFC) is lauded for its potentials to solve both energy crisis and environmental pollution. Technologically, it offers the capability to harness electricity from the chemical energy stored in the organic substrate with no intermediate steps, thereby minimizes the entropic loss due to the inter-conversion of energy. The sciences underneath such MFCs include the electron and proton generation from the metabolic decomposition of the substrate by microbes at the anode, followed by the shuttling of these charges to cathode for electricity generation. While its promising prospects were mutually evinced in the past investigations, the upscaling of MFC in sustaining global energy demands and waste treatments is yet to be put into practice. In this context, the current review summarizes the important knowledge and applications of MFCs, concurrently identifies the technological bottlenecks that restricted its vast implementation. In addition, economic analysis was also performed to provide multiangle perspectives to readers. Succinctly, MFCs are mainly hindered by the slow metabolic kinetics, sluggish transfer of charged particles, and low economic competitiveness when compared to conventional technologies. From these hindering factors, insightful strategies for improved practicality of MFCs were formulated, with potential future research direction being identified too. With proper planning, we are delighted to see the industrialization of MFCs in the near future, which would benefit the entire human race with cleaner energy and the environment.
Collapse
Affiliation(s)
- Anh Tuan Hoang
- Institute of Engineering, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City, Viet Nam.
| | - Sandro Nižetić
- University of Split, FESB, Rudjera Boskovica 32, 21000, Split, Croatia
| | - Kim Hoong Ng
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan.
| | - Agis M Papadopoulos
- Process Equipment Design Laboratory, Department of Mechanical Engineering, Aristotle University of Thessaloniki, Postal Address: GR-54124, Thessaloniki, Greece
| | - Anh Tuan Le
- School of Transportation Engineering, Hanoi University of Science and Technology, Hanoi, Viet Nam.
| | - Sunil Kumar
- Waste Reprocessing Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440 020, India
| | - H Hadiyanto
- Center of Biomass and Renewable Energy (CBIORE), Department of Chemical Engineering, Diponegoro University, Jl. Prof. Soedarto SH, Tembalang, Semarang, 50271, Indonesia; School of Postgraduate Studies, Diponegoro University, Jl. Imam Bardjo, SH Semarang, 50241, Indonesia.
| | - Van Viet Pham
- PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
14
|
Zhang Z, Zhang K, Ouyang H, Li MKK, Luo Z, Li Y, Chen C, Yang X, Shao Z, Yan DYS. Simultaneous PAHs degradation, odour mitigation and energy harvesting by sediment microbial fuel cell coupled with nitrate-induced biostimulation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 284:112045. [PMID: 33567357 DOI: 10.1016/j.jenvman.2021.112045] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
The study investigates a bioremediation process of polycyclic aromatic hydrocarbons (PAHs) removal and odour mitigation combined with energy harvesting. Sediment microbial fuel cells (SMFCs) were constructed with the addition of nitrate in the sediment to simultaneously remove acid-volatile sulphide (AVS) and PAHs. With the combined nitrate-SMFC treatment, over 90% of the AVS was removed from the sediment in 6 weeks of the SMFC operation and a maximum of 94% of AVS removal efficiency was reached at Week 10. The highest removal efficiencies of phenanthrene, pyrene, and benzo[a]pyrene was 93%, 80%, and 69%, respectively. The maximum voltage attained for the combined nitrate-SMFC treatment was 341 mV. Illumina HiSeq sequencing revealed that the autotrophic denitrifiers Thiobacillus are the dominant genus. In electricity generation, both sulphide-oxidation and PAH-oxidation are the possible pathways. Besides, the addition of nitrate stimulated the growth of Pseudomonas which is responsible for the electricity generation and direct biodegradation of the PAHs, indicating a synergistic effect. The developed bioremediation process demonstrated the potential in the in-situ bioremediation process utilizing SMFC combined with nitrate-induced bioremediation.
