1
|
Liu J, Zheng Y, Zhang R, Yu Y, Wang F, Deng L, Wu K. A novel synthesis method of medium- and long-chain triglyceride lipids from rubber seed oil catalyzed by enzymatic interesterification and its metabolism mechanism. Food Funct 2024; 15:9903-9915. [PMID: 39257163 DOI: 10.1039/d3fo05662g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Medium- and long-chain triglyceride (MLCT) is a striking structural lipid for the supply of energy and essential fatty free acids (FFAs) in the food field. This study aimed to prepare MLCT by enzymatic interesterification of rubber seed oil (RSO) and medium-chain triglyceride (MCT). Fortunately, the conversion of synthesized MLCT could reach 75.4% by the catalysis of Novozym 40086 (7 wt% to MCT) at a temperature of 40 °C with the substrate mole ratio of 1 : 0.7 (RSO : MCT). The as-synthesized MLCT contained unsaturated fatty acid (USFA, 50.13%) at the sn-2 position and exhibited superior performance on the acid value, peroxide value and iodine value in contrast to grade III soybean oil. Moreover, it exhibited the simultaneous release of LCFAs and MCFAs, extremely facilitating the reduction of body weight gain and control of the level of lipids in the blood. Finally, the preferred hepatic metabolism process of the obtained MLCT was proven to be the main cause of the reduced body weight and improved lipid levels by the in vivo deposition experiments. Therefore, our study suggested that the outstanding performance of the MLCT synthesized by RSO in foods as functional lipids.
Collapse
Affiliation(s)
- Jiahao Liu
- Beijing Bioprocess Key Laboratory and State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology (BUCT), Beijing, 100029, PR China.
| | - Yinghui Zheng
- Beijing Bioprocess Key Laboratory and State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology (BUCT), Beijing, 100029, PR China.
| | - Renwei Zhang
- Beijing Bioprocess Key Laboratory and State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology (BUCT), Beijing, 100029, PR China.
| | - Yue Yu
- Beijing Bioprocess Key Laboratory and State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology (BUCT), Beijing, 100029, PR China.
| | - Fang Wang
- Beijing Bioprocess Key Laboratory and State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology (BUCT), Beijing, 100029, PR China.
| | - Li Deng
- Beijing Bioprocess Key Laboratory and State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology (BUCT), Beijing, 100029, PR China.
| | - Kai Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, PR China.
| |
Collapse
|
2
|
Cheng X, Jiang C, Jin J, Jin Q, Akoh CC, Wei W, Wang X. Medium- and Long-Chain Triacylglycerol: Preparation, Health Benefits, and Food Utilization. Annu Rev Food Sci Technol 2024; 15:381-408. [PMID: 38237045 DOI: 10.1146/annurev-food-072023-034539] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Medium- and long-chain triacylglycerol (MLCT) is a structured lipid with both medium- and long-chain fatty acids in one triacylglycerol molecule. Compared with long-chain triacylglycerol (LCT), which is mainly present in common edible oils, and the physical blend of medium-chain triacylglycerol with LCT (MCT/LCT), MLCT has different physicochemical properties, metabolic characteristics, and nutritional values. In this article, the recent advances in the use of MLCT in food formulations are reviewed. The natural sources and preparation of MLCT are discussed. A comprehensive summary of MLCT digestion, absorption, transport, and oxidation is provided as well as its health benefits, including reducing the risk of overweight, hypolipidemic and hypoglycemic effects, etc. The potential MLCT uses in food formulations, such as infant formulas, healthy foods for weight loss, and sports foods, are summarized. Finally, the current safety assessment and regulatory status of MLCT in food formulations are reviewed.
Collapse
Affiliation(s)
- Xinyi Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China; ,
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Chenyu Jiang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China; ,
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jun Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China; ,
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qingzhe Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China; ,
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Casimir C Akoh
- Department of Food Science and Technology, University of Georgia, Athens, Georgia, USA
| | - Wei Wei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China; ,
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xingguo Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China; ,
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
3
|
Zou X, Su H, Zhang F, Zhang H, Yeerbolati Y, Xu X, Chao Z, Zheng L, Jiang B. Bioimprinted lipase-catalyzed synthesis of medium- and long-chain structured lipids rich in docosahexaenoic acid for infant formula. Food Chem 2023; 424:136450. [PMID: 37247604 DOI: 10.1016/j.foodchem.2023.136450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/11/2023] [Accepted: 05/21/2023] [Indexed: 05/31/2023]
Abstract
Medium- and long-chain structured lipids (MLSLs) rich in docosahexaenoic acid (DHA) were obtained in shorter reaction time by acidolysis of single-cell oil (DHASCO) from Schizochytrium sp. with caprylic acid (CA) using a lipase bioimprinted with fatty acids as a catalyst. The conditions for preparation of the bioimprinted lipase for the acidolysis reaction were firstly optimized and the activity of the obtained lipase was 2.17 times higher than that of the non-bioimprinted. The bioimprinted lipase was then used as a catalyst and the reaction conditions were optimized. Under the optimal conditions, the equilibrium could be achieved in 4 h, and the total and sn-1,3 CA contents in the product were 29.18% and 42.34%, respectively, and the total and sn-2 DHA contents were 46.26% and 70.12%, respectively. Such MLSLs rich in sn-1,3 CA and sn-2 DHA are beneficial for DHA absorption, and thus have potential for use in infant formula.
