1
|
Yang W, Su Y, Wang R, Zhang H, Jing H, Meng J, Zhang G, Huang L, Guo L, Wang J, Gao W. Microbial production and applications of β-glucosidase-A review. Int J Biol Macromol 2024; 256:127915. [PMID: 37939774 DOI: 10.1016/j.ijbiomac.2023.127915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/03/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
β-Glucosidase exists in all areas of living organisms, and microbial β-glucosidase has become the main source of its production because of its unique physicochemical properties and the advantages of high-yield production by fermentation. With the rise of the green circular economy, the production of enzymes through the fermentation of waste as the substrate has become a popular trend. Lignocellulosic biomass is an easily accessible and sustainable feedstock that exists in nature, and the production of biofuels from lignocellulosic biomass requires the involvement of β-glucosidase. This review proposes ways to improve β-glucosidase yield and catalytic efficiency. Optimization of growth conditions and purification strategies of enzymes can increase enzyme yield, and enzyme immobilization, genetic engineering, protein engineering, and whole-cell catalysis provide solutions to enhance the catalytic efficiency and activity of β-glucosidase. Besides, the diversified industrial applications, challenges and prospects of β-glucosidase are also described.
Collapse
Affiliation(s)
- Wenqi Yang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Yaowu Su
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Rubing Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Huanyu Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Hongyan Jing
- Traditional Chinese Medicine College, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jie Meng
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Guoqi Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Luqi Huang
- National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lanping Guo
- National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs.
| | - Juan Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China.
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
2
|
Xie Y, Wang Y, Han Y, Zhang J, Wang S, Lu S, Wang H, Lu F, Jia L. Complete Genome Sequence of a Novel Lactobacillus paracasei TK1501 and Its Application in the Biosynthesis of Isoflavone Aglycones. Foods 2022; 11:foods11182807. [PMID: 36140935 PMCID: PMC9498081 DOI: 10.3390/foods11182807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/27/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Lactobacillus strains are considered safe and healthy probiotics for manufacturing “natural food” products; this is due to their ability to produce bioactive compounds that reduce the incidence of various human diseases. Lactobacillus paracasei TK1501 is a novel probiotic strain isolated from naturally fermented congee; and can produce a high yield of genistein, one of the most widely studied isoflavone aglycones with plenty of physiological functions. To better understand the molecular basis of isoflavone aglycones biosynthesis, the complete 2,942,538 bp genome of L. paracasei TK1501 was sequenced and assembled; a group of genes that are involved in isoflavone aglycones production were identified. Of note, a β-glucosidase was analyzed in the L. paracasei TK1501. Moreover, we also found that L. paracasei TK1501 could be used in soymilk fermentation; which would remarkably increase the contents of genistein, daidzein, and glycitein. This work was meaningful to the application of L. paracasei TK1501 and the molecular mechanism analysis of isoflavone aglycones biosynthesis in Lactobacillus strains.
Collapse
Affiliation(s)
- Yufeng Xie
- College of Food Science and Engineering, Harbin University, Harbin 150086, China
- Food Processing Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yingxue Wang
- College of Food Science and Engineering, Harbin University, Harbin 150086, China
| | - Yang Han
- College of Pharmacy, Qilu Medical University, Zibo City 255300, China
| | - Jing Zhang
- College of Pharmacy, Qilu Medical University, Zibo City 255300, China
| | - Shumei Wang
- College of Food Science and Engineering, Harbin University, Harbin 150086, China
| | - Shuwen Lu
- Food Processing Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Haikuan Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Fuping Lu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Longgang Jia
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
- Correspondence: ; Tel.: +86-22-60912442
| |
Collapse
|
3
|
Kumar Saini J, Himanshu, Hemansi, Kaur A, Mathur A. Strategies to enhance enzymatic hydrolysis of lignocellulosic biomass for biorefinery applications: A review. BIORESOURCE TECHNOLOGY 2022; 360:127517. [PMID: 35772718 DOI: 10.1016/j.biortech.2022.127517] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Global interest in lignocellulosic biorefineries has increased in the recent past due to technological advancements in sustainable and cost-effective production of numerous commodity and speciality chemicals and fuels from renewable lignocellulosic biomass (LCB). As a result, the market value of biorefinery products has also increased over the time, with an estimated worth of USD 867.7 billion by 2025. However, biorefinery operations, especially enzymatic hydrolysis, suffer from many challenges that limits the cost-effectiveness of conversion of LCB. Therefore, it is essential to understand and address these challenges in future biorefineries. The paper focuses on recent trends and challenges in enzymatic hydrolysis of LCB during lignocellulosic biorefinery operation for greener synthesis of energy, fuels, chemicals and other high-value products. Insights into the gaps in knowledge and technological challenges have also been addressed together with focus on future research needs and perspectives of enzymatic hydrolysis of LCB for biorefinery applications.