Collapse
Affiliation(s)
- Zhen Zhang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China
| | - Kun Zhang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China; College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - He Ouyang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China
| | - Marcus K K Li
- Faculty of Science and Technology, Technological and Higher Education Institute of Hong Kong, Hong Kong
| | - Zifeng Luo
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China
| | - Yongtao Li
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China
| | - Chengyu Chen
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China
| | - Xingjian Yang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China
| | - Zhiwei Shao
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China
| | - Dickson Y S Yan
- Faculty of Science and Technology, Technological and Higher Education Institute of Hong Kong, Hong Kong.
| |
Collapse
|
15
|
Munoz-Cupa C, Hu Y, Xu C, Bassi A. An overview of microbial fuel cell usage in wastewater treatment, resource recovery and energy production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142429. [PMID: 33254845 DOI: 10.1016/j.scitotenv.2020.142429] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/04/2020] [Accepted: 09/15/2020] [Indexed: 06/12/2023]
Abstract
Wastewater treatment is a high-cost and energy-intensive process not only due to large amounts of pollutants but also for the large volumes of water to be treated, which are mainly generated by human activities and different industries. In this regard, biological wastewater treatments have become substitutes to the current technologies, owing to the improved treatment efficiency and added value. Microbial fuel cells (MFCs) as one of the promising biological treatments have arisen as a viable solution for chemical oxygen demand (COD) removal and electricity generation simultaneously. Therefore, in this article, the effects of various operating conditions on the COD removal and power production from MFCs are thoroughly discussed. In addition, the advantages and weaknesses of current MFCs technologies used for different types of wastewater are summarized. Finally, the technical barriers facing by MFCs operation and the economic feasibility of using MFCs for wastewater treatment are provided.
Collapse
Affiliation(s)
- Carlos Munoz-Cupa
- Department of Chemical and Biochemical Engineering, Western University, London, ON N6A 0A7, Canada
| | - Yulin Hu
- Department of Chemical and Biochemical Engineering, Western University, London, ON N6A 0A7, Canada.
| | - Chunbao Xu
- Department of Chemical and Biochemical Engineering, Western University, London, ON N6A 0A7, Canada
| | - Amarjeet Bassi
- Department of Chemical and Biochemical Engineering, Western University, London, ON N6A 0A7, Canada.
| |
Collapse
|
16
|
Cai J, Qaisar M, Ding A, Zhang J, Xing Y, Li Q. Insights into microbial community in microbial fuel cells simultaneously treating sulfide and nitrate under external resistance. Biodegradation 2021; 32:73-85. [PMID: 33442823 DOI: 10.1007/s10532-021-09926-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/16/2020] [Accepted: 01/06/2021] [Indexed: 11/25/2022]
Abstract
The effect of electricity, induced by external resistance, on microbial community performance is investigated in Microbial Fuel Cells (MFCs) involved in simultaneous biotransformation of sulfide and nitrate. In the experiment, three MFCs were operated under different external resistances (100 Ω, 1000 Ω and 10,000 Ω), while one MFC was operated with open circuit as control. All MFCs demonstrate good capacity for simultaneous sulfide and nitrate biotransformation regardless of external resistance. MFCs present similar voltage profile; however, the output voltage has positive relationship with external resistance, and the MFC1 with lowest external resistance (100 Ω) generated highest power density. High-throughput sequencing confirms that taxonomic distribution of suspended sludge in anode chamber encompass phylum level to genus level, while the results of principal component analysis (PCA) suggest that microbial communities are varied with external resistance, which external resistance caused the change of electricity generation and substrate removal at the same, and then leads to the change of microbial communities. However, based on Pearson correlation analyses, no strong correlation is evident between community diversity indices (ACE index, Chao index, Shannon index and Simpson index) and the electricity (final voltage and current density). It is inferred that the performance of electricity did not significantly affect the diversity of microbial communities in MFCs biotransforming sulfide and nitrate simultaneously.