Collapse
Affiliation(s)
- Xiaoqiang Zou
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China.
| | - Heng Su
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China.
| | - Fengcheng Zhang
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Hongjiang Zhang
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Yeliaman Yeerbolati
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Xiuli Xu
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Zhonghao Chao
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Lei Zheng
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Bangzhi Jiang
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| |
Collapse
|
4
|
Lai Y, Li D, Liu T, Wan C, Zhang Y, Zhang Y, Zheng M. Preparation of functional oils rich in diverse medium and long-chain triacylglycerols based on a broadly applicable solvent-free enzymatic strategy. Food Res Int 2023; 164:112338. [PMID: 36737931 DOI: 10.1016/j.foodres.2022.112338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/24/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
To address the problems of long reaction times and limited range of adaptation in enzymatic synthesis medium- and long-chain triacylglycerols (MLCTs), a broadly applicable solvent-free enzymatic interesterification strategy was proposed. Candida sp. lipase (CSL) was immobilized on hydrophobic hollow mesoporous silica spheres (HHSS) to construct a biocatalyst designated as CSL@HHSS with a 15.3 % immobilization yield and a loading amount of 94.0 mg/g. The expressed activity and the specific activity were 20.14 U/g and 173.62 U/g, which were 4.6 and 5.6 times higher than that of free CSL, respectively. This biocatalyst demonstrated higher activity, wider applicability, and excellent reusability. Linseed oil, sunflower oil, perilla seed oil, algal oil, and malania oleifera oil were applied as substrates to produce MLCTs with medium-chain triacylglycerols (MCT) catalyzed by CSL@HHSS through interesterification in yields ranging from 69.6 % to 78.0 % within 20 min. Specific fatty acids, including linolenic acid, oleic acid, DHA, and nervonic acid (the first reported), were introduced into MLCT's skeleton, respectively. The structures were finely analyzed and identified by GC and UPLC-MS. The catalytic efficiency value of CSL@HHSS in catalyzing interesterification between linseed oil and MCT (70 ℃, 20 min, lipase 6 wt%) is 0.86 g/g∙min, which is the highest ever reported. This paper presents an effective and sustainable strategy for functional MLCTs production.
Collapse
Affiliation(s)
- Yundong Lai
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China; College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Dongming Li
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Tieliang Liu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China
| | - Chuyun Wan
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China
| | - Yi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China
| | - Yufei Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China.
| | - Mingming Zheng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China.
| |
Collapse
|
5
|
Jadhav HB, Gogate P, Annapure U. Intensified synthesis of a triglyceride of octanoic acid using sonication and assessment of its frying characteristics. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:3167-3179. [PMID: 35872730 PMCID: PMC9304485 DOI: 10.1007/s13197-022-05379-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/03/2022] [Accepted: 01/17/2022] [Indexed: 06/15/2023]
Abstract
UNLABELLED Intensification in synthesis of triglycerides of octanoic acid using a heterogeneous amberlyst-15 catalyst has been investigated with the application of ultrasound under solvent-free conditions. Further, the frying characteristics of medium-chain triglycerides (tricaprin) are evaluated by deep frying of French fries in various combinations of palm oil and tricaprin. Understanding into the effect of parameters such as the temperature of the reaction (over the range of 40 °C-80 °C), loading of amberlyst-15 (1%-5%) and molar ratio of fatty acid to glycerol (3:1-3:5) along with the ultrasound conditions as duty cycle (40%-90%) and time on the conversion (%) has also been developed. Based on the outcomes of the study, optimum reaction conditions seen are 3:4 as the molar ratio of fatty acid (C8): glycerol, amberlyst-15 loading of 3% and a reaction temperature of 50 °C. It was further observed that the optimum ultrasound conditions required for maximum conversion of 99.8% were 240 W power, 80% duty cycle and 15 min as the ultrasound irradiation time. Under similar conditions, the conventional synthesis resulted in only 20% conversion in 15 min. Reusability studies also established that the acid-resin catalyst was effectively reused for 8 times. The PV, p-AV and TPC of frying oil combination containing higher tricaprin (50:50-palm oil: MCT) was 8.4 ± 0.8, 23.1 ± 0.01 and 29.8 ± 0.01 respectively, which were lowest as compared with other blends indicating the beneficial effects of MCT in frying applications. The work clearly shows that the ultrasound application for the synthesis of triglyceride of octanoic acid gives higher conversion (%) in a less time and also demonstrates that MCT could be a good alternative for deep frying of foods in combination with palm oil to enhance the shelf-life of food. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13197-022-05379-3.