Collapse
Affiliation(s)
- Jitendra Kumar Saini
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana PIN-123031, India.
| | - Himanshu
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana PIN-123031, India
| | - Hemansi
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana PIN-123031, India; Research & Development Office, Ashoka University, Sonipat, Haryana PIN- 131029, India
| | - Amanjot Kaur
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana PIN-123031, India
| | - Aayush Mathur
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana PIN-123031, India
| |
Collapse
|
4
|
Kinetic Model for Enzymatic Hydrolysis of Cellulose from Pre-Treated Rice Husks. FERMENTATION 2022. [DOI: 10.3390/fermentation8090417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Rice husks contain cellulose as a raw material for manufacturing second-generation bioethanol. Cellulose from pre-treated rice husks was converted into reducing sugars through enzymatic hydrolysis using enzymes derived from Aspergillus niger. This study aims to determine the kinetics of enzymatic hydrolysis at enzyme concentrations of 10, 15, and 20% (v/w) and hydrolysis times of 5, 10, 15, 20, and 25 h. The results showed that cellulose was hydrolyzed to form reducing sugars. The CMCase activity and FPase activity reached 548.940 and 314.892 U mL−1, respectively, much higher than most previous reports on this genus. From the calculation of the reaction rate using the Michaelis–Menten kinetic model, the value of the Michaelis constant ranges from 0.001 to 0.0007, and the maximum rate is 1.3 × 10−7 to 2.7 × 10−7 Mol L−1 s−1. The highest reducing sugar concentration was obtained (1.80 g L−1) at an enzyme concentration of 20% (v/w) and a hydrolysis time of 25 h.
Collapse
|
5
|
Seekles SJ, Punt M, Savelkoel N, Houbraken J, Wösten HAB, Ohm RA, Ram AFJ. Genome sequences of 24 Aspergillus niger sensu stricto strains to study strain diversity, heterokaryon compatibility, and sexual reproduction. G3 (BETHESDA, MD.) 2022; 12:jkac124. [PMID: 35608315 PMCID: PMC9258588 DOI: 10.1093/g3journal/jkac124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/10/2022] [Indexed: 12/02/2022]
Abstract
Mating-type distribution within a phylogenetic tree, heterokaryon compatibility, and subsequent diploid formation were studied in 24 Aspergillus niger sensu stricto strains. The genomes of the 24 strains were sequenced and analyzed revealing an average of 6.1 ± 2.0 variants/kb between Aspergillus niger sensu stricto strains. The genome sequences were used together with available genome data to generate a phylogenetic tree revealing 3 distinct clades within Aspergillus niger sensu stricto. The phylogenetic tree revealed that both MAT1-1 and MAT1-2 mating types were present in each of the 3 clades. The phylogenetic differences were used to select for strains to analyze heterokaryon compatibility. Conidial color markers (fwnA and brnA) and auxotrophic markers (pyrG and nicB) were introduced via CRISPR/Cas9-based genome editing in a selection of strains. Twenty-three parasexual crosses using 11 different strains were performed. Only a single parasexual cross between genetically highly similar strains resulted in a successful formation of heterokaryotic mycelium and subsequent diploid formation, indicating widespread heterokaryon incompatibility as well as multiple active heterokaryon incompatibility systems between Aspergillus niger sensu stricto strains. The 2 vegetatively compatible strains were of 2 different mating types and a stable diploid was isolated from this heterokaryon. Sclerotium formation was induced on agar media containing Triton X-100; however, the sclerotia remained sterile and no ascospores were observed. Nevertheless, this is the first report of a diploid Aspergillus niger sensu stricto strain with 2 different mating types, which offers the unique possibility to screen for conditions that might lead to ascospore formation in A. niger.