Collapse
Affiliation(s)
- Jing Cai
- College of Environmental Science and Engineering, Zhejiang Gongshang University, No.18 Xuezheng Street, Hangzhou, Zhejiang Province, China.
| | - Mahmood Qaisar
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Islamabad, Pakistan
| | - Aqiang Ding
- Department of Environmental Science, College of Resource and Environmental Science, Chongqing University, Chongqing, China
| | - Jiqiang Zhang
- College of Biological and Environmental Engineering, Binzhou University, Binzhou, China
| | - Yajuan Xing
- College of Geomatics and Municipal Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou, China
| | - Qiangbiao Li
- College of Environmental Science and Engineering, Zhejiang Gongshang University, No.18 Xuezheng Street, Hangzhou, Zhejiang Province, China
| |
Collapse
|
17
|
Wang CT, Ong Tang RC, Wu MW, Garg A, Ubando AT, Culaba A, Ong HC, Chong WT. Flow shear stress applied in self-buffered microbial fuel cells. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Unusual microbial community and impact of iron and sulfate on microbial fuel cell ecology and performance. CURRENT RESEARCH IN BIOTECHNOLOGY 2020. [DOI: 10.1016/j.crbiot.2020.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
19
|
Zhang X, Zhang D, Huang Y, Wu S, Lu P. The anodic potential shaped a cryptic sulfur cycling with forming thiosulfate in a microbial fuel cell treating hydraulic fracturing flowback water. WATER RESEARCH 2020; 185:116270. [PMID: 32784035 DOI: 10.1016/j.watres.2020.116270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/22/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
The flowback water (FW) from shale gas exploitation can be effectively treated by bioelectrochemical technology, but sulfide overproduction remains to be addressed. Herein, sulfate-reducing bacteria (SRB) meditated microbial fuel cells (MFCs) with anodic potential control were used. COD removal gradually increased to 67.4 ± 5.1% in electrode-potential-control (EPC) MFCs and 78.9 ± 2.4% in the MFC with open circuit (OC-MFC). However, in EPC MFCs sulfate removal stabilized at much lower levels (no more than 19.9 ± 1.9%) along with much lower sulfide concentrations, but in OC-MFC it increased and finally stabilized at 59.9 ± 0.1%. Partial sulfur reuse in EPC MFCs was indicated by the current production. Notably, thiosulfate was specially detected under low potentials and effectively oxidized in EPC MFCs, especially under -0.1 V vs. SHE, which probably related to the sulfur reuse. Metagenomics analysis showed that the anode with -0.1 and -0.2 V likely shunted electrons from cytochromes that used for reducing DsrC-S0 trisulfide and thus contributed to producing thiosulfate and decreasing sulfide production. Meanwhile, the anode with -0.1 V specially accumulated sulfur-oxidizing system (Sox) genes regarding thiosulfate and sulfite oxidation to sulfate, which concurred to the effective thiosulfate oxidation and also indicated the possible direct sulfite oxidation to sulfate during the sulfur cycling. But the anode of -0.2 V highly accumulated genes for thiosulfate and sulfite reduction. Both anodes also distinctly accumulated genes regarding thiosulfate oxidation to tetrathionate and sulfide oxidation to sulfur or polysulfide. Further, sulfur-oxidizing bacteria were specially enriched in EPC MFCs and likely contributed to thiosulfate and sulfite oxidation. Thus, we suggested that the higher electrode potential (e.g. -0.1 V) can shape a cryptic sulfur cycling, in which sulfate was first reduced to sulfite, and then reoxidized to sulfate by forming thiosulfate as an important intermediate or by direct sulfite oxidation. The results provide new sights on the bioelectrochemical treatment of wastewater containing complex organics and sulfate.
Collapse
Affiliation(s)
- Xiaoting Zhang
- Department of Environmental Science, Chongqing University, Chongqing 400044, China
| | - Daijun Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Department of Environmental Science, Chongqing University, Chongqing 400044, China.