Collapse
Affiliation(s)
- Harsh B. Jadhav
- Department of Food Engineering and Technology, Institute of Chemical Technology, Matunga, Mumbai, 400019 India
| | - Parag Gogate
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai, 400019 India
| | - Uday Annapure
- Department of Food Engineering and Technology, Institute of Chemical Technology, Matunga, Mumbai, 400019 India
| |
Collapse
|
6
|
Liu W, Luo X, Tao Y, Huang Y, Zhao M, Yu J, Feng F, Wei W. Ultrasound enhanced butyric acid-lauric acid designer lipid synthesis: Based on artificial neural network and changes in enzymatic structure. ULTRASONICS SONOCHEMISTRY 2022; 88:106100. [PMID: 35908344 PMCID: PMC9340510 DOI: 10.1016/j.ultsonch.2022.106100] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/10/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Ultrasound is a green technology for intensifying enzymatic reactions. In this study, an ultrasonic water bath with equipment parameters of 28 kHz, 1750.1 W/m2, 60% duty cycle was used to assist the synthesis of butyric acid-lauric acid designer lipid (BLDL), which was catalyzed by Lipozyme 435. A convincing three-layer feed-forward artificial neural network (ANN) model was established (R2 = 0.949, RMSE = 4.759, ADD = 7.329) to accurately predict the optimal parameters combination, which was described as 13.72 mL reaction volume, 15.49% enzyme loading, 0.253 substrate molar ratio (tributyrin/lauric acid), 56.58 °C reaction temperature and 120 min reaction time. The ultrasonic assistance increased actual butyric acid conversion rate by 11.38%, and also enhanced the consumption rate of tributyrin and lauric acid during the reaction. Meanwhile, the esterification activity of Lipozyme 435 was enhanced and its effectiveness up to 6 cycles. Structurally, ultrasound assistance significantly disrupted the secondary structure of the Lipozyme 435: reduced the content of α-helices, increased the content of β-sheet and β-turn. In addition, sonication caused an increase in crevice and micro-damage on the surface of the immobilized enzyme. In conclusion, low-intensity ultrasound at 28 kHz improved the synthesis efficiency of BLDL, which was scientifically predicted by ANN model, and the change of enzyme structure may be the vital reason for ultrasound enhanced reaction. However, the effect of ultrasound on immobilized enzymes' activity needs to be further explored.
Collapse
Affiliation(s)
- Wangxin Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xianliang Luo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Huang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Minjie Zhao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jiahui Yu
- State Key Lab of Food Science and Technology and Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Fengqin Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; ZhongYuan Institute, Zhejiang University, Hangzhou 310058, China.
| | - Wei Wei
- State Key Lab of Food Science and Technology and Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
7
|
Triglycerides of medium-chain fatty acids: a concise review. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022:1-10. [PMID: 35761969 PMCID: PMC9217113 DOI: 10.1007/s13197-022-05499-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Revised: 04/19/2022] [Accepted: 05/21/2022] [Indexed: 10/25/2022]
Abstract
Medium-chain triglycerides contain medium-chain fatty acid esterified to the glycerol backbone. These MCFA have a shorter chain length and are quickly metabolized in the body serving as an immediate energy source. They are known to have good physiological as well as functional characteristics which help in treating various health disorders. Naturally, they are found in coconut oil, milk fat, and palm kernel oil, and they are synthetically produced by esterification and interesterification reactions. Due to their numerous health benefits, MCT is used as a functional or nutraceutical oil in various food and pharmaceutical formulations. To increase their nutraceutical benefits and food applications MCFA can be used along with polyunsaturated fatty acids in the synthesis of structured lipids. This review aims to provide information about triglycerides of MCFA, structure, metabolism, properties, synthetic routes, intensified synthesis approaches, health benefits, application, and safety of use of MCT in the diet.