Collapse
Affiliation(s)
- Sjoerd J Seekles
- TIFN, 6708 PW, Wageningen, the Netherlands
- Department Molecular Microbiology and Biotechnology, Institute of Biology, Leiden University, 2333 BE, Leiden, the Netherlands
| | - Maarten Punt
- TIFN, 6708 PW, Wageningen, the Netherlands
- Microbiology, Department of Biology, Utrecht University, 3584 CH, Utrecht, the Netherlands
| | - Niki Savelkoel
- Department Molecular Microbiology and Biotechnology, Institute of Biology, Leiden University, 2333 BE, Leiden, the Netherlands
| | - Jos Houbraken
- TIFN, 6708 PW, Wageningen, the Netherlands
- Applied & Industrial Mycology, Westerdijk Fungal Biodiversity Institute, 3584 CT, Utrecht, the Netherlands
| | - Han A B Wösten
- TIFN, 6708 PW, Wageningen, the Netherlands
- Microbiology, Department of Biology, Utrecht University, 3584 CH, Utrecht, the Netherlands
| | - Robin A Ohm
- TIFN, 6708 PW, Wageningen, the Netherlands
- Microbiology, Department of Biology, Utrecht University, 3584 CH, Utrecht, the Netherlands
| | - Arthur F J Ram
- TIFN, 6708 PW, Wageningen, the Netherlands
- Department Molecular Microbiology and Biotechnology, Institute of Biology, Leiden University, 2333 BE, Leiden, the Netherlands
| |
Collapse
|
6
|
Li Y, Zhang P, Zhu D, Yao B, Hasunuma T, Kondo A, Zhao X. Efficient preparation of soluble inducer for cellulase production and saccharification of corn stover using in-house generated crude enzymes. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
7
|
Ferreira Dos Santos Vieira C, Duzi Sia A, Maugeri Filho F, Maciel Filho R, Pinto Mariano A. Isopropanol-butanol-ethanol production by cell-immobilized vacuum fermentation. BIORESOURCE TECHNOLOGY 2022; 344:126313. [PMID: 34798259 DOI: 10.1016/j.biortech.2021.126313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
The Isopropanol-Butanol-Ethanol productivity by solventogenic clostridia can increase when cells are immobilized on low-cost, renewable fibrous materials; however, butanol inhibition imposes the need for dilute sugar solutions (less than40 g/L). To alleviate this problem, the in-situ vacuum product recovery technique was applied to recover IBE in repeated-batch cultivation of Clostridium beijerinckii DSM 6423 immobilized on sugarcane bagasse. Five repeated batch cycles were conducted in a 7-L bioreactor containing P2 medium (∼60 g/L glucose) and bagasse packed in 3D-printed concentric annular baskets. In three cycles, glucose was consumed by 86% on average, the IBE productivity was 0.35 g/L∙h or 30% and 17% higher relative to free- and immobilized (without vacuum)-cell cultures. Notably, the product stream contained 45 g/L IBE. However, the fermentation was unsatisfactory in two cycles. Finally, by inserting a fibrous bed with hollow annuli in a vacuum fermentation, this work introduces the concept of an internal-loop boiling-driven fibrous-bed bioreactor.