| | - Yongkui Huang
- Department of Environmental Science, Chongqing University, Chongqing 400044, China
| | - Shanshan Wu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Peili Lu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Department of Environmental Science, Chongqing University, Chongqing 400044, China
| |
Collapse
|
20
|
Rodrigues ICB, Leão VA. Producing electrical energy in microbial fuel cells based on sulphate reduction: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:36075-36084. [PMID: 32613514 DOI: 10.1007/s11356-020-09728-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Combination of the treatment of effluents with high organic loads and the production of electricity is the driving forces stimulating the development of microbial fuel cells (MFC). The increase in electricity production in MFCs requires not only the optimization of the operational parameters but also the inhibition of the metabolic pathways, which compete with electricity production, such as methanogenesis. The presence of both sulphate and sulphide ions in conventional anaerobic reactors hampers the growth of methanogenic archaea and justifies the use of sulphate and therefore sulphate-reducing bacteria (SRB) in the anodic half-cell of MFC. Most importantly, the literature on the subject reveals that SRB are able to directly transfer electrons to solid electrodes, enabling the production of electrical energy. This technology is versatile because it associates the removal of both sulphate and the chemical oxygen demand (COD) with the production of electricity. Therefore, the current work revises the main aspects related to the inoculation of MFC with SRB focusing on (i) the microbial interactions in the anodic chamber, (ii) the electron transfer pathways to the solid anode, and also (iii) the sulphate and COD removal yields along with the electricity production efficiencies.
Collapse
Affiliation(s)
- Isabel Cristina Braga Rodrigues
- Programa de Pós-Graduação em Engenharia Ambiental da Universidade Federal de Ouro Preto, Ouro Preto, Brazil.
- Departamento de Bioquímica, Biotecnologia e Engenharia de Bioprocessos da Universidade Federal de São João del-Rei, Campus Alto Paraopeba, Ouro Branco, Brazil.
| | - Versiane A Leão
- Programa de Pós-Graduação em Engenharia Ambiental da Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| |
Collapse
|
21
|
Hemalatha M, Shanthi Sravan J, Venkata Mohan S. Self-induced bioelectro-potential influence on sulfate removal and desalination in microbial fuel cell. BIORESOURCE TECHNOLOGY 2020; 309:123326. [PMID: 32311657 DOI: 10.1016/j.biortech.2020.123326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
This study focused on treatment of sulfate-rich produced water (PW) using microbial fuel cell (MFC) with biotic anode (bAC) and abiotic cathode (aCC) separated by a cation exchange membrane (CEM). MFC was operated under varied circuitry modes - open circuit (OC-without resistance) and closed circuit (CC-applied resistance (1kΩ)) to evaluate and assess the removal of sulfates and salts with simultaneous carbon utilization. The OC and CC operations depicted sulfates removal efficiency of 38% and 56%, salinity removal of 12% and 21% and COD removal of 47% and 58%, respectively. Both OC and CC showed K+ decrement in bAC and increment in aCC with a comparatively higher efficiency of ionic mobility in CC operation. Maximum open circuit voltage (OCV) of 498 mV (OC) was observed with redox catalytic peak currents from cyclic voltammetry [Anode/cathode, 3.5/-4.9 mA (OC); 6.9/-7.9 mA (CC)]. Dominance of Proteobacteria and Actinobacteria with specific enrichment of sulfate reducing bacteria (SRB) and halophiles was observed in bAC at the end of operation.
Collapse
Affiliation(s)
- Manupati Hemalatha
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Campus, Hyderabad 500 007, India
| | - J Shanthi Sravan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Campus, Hyderabad 500 007, India
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Campus, Hyderabad 500 007, India.