Collapse
|
8
|
Nimbkar S, Leena MM, Moses JA, Anandharamakrishnan C. Medium chain triglycerides (MCT): State-of-the-art on chemistry, synthesis, health benefits and applications in food industry. Compr Rev Food Sci Food Saf 2022; 21:843-867. [PMID: 35181994 DOI: 10.1111/1541-4337.12926] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 12/07/2021] [Accepted: 01/16/2022] [Indexed: 12/21/2022]
Abstract
Medium chain triglycerides (MCT) are esters of fatty acids with 6 to 12 carbon atom chains. Naturally, they occur in various sources; their composition and bioactivity are source and extraction process-linked. The molecular size of MCT oil permits unique metabolic pathways and energy production rates, making MCT oil a high-value functional food. This review details the common sources of MCT oil, presenting critical information on the various approaches for MCT oil extraction or synthesis. Apart from conventional techniques, non-thermal processing methods that show promising prospects are analyzed. The biological effects of MCT oil are summarized, and the range of need-driven modification approaches are elaborated. A section is devoted to highlighting the recent trends in the application of MCT oil for food, nutraceuticals, and allied applications. While much is debated about the role of MCT oil in human health and wellness, there is limited information on daily requirements, impact on specific population groups, and effects of long-term consumption. Nonetheless, several studies have been conducted and continue to identify the most effective methods for MCT oil extraction, processing, handling, and storage. A knowledge gap exists and future research must focus on technology packages for scalability and sustainability.
Collapse
Affiliation(s)
- Shubham Nimbkar
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, 613005, India
| | - M Maria Leena
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, 613005, India
| | - J A Moses
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, 613005, India
| | - C Anandharamakrishnan
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, 613005, India
| |
Collapse
|
9
|
Guo Y, Xu Y, Zhang T, Wang Y, Liu R, Chang M, Wang X. Medium and long-chain structured triacylglycerol enhances vitamin D bioavailability in an emulsion-based delivery system: combination of in vitro and in vivo studies. Food Funct 2022; 13:1762-1773. [PMID: 35112696 DOI: 10.1039/d1fo03407c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vitamin D (VitD) is an essential fat-soluble micronutrient required for maintaining and regulating calcium homeostasis. Although sunlight can provide VitD, epidemiological studies indicate that the occurrence of VitD deficiency and insufficiency is widespread. Lipids are required at all stages of VitD digestion and absorption. In this research two different medium and long-chain triacylglycerol structures, possessing identical fatty acid composition lipids, namely structured triacylglycerol (STG), and physical mixtures of medium/long-chain triacylglycerol (MCT/LCT), were selected. Our results demonstrated that STG had a significant VitD bioavailability compared to MCT/LCT. In terms of the lipid digestion and absorption, the extent of the higher free fatty acid released (69.42%, p < 0.05), extent of lipolysis (89.28%, p < 0.05), lipolysis rate (0.06 s-1, p < 0.05), and the ratio of the long-chain fatty acid to medium-chain fatty acid of STG (4.8, p < 0.05), result in a higher capacity for accommodating VitD when forming mixed micelles (61.31%, p < 0.05). An in vivo animal study also demonstrated that STG significantly increases the delivery ability of VitD (18.75 ng mL-1, p < 0.05). The findings of this work may have unique applications for designing novel interesterified lipids with an effective delivery capacity for fat-soluble nutrients.
Collapse
Affiliation(s)
- Yiwen Guo
- International Joint Research Laboratory for Oil Nutrition and Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ying Xu
- International Joint Research Laboratory for Oil Nutrition and Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tao Zhang
- International Joint Research Laboratory for Oil Nutrition and Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yandan Wang
- International Joint Research Laboratory for Oil Nutrition and Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ruijie Liu
- International Joint Research Laboratory for Oil Nutrition and Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ming Chang
- International Joint Research Laboratory for Oil Nutrition and Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xingguo Wang
- International Joint Research Laboratory for Oil Nutrition and Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
10
|
Rudzińska M, Grudniewska A, Chojnacka A, Gładkowski W, Maciejewska G, Olejnik A, Kowalska K. Distigmasterol-Modified Acylglycerols as New Structured Lipids-Synthesis, Identification and Cytotoxicity. Molecules 2021; 26:molecules26226837. [PMID: 34833929 PMCID: PMC8617691 DOI: 10.3390/molecules26226837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
Plant sterols, also referred as phytosterols, have been known as bioactive compounds which have cholesterol-lowering properties in human blood. It has been established that a diet rich in plant sterols or their esters alleviates cardiovascular diseases (CVD), and also may inhibit breast, colon and lung carcinogenesis. Phytosterols, in their free and esterified forms, are prone to thermo-oxidative degradation, where time and temperature affect the level of degradation. Looking for new derivatives of phytosterols with high thermo-oxidative stability for application in foods, our idea was to obtain novel structured acylglycerols in which two fatty acid parts are replaced by stigmasterol residues. In this work, asymmetric (1,2- and 2,3-) distigmasterol-modified acylglycerols (dStigMAs) were synthesized by the covalent attachment of stigmasterol residues to sn-1 and sn-2 or sn-2 and sn-3 positions of 3-palmitoyl-sn-glycerol or 1-oleoyl-sn-glycerol, respectively, using a succinate or carbonate linker. The chemical structures of the synthesized compounds were identified by NMR, HR-MS, and IR data. Moreover, the cytotoxicity of the obtained compounds was determined. The dStigMAs possessing a carbonate linker showed potent cytotoxicity to cells isolated from the small intestine and colon epithelium and liver, whereas the opposite results were obtained for compounds containing a succinate linker.