Collapse
Affiliation(s)
- Carla Ferreira Dos Santos Vieira
- Laboratory of Optimization, Design, and Advanced Control - Fermentation Division (LOPCA-Ferm), School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Augusto Duzi Sia
- Laboratory of Optimization, Design, and Advanced Control - Fermentation Division (LOPCA-Ferm), School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Francisco Maugeri Filho
- Bioprocess and Metabolic Engineering Laboratory (LEMeB), School of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Rubens Maciel Filho
- Laboratory of Optimization, Design, and Advanced Control - Fermentation Division (LOPCA-Ferm), School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Adriano Pinto Mariano
- Laboratory of Optimization, Design, and Advanced Control - Fermentation Division (LOPCA-Ferm), School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
8
|
Mirsalami SM, Alihosseini A. Selection of the most effective kinetic model of lactase hydrolysis by immobilized Aspergillus niger and free β-galactosidase. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021; 25:101395. [DOI: 10.1016/j.jscs.2021.101395] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Alarid‐García C, Hernández‐Calderón OM, Rios‐Iribe EY, González‐Llanes MD, Escamilla‐Silva EM. Production of β‐glucosidase by
Aspergillus niger
CDBB‐H
‐175 on submerged fermentation. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Cristian Alarid‐García
- Faculty of Chemical Biological Sciences Autonomous University of Sinaloa Culiacán Mexico
| | | | - Erika Y. Rios‐Iribe
- Faculty of Chemical Biological Sciences Autonomous University of Sinaloa Culiacán Mexico
| | | | | |
Collapse
|
10
|
Nogueira DE, Cabral JM, Rodrigues CA. Single-Use Bioreactors for Human Pluripotent and Adult Stem Cells: Towards Regenerative Medicine Applications. Bioengineering (Basel) 2021; 8:68. [PMID: 34067549 PMCID: PMC8156863 DOI: 10.3390/bioengineering8050068] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/15/2022] Open
Abstract
Research on human stem cells, such as pluripotent stem cells and mesenchymal stromal cells, has shown much promise in their use for regenerative medicine approaches. However, their use in patients requires large-scale expansion systems while maintaining the quality of the cells. Due to their characteristics, bioreactors have been regarded as ideal platforms to harbour stem cell biomanufacturing at a large scale. Specifically, single-use bioreactors have been recommended by regulatory agencies due to reducing the risk of product contamination, and many different systems have already been developed. This review describes single-use bioreactor platforms which have been used for human stem cell expansion and differentiation, along with their comparison with reusable systems in the development of a stem cell bioprocess for clinical applications.
Collapse
Affiliation(s)
- Diogo E.S. Nogueira
- Department of Bioengineering and iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (D.E.S.N.); (J.M.S.C.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Joaquim M.S. Cabral
- Department of Bioengineering and iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (D.E.S.N.); (J.M.S.C.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Carlos A.V. Rodrigues
- Department of Bioengineering and iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (D.E.S.N.); (J.M.S.C.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
11
|
Méndez-Líter JA, de Eugenio LI, Hakalin NLS, Prieto A, Martínez MJ. Production of a β-Glucosidase-Rich Cocktail from Talaromyces amestolkiae Using Raw Glycerol: Its Role for Lignocellulose Waste Valorization. J Fungi (Basel) 2021; 7:jof7050363. [PMID: 34066619 PMCID: PMC8148544 DOI: 10.3390/jof7050363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 11/22/2022] Open
Abstract
As β-glucosidases represent the major bottleneck for the industrial degradation of plant biomass, great efforts are being devoted to discover both novel and robust versions of these enzymes, as well as to develop efficient and inexpensive ways to produce them. In this work, raw glycerol from chemical production of biodiesel was tested as carbon source for the fungus Talaromyces amestolkiae with the aim of producing enzyme β-glucosidase-enriched cocktails. Approximately 11 U/mL β-glucosidase was detected in these cultures, constituting the major cellulolytic activity. Proteomic analysis showed BGL-3 as the most abundant protein and the main β-glucosidase. This crude enzyme was successfully used to supplement a basal commercial cellulolytic cocktail (Celluclast 1.5 L) for saccharification of pretreated wheat straw, corroborating that even hardly exploitable industrial wastes, such as glycerol, can be used as secondary raw materials to produce valuable enzymatic preparations in a framework of the circular economy.