| |
Collapse
|
22
|
Zhang X, Zhang D, Huang Y, Zhang K, Lu P. Simultaneous removal of organic matter and iron from hydraulic fracturing flowback water through sulfur cycling in a microbial fuel cell. WATER RESEARCH 2018; 147:461-471. [PMID: 30343202 DOI: 10.1016/j.watres.2018.10.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 09/17/2018] [Accepted: 10/05/2018] [Indexed: 06/08/2023]
Abstract
The high volume of flowback water (FW) generated during shale gas exploitation is highly saline, and contains complex organics, iron, heavy metals, and sulfate, thereby posing a significant challenge for the environmental management of the unconventional natural gas industry. Herein, the treatment of FW in a sulfur-cycle-mediated microbial fuel cell (MFC) is reported. Simultaneous removal efficiency for chemical oxygen demand (COD) and total iron from a synthetic FW was achieved, at 72 ± 7% and 90.6 ± 8.7%, respectively, with power generation of 2667 ± 529 mW/m3 in a closed-circuit MFC (CC-MFC). However, much lower iron removal (38.5 ± 4.5%) occurred in the open-circuit MFC (OC-MFC), where the generated FeS fine did not precipitate because of sulfide supersaturation. Enrichment of both sulfur-oxidizing bacteria (SOB), namely Helicobacteraceae in the anolyte and the electricity-producing bacteria, namely Desulfuromonadales on the anode likely accelerated the sulfur cycle through the biological and bioelectrochemical oxidation of sulfide in the anodic chamber, and effectively increased the molar ratio of total iron to sulfide, thus alleviating sulfide supersaturation in the closed circuitry. Enrichment of SOB in the anolyte might be attributed to the formation of FeS electricity wire and likely contributed to the stable high power generation. Bacteroidetes, Firmicutes, Proteobacteria, and Chloroflexi enriched in the anodic chamber were responsible for degrading complex organics in the FW. The treatment of real FW in the sulfur-cycle-mediated MFC also achieved high efficiency. This research provides a promising approach for the treatment of wastewater containing organic matters, heavy metals, and sulfate by using a sulfur-cycle-mediated MFC.
Collapse
Affiliation(s)
- Xiaoting Zhang
- Department of Environmental Science, Chongqing University, Chongqing, 400044, China
| | - Daijun Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China; Department of Environmental Science, Chongqing University, Chongqing, 400044, China.
| | - Yongkui Huang
- Department of Environmental Science, Chongqing University, Chongqing, 400044, China
| | - Kai Zhang
- Department of Environmental Science, Chongqing University, Chongqing, 400044, China
| | - Peili Lu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China; Department of Environmental Science, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
23
|
Murugan M, Miran W, Masuda T, Lee DS, Okamoto A. Biosynthesized Iron Sulfide Nanocluster Enhanced Anodic Current Generation by Sulfate Reducing Bacteria in Microbial Fuel Cells. ChemElectroChem 2018. [DOI: 10.1002/celc.201801086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Muralidharan Murugan
- Global Research Center for Environment and Energy based on Nanomaterials Science (GREEN)National Institute for Materials Science (NIMS) 1-1 Namiki, Tsukuba Ibaraki 305-0044 Japan
- Graduate School of Chemical Sciences and EngineeringHokkaido University Sapporo 060-8628 Japan
| | - Waheed Miran
- Department of Environmental EngineeringKyungpook National University 80 Daehak-ro, Buk-gu Daegu 41566 Republic of Korea
- International Center for Materials Nanoarchitectonics (WPI-MANA)National Institute for Materials Science (NIMS), Namiki, Tsukuba Ibaraki 305-0044 Japan
| | - Takuya Masuda
- Global Research Center for Environment and Energy based on Nanomaterials Science (GREEN)National Institute for Materials Science (NIMS) 1-1 Namiki, Tsukuba Ibaraki 305-0044 Japan
| | - Dae S. Lee
- Department of Environmental EngineeringKyungpook National University 80 Daehak-ro, Buk-gu Daegu 41566 Republic of Korea
| | - Akihiro Okamoto
- International Center for Materials Nanoarchitectonics (WPI-MANA)National Institute for Materials Science (NIMS), Namiki, Tsukuba Ibaraki 305-0044 Japan
| |
Collapse
|
24
|
Effects of light-oxygen conditions on microbial community of photosynthetic bacteria during treating high-ammonia wastewater. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Kokko M, Epple S, Gescher J, Kerzenmacher S. Effects of wastewater constituents and operational conditions on the composition and dynamics of anodic microbial communities in bioelectrochemical systems. BIORESOURCE TECHNOLOGY 2018; 258:376-389. [PMID: 29548640 DOI: 10.1016/j.biortech.2018.01.090] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 06/08/2023]
Abstract
Over the last decade, there has been an ever-growing interest in bioelectrochemical systems (BES) as a sustainable technology enabling simultaneous wastewater treatment and biological production of, e.g. electricity, hydrogen, and further commodities. A key component of any BES degrading organic matter is the anode where electric current is biologically generated from the oxidation of organic compounds. The performance of BES depends on the interactions of the anodic microbial communities. To optimize the operational parameters and process design of BES a better comprehension of the microbial community dynamics and interactions at the anode is required. This paper reviews the abundance of different microorganisms in anodic biofilms and discusses their roles and possible side reactions with respect to their implications on the performance of BES utilizing wastewaters. The most important operational parameters affecting anodic microbial communities grown with wastewaters are highlighted and guidelines for controlling the composition of microbial communities are given.