Collapse
|
12
|
Abdella A, Segato F, Wilkins MR. Optimization of process parameters and fermentation strategy for xylanase production in a stirred tank reactor using a mutant Aspergillus nidulans strain. ACTA ACUST UNITED AC 2020; 26:e00457. [PMID: 32420050 PMCID: PMC7218019 DOI: 10.1016/j.btre.2020.e00457] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/27/2020] [Accepted: 04/18/2020] [Indexed: 12/02/2022]
Abstract
In batch fermentation, xylanase productivity was 313 U/mL/day. Maximum xylanase productivity was achieved at aeration of 2 vvm and 400 rpm. The optimum kLa for an efficient xylanase production was found to be 38.5 h−1. Repeated batch fermentation increased xylanase productivity to 373 U/mL/day.
The present work studied the optimization of aeration rate, agitation rate and oxygen transfer and the use of various batch fermentation strategies for xylanase production from a recombinant Aspergillus nidulans strain in a 3 L stirred tank reactor. Maximum xylanase production of 1250 U/mL with productivity of 313 U/mL/day was obtained under an aeration rate of 2 vvm and an agitation rate of 400 rpm using batch fermentation. The optimum volumetric oxygen transfer coefficient (kLa) for efficient xylanase production was found to be 38.6 h−1. Fed batch mode and repeated batch fermentation was also performed with kLa was 38.6 h−1. Xylanase enzyme productivity increased to 327 with fed batch fermentation and 373 U/mL/day with repeated batch fermentation. Also, maximum xylanase activity increased to 1410 U/mL with fed batch fermentation and 1572 U/mL with repeated batch fermentation.
Collapse
Affiliation(s)
- Asmaa Abdella
- Department of Industrial Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, PO Box 79, Sadat City, 22857 Egypt
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, 3605 Fair Street, Lincoln, NE, 68583-0726 USA
- Industrial Agricultural Products Center, University of Nebraska-Lincoln, 3605 Fair Street, Lincoln, NE, 68583-0730 USA
| | - Fernando Segato
- Synthetic and Molecular Biology Laboratory, Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Estrada Municipal do Campinho, s/n, Lorena, SP, Brazil
| | - Mark R. Wilkins
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, 3605 Fair Street, Lincoln, NE, 68583-0726 USA
- Industrial Agricultural Products Center, University of Nebraska-Lincoln, 3605 Fair Street, Lincoln, NE, 68583-0730 USA
- Department of Food Science and Technology, 1901 N 21stSt. University of Nebraska-Lincoln, Lincoln, NE, 68588-6205 USA
- Corresponding author at: University of Nebraska-Lincoln, 211 Chase Hall, PO Box 830726, Lincoln, NE, 68583-0726 USA.
| |
Collapse
|
13
|
Xu X, Zhou S, Julian McClements D, Huang L, Meng L, Xia X, Dong M. Multistarter fermentation of glutinous rice with Fu brick tea: Effects on microbial, chemical, and volatile compositions. Food Chem 2019; 309:125790. [PMID: 31784075 DOI: 10.1016/j.foodchem.2019.125790] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 01/06/2023]
Abstract
A higher fermentation efficiency was achieved, using multistarter fermentation of glutinous rice supplemented with Fu brick tea (FGR-FBT), than when using traditional fermentation. The effects of multistarter fermentation on the microbial, chemical, and volatile compositions were determined. When FBT was incorporated during glutinous rice fermentation, increased population of yeasts and fungi, as well as enhanced α-amylase, proteinase and β-glucosidase activities, were observed. Specific fungi were isolated and identified as Aspergillus spp., which are known to secrete extracellular enzymes that modify the chemical properties, including ethanol levels, pH, total acids, and total soluble solids. The aroma profile of fermented glutinous rice was studied in the absence and presence of FBT, using HS-SPME-GC-MS and the electronic-nose. This analysis indicated that 35 characteristic volatile compounds were only found in FGR-FBT. The results show that FBT can be added during the fermentation of food products to enhance microbial biotransformation and modify flavour metabolism.
Collapse
Affiliation(s)
- Xiao Xu
- College of Life Science, Shaoxing University, Shaoxing, Zhejiang 312000, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| | - Siduo Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | | | - Lu Huang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Ling Meng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiudong Xia
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Mingsheng Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
14
|
Srivastava N, Rathour R, Jha S, Pandey K, Srivastava M, Thakur VK, Sengar RS, Gupta VK, Mazumder PB, Khan AF, Mishra PK. Microbial Beta Glucosidase Enzymes: Recent Advances in Biomass Conversation for Biofuels Application. Biomolecules 2019; 9:E220. [PMID: 31174354 PMCID: PMC6627771 DOI: 10.3390/biom9060220] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/28/2019] [Accepted: 05/28/2019] [Indexed: 01/10/2023] Open
Abstract
The biomass to biofuels production process is green, sustainable, and an advanced technique to resolve the current environmental issues generated from fossil fuels. The production of biofuels from biomass is an enzyme mediated process, wherein β-glucosidase (BGL) enzymes play a key role in biomass hydrolysis by producing monomeric sugars from cellulose-based oligosaccharides. However, the production and availability of these enzymes realize their major role to increase the overall production cost of biomass to biofuels production technology. Therefore, the present review is focused on evaluating the production and efficiency of β-glucosidase enzymes in the bioconversion of cellulosic biomass for biofuel production at an industrial scale, providing its mechanism and classification. The application of BGL enzymes in the biomass conversion process has been discussed along with the recent developments and existing issues. Moreover, the production and development of microbial BGL enzymes have been explained in detail, along with the recent advancements made in the field. Finally, current hurdles and future suggestions have been provided for the future developments. This review is likely to set a benchmark in the area of cost effective BGL enzyme production, specifically in the biorefinery area.
Collapse
Affiliation(s)
- Neha Srivastava
- Department of Chemical Engineering and Technology, IIT (BHU), Varanasi 221005, India.
| | - Rishabh Rathour
- Department of Bioengineering, Integral University, Lucknow 226026, India.
| | - Sonam Jha
- Department of Botany, Banaras Hindu University, Varanasi 221005, India.
| | - Karan Pandey
- Department of Chemical Engineering and Technology, IIT (BHU), Varanasi 221005, India.
| | - Manish Srivastava
- Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India.
| | - Vijay Kumar Thakur
- Enhanced Composites and Structures Center, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedfordshire MK43 0AL, UK.
| | - Rakesh Singh Sengar
- Department of Agriculture Biotechnology, College of Agriculture, Sardar Vallabhbhai Patel, University of Agriculture and Technology, Meerut 250110, U.P., India.
| | - Vijai K Gupta
- Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, Tallinn University of Technology, 12618 Tallinn, Estonia.
| | | | - Ahamad Faiz Khan
- Department of Bioengineering, Integral University, Lucknow 226026, India.
| | - Pradeep Kumar Mishra
- Department of Chemical Engineering and Technology, IIT (BHU), Varanasi 221005, India.