Collapse
Affiliation(s)
- Marika Kokko
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; Laboratory of Chemistry and Bioengineering, Tampere University of Technology, Tampere, Finland
| | - Stefanie Epple
- Institute for Applied Biosciences, Department of Applied Biology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Johannes Gescher
- Institute for Applied Biosciences, Department of Applied Biology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Sven Kerzenmacher
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; Center for Environmental Research and Sustainable Technology (UFT), University of Bremen, Leobener Strasse 6, 28359 Bremen, Germany.
| |
Collapse
|
26
|
Seo Y, Kang H, Chang S, Lee YY, Cho KS. Effects of nitrate and sulfate on the performance and bacterial community structure of membrane-less single-chamber air-cathode microbial fuel cells. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2018; 53:13-24. [PMID: 29035628 DOI: 10.1080/10934529.2017.1366242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Membrane-less, single-chamber, air-cathode, microbial fuel cells (ML-SC MFCs) have attracted attention as being suitable for wastewater treatment. In this study, the effects of nitrate and sulfate on the performance of ML-SC MFCs and their bacterial structures were evaluated. The maximum power density increased after nitrate addition from 8.6 mW·m-2 to 14.0 mW·m-2, while it decreased after sulfate addition from 11.5 mW·m-2 to 7.7 mW·m-2. The chemical oxygen demand removal efficiencies remained at more than 90% regardless of the nitrate or sulfate additions. The nitrate was removed completely (93.0%) in the ML-SC MFC, while the sulfate removal efficiency was relatively low (17.6%). Clostridium (23.1%), Petrimonas (20.0%), and unclassified Rhodocyclaceae (6.2%) were dominant on the anode before the addition of nitrate or sulfate. After the addition of nitrate, Clostridium was still the most dominant on the anode (23.6%), but Petrimonas significantly decreased (6.0%) and unclassified Rhodocyclaceae increased (17.1%). After the addition of sulfate, the amount of Clostridium almost doubled in the composition on the anode (43.2%), while Petrimonas decreased (5.5%). The bacterial community on the cathode was similar to that on the anode after the addition of nitrate. However, Desulfovibrio was remarkably dominant on the cathode (32.9%) after the addition of sulfate. These results promote a deeper understanding of the effects of nitrate or sulfate on the ML-SC MFCs' performance and their bacterial community.
Collapse
Affiliation(s)
- Yoonjoo Seo
- a Department of Environmental Science and Engineering , Ewha Womans University , Seoul , Republic of Korea
| | - Hyemin Kang
- a Department of Environmental Science and Engineering , Ewha Womans University , Seoul , Republic of Korea
| | - Sumin Chang
- a Department of Environmental Science and Engineering , Ewha Womans University , Seoul , Republic of Korea
| | - Yun-Yeong Lee
- a Department of Environmental Science and Engineering , Ewha Womans University , Seoul , Republic of Korea
| | - Kyung-Suk Cho
- a Department of Environmental Science and Engineering , Ewha Womans University , Seoul , Republic of Korea
| |
Collapse
|
27
|
|
28
|
Miyahara M, Sakamoto A, Kouzuma A, Watanabe K. Poly iron sulfate flocculant as an effective additive for improving the performance of microbial fuel cells. BIORESOURCE TECHNOLOGY 2016; 221:331-335. [PMID: 27648853 DOI: 10.1016/j.biortech.2016.09.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/07/2016] [Accepted: 09/11/2016] [Indexed: 06/06/2023]
Abstract
Laboratory microbial fuel cells were supplied with artificial wastewater and used to examine how supplementation with poly iron sulfate, an inorganic polymer flocculant widely used in wastewater-treatment plants, affects electricity generation and anode microbiomes. It is shown that poly iron sulfate substantially increases electric outputs from microbial fuel cells. Microbiological analyses show that iron and sulfate separately affect anode microbiomes, and the increase in power output is associated with the increases in bacteria affiliated with the families Geobacteraceae and/or Desulfuromonadaceae. We suggest that poly iron sulfate is an effective additive for increasing the electric output from microbial fuel cells. Other utilities of poly iron sulfate in microbial fuel cells are also discussed.