| |
Collapse
|
15
|
Liu CG, Xiao Y, Xia XX, Zhao XQ, Peng L, Srinophakun P, Bai FW. Cellulosic ethanol production: Progress, challenges and strategies for solutions. Biotechnol Adv 2019; 37:491-504. [DOI: 10.1016/j.biotechadv.2019.03.002] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 02/18/2019] [Accepted: 03/03/2019] [Indexed: 11/16/2022]
|
16
|
Libardi N, Soccol CR, de Carvalho JC, de Souza Vandenberghe LP. Simultaneous cellulase production using domestic wastewater and bioprocess effluent treatment - A biorefinery approach. BIORESOURCE TECHNOLOGY 2019; 276:42-50. [PMID: 30611085 DOI: 10.1016/j.biortech.2018.12.088] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/20/2018] [Accepted: 12/23/2018] [Indexed: 06/09/2023]
Abstract
The production of cellulases using domestic wastewater as an alternative culture medium and reducing the pollutant charge of the resultant effluents were assessed for the first time in this study. Cellulase production was carried out in a bubble column, column-packed bed and stirred tank reactors by Trichoderma harzianum. Maximum cellulase activity and productivity of 31 UFP/mL and 645 UFP/mL.h, respectively were achieved in the bubble column bioreactor system without immobilization. The fermented broth was microfiltrated and ultrafiltrated, leading to a cellulase recovery of 73.5% using a 30 kDa membrane and resulting in a 4.23-fold activity concentration. Chemical oxygen demand and nitrogen concentration were reduced 81.37% and 52.9%, respectively, showing great promise in producing cellulases using domestic wastewater with concomitant development of a medium- to-high added-value process and reduced environmental impact. These results contribute to the development of sustainable bioprocesses approaching a biorefinery concept.
Collapse
Affiliation(s)
- Nelson Libardi
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná (UFPR), Centro Politécnico, C.P. 19011, 81-531-980 Curitiba, PR, Brazil
| | - Carlos Ricardo Soccol
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná (UFPR), Centro Politécnico, C.P. 19011, 81-531-980 Curitiba, PR, Brazil
| | - Júlio César de Carvalho
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná (UFPR), Centro Politécnico, C.P. 19011, 81-531-980 Curitiba, PR, Brazil
| | - Luciana Porto de Souza Vandenberghe
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná (UFPR), Centro Politécnico, C.P. 19011, 81-531-980 Curitiba, PR, Brazil.
| |
Collapse
|
17
|
Morais TPD, Barbosa PMG, Garcia NFL, Rosa-Garzon NGD, Fonseca GG, Paz MFD, Cabral H, Leite RSR. Catalytic and thermodynamic properties of β-glucosidases produced by Lichtheimia corymbifera and Byssochlamys spectabilis. Prep Biochem Biotechnol 2018; 48:777-786. [DOI: 10.1080/10826068.2018.1509083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Tobias Pereira de Morais
- Laboratory of Enzymology and Fermentation Processes, Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados (FCBA/UFGD), Dourados, MS, Brazil
| | - Paula Mirella Gomes Barbosa
- Laboratory of Enzymology and Fermentation Processes, Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados (FCBA/UFGD), Dourados, MS, Brazil
| | - Nayara Fernanda Lisboa Garcia
- Laboratory of Enzymology and Fermentation Processes, Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados (FCBA/UFGD), Dourados, MS, Brazil
| | - Nathália Gonsales da Rosa-Garzon
- Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP Brazil
| | - Gustavo Graciano Fonseca
- Laboratory of Bioengineering, Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados (FCBA/UFGD), Dourados, MS, Brazil
| | - Marcelo Fossa da Paz
- Laboratory of Enzymology and Fermentation Processes, Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados (FCBA/UFGD), Dourados, MS, Brazil
| | - Hamilton Cabral
- Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP Brazil
| | - Rodrigo Simões Ribeiro Leite
- Laboratory of Enzymology and Fermentation Processes, Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados (FCBA/UFGD), Dourados, MS, Brazil
| |
Collapse
|
18
|
Yu B, Zhang X, Sun W, Xi X, Zhao N, Huang Z, Ying Z, Liu L, Liu D, Niu H, Wu J, Zhuang W, Zhu C, Chen Y, Ying H. Continuous citric acid production in repeated-fed batch fermentation by Aspergillus niger immobilized on a new porous foam. J Biotechnol 2018; 276-277:1-9. [DOI: 10.1016/j.jbiotec.2018.03.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/09/2018] [Accepted: 03/23/2018] [Indexed: 10/17/2022]
|
19
|
Schneider WDH, Gonçalves TA, Uchima CA, Reis LD, Fontana RC, Squina FM, Dillon AJP, Camassola M. Comparison of the production of enzymes to cell wall hydrolysis using different carbon sources by Penicillium echinulatum strains and its hydrolysis potential for lignocelullosic biomass. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
20
|
Li YH, Zhang XY, Zhang F, Peng LC, Zhang DB, Kondo A, Bai FW, Zhao XQ. Optimization of cellulolytic enzyme components through engineering Trichoderma reesei and on-site fermentation using the soluble inducer for cellulosic ethanol production from corn stover. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:49. [PMID: 29483942 PMCID: PMC5824536 DOI: 10.1186/s13068-018-1048-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/12/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND Cellulolytic enzymes produced by Trichoderma reesei are widely studied for biomass bioconversion, and enzymatic components vary depending on different inducers. In our previous studies, a mixture of glucose and disaccharide (MGD) was developed and used to induce cellulase production. However, the enzymatic profile induced by MGD is still not defined, and further optimization of the enzyme cocktail is also required for efficient ethanol production from lignocellulosic biomass. RESULTS In this study, cellulolytic enzymes produced by T. reesei Rut C30 using MGD and alkali-pretreated corn stover (APCS) as inducer were compared. Cellular secretome in response to each inducer was analyzed, which revealed a similar enzyme profile. However, significant difference in the content of cellulases and xylanase was detected. Although MGD induction enhanced β-glucosidase production, its activity was still not sufficient for biomass hydrolysis. To overcome such a disadvantage, aabgl1 encoding β-glucosidase in Aspergillus aculeatus was heterologously expressed in T. reesei Rut C30 under the control of the pdc1 promoter. The recombinant T. reesei PB-3 strain showed an improved β-glucosidase activity of 310 CBU/mL in the fed-batch fermentation, 71-folds higher than that produced by the parent strain. Meanwhile, cellulase activity of 50 FPU/mL was detected. Subsequently, the crude enzyme was applied for hydrolyzing corn stover with a solid loading of 20% through separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation, respectively, for ethanol production. Better performance was observed in the SHF process, through which a total of 119.9 g/L glucose was released within 12 h for concomitant ethanol production of 54.2 g/L. CONCLUSIONS The similar profile of cellulolytic enzymes was detected under the induction of MGD and APCS, but higher amount of cellulases was present in the crude enzyme induced by MGD. However, β-glucosidase activity induced by MGD was not sufficient for hydrolyzing lignocellulosic biomass. High titers of cellulases and β-glucosidase were achieved simultaneously by heterologous expression of aabgl1 in T. reesei and fed-batch fermentation through feeding MGD. We demonstrated that on-site cellulase production by T. reesei PB-3 has a potential for efficient biomass saccharification and ethanol production from lignocellulosic biomass.
Collapse
Affiliation(s)
- Yong-Hao Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
- Present Address: School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331 China
| | - Xiao-Yue Zhang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116023 China
| | - Fei Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Liang-Cai Peng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Da-Bing Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Akihiko Kondo
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, 657-8501 Japan
| | - Feng-Wu Bai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
21
|
Kar B, Verma P, den Haan R, Sharma AK. Characterization of a recombinant thermostable β-glucosidase from Putranjiva roxburghii expressed in Saccharomyces cerevisiae and its use for efficient biomass conversion. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Libardi N, Soccol CR, Góes-Neto A, Oliveira JD, Vandenberghe LPDS. Domestic wastewater as substrate for cellulase production by Trichoderma harzianum. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.03.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|