Collapse
Affiliation(s)
- Morio Miyahara
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Akihiro Sakamoto
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Atsushi Kouzuma
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Kazuya Watanabe
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan.
| |
Collapse
|
29
|
Vilajeliu-Pons A, Bañeras L, Puig S, Molognoni D, Vilà-Rovira A, Hernández-del Amo E, Balaguer MD, Colprim J. External Resistances Applied to MFC Affect Core Microbiome and Swine Manure Treatment Efficiencies. PLoS One 2016; 11:e0164044. [PMID: 27701451 PMCID: PMC5049776 DOI: 10.1371/journal.pone.0164044] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 09/19/2016] [Indexed: 11/19/2022] Open
Abstract
Microbial fuel cells (MFCs) can be designed to combine water treatment with concomitant electricity production. Animal manure treatment has been poorly explored using MFCs, and its implementation at full-scale primarily relies on the bacterial distribution and activity within the treatment cell. This study reports the bacterial community changes at four positions within the anode of two almost identically operated MFCs fed swine manure. Changes in the microbiome structure are described according to the MFC fluid dynamics and the application of a maximum power point tracking system (MPPT) compared to a fixed resistance system (Ref-MFC). Both external resistance and cell hydrodynamics are thought to heavily influence MFC performance. The microbiome was characterised both quantitatively (qPCR) and qualitatively (454-pyrosequencing) by targeting bacterial 16S rRNA genes. The diversity of the microbial community in the MFC biofilm was reduced and differed from the influent swine manure. The adopted electric condition (MPPT vs fixed resistance) was more relevant than the fluid dynamics in shaping the MFC microbiome. MPPT control positively affected bacterial abundance and promoted the selection of putatively exoelectrogenic bacteria in the MFC core microbiome (Sedimentibacter sp. and gammaproteobacteria). These differences in the microbiome may be responsible for the two-fold increase in power production achieved by the MPPT-MFC compared to the Ref-MFC.
Collapse
Affiliation(s)
| | - Lluis Bañeras
- Molecular Microbial Ecology Group, Institute of Aquatic Ecology, University of Girona, Girona, Spain
- * E-mail:
| | - Sebastià Puig
- LEQUiA, Institute of the Environment, University of Girona, Girona, Spain
| | - Daniele Molognoni
- Department of Civil Engineering and Architecture (D.I.C.Ar.), University of Pavia, Pavia, Italy
| | - Albert Vilà-Rovira
- LEQUiA, Institute of the Environment, University of Girona, Girona, Spain
| | - Elena Hernández-del Amo
- Molecular Microbial Ecology Group, Institute of Aquatic Ecology, University of Girona, Girona, Spain
| | - Maria D. Balaguer
- LEQUiA, Institute of the Environment, University of Girona, Girona, Spain
| | - Jesús Colprim
- LEQUiA, Institute of the Environment, University of Girona, Girona, Spain
| |
Collapse
|
30
|
Aghababaie M, Farhadian M, Jeihanipour A, Biria D. Effective factors on the performance of microbial fuel cells in wastewater treatment – a review. ACTA ACUST UNITED AC 2015. [DOI: 10.1080/09593330.2015.1077896] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Marzieh Aghababaie
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Mehrdad Farhadian
- Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Azam Jeihanipour
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
- Department of Chemistry and Biosciences, Institute of Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, Karlsruhe 76131, Germany
| | - David Biria
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
| |
Collapse
|