Collapse
Affiliation(s)
- Magdalena Rudzińska
- Faculty of Food Science and Nutrition, Poznan University of Life Sciences, 60-637 Poznań, Poland; (A.O.); (K.K.)
- Correspondence: ; Tel.: +48-618487276
| | - Aleksandra Grudniewska
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland; (A.G.); (A.C.); (W.G.)
| | - Anna Chojnacka
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland; (A.G.); (A.C.); (W.G.)
| | - Witold Gładkowski
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland; (A.G.); (A.C.); (W.G.)
| | - Gabriela Maciejewska
- Faculty of Chemistry, Wrocław University of Science and Technology, 50-371 Wrocław, Poland;
| | - Anna Olejnik
- Faculty of Food Science and Nutrition, Poznan University of Life Sciences, 60-637 Poznań, Poland; (A.O.); (K.K.)
| | - Katarzyna Kowalska
- Faculty of Food Science and Nutrition, Poznan University of Life Sciences, 60-637 Poznań, Poland; (A.O.); (K.K.)
| |
Collapse
|
11
|
Simões T, Ferreira J, Lemos MFL, Augusto A, Félix R, Silva SFJ, Ferreira-Dias S, Tecelão C. Argan Oil as a Rich Source of Linoleic Fatty Acid for Dietetic Structured Lipids Production. Life (Basel) 2021; 11:life11111114. [PMID: 34832990 PMCID: PMC8621445 DOI: 10.3390/life11111114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 01/22/2023] Open
Abstract
Argan oil is rich in long-chain unsaturated fatty acids (FA), mostly oleic and linoleic, and natural antioxidants. This study addresses the production of low-calorie structured lipids by acidolysis reaction, in a solvent-free system, between caprylic (C8:0; system I) or capric (C10:0; system II) acids and argan oil, used as triacylglycerol (TAG) source. Three commercial immobilized lipases were tested: Novozym® 435, Lipozyme® TL IM, and Lipozyme® RM IM. Higher incorporation degree (ID) was achieved when C10:0 was used as acyl donor, for all the lipases tested. Lipozyme® RM IM yielded the highest ID for both systems (28.9 ± 0.05 mol.% C10:0, and 11.4 ± 2.2 mol.% C8:0), being the only catalyst able to incorporate C8:0 under the reaction conditions for biocatalyst screening (molar ratio 2:1 FA/TAG and 55 °C). The optimal conditions for Lipozyme® RM IM in system II were found by response surface methodology (66 °C; molar ratio FA/TAG of 4:1), enabling to reach an ID of 40.9 mol.% of C10:0. Operational stability of Lipozyme® RM IM in system II was also evaluated under optimal conditions, after eight consecutive 24 h-batches, with biocatalyst rehydration between cycles. The biocatalyst presented a half-life time of 103 h.
Collapse
Affiliation(s)
- Tiago Simões
- MARE-Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, 2520-641 Peniche, Portugal; (T.S.); (J.F.); (M.F.L.L.); (A.A.); (R.F.); (S.F.J.S.)
| | - Jessica Ferreira
- MARE-Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, 2520-641 Peniche, Portugal; (T.S.); (J.F.); (M.F.L.L.); (A.A.); (R.F.); (S.F.J.S.)
| | - Marco F. L. Lemos
- MARE-Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, 2520-641 Peniche, Portugal; (T.S.); (J.F.); (M.F.L.L.); (A.A.); (R.F.); (S.F.J.S.)
| | - Ana Augusto
- MARE-Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, 2520-641 Peniche, Portugal; (T.S.); (J.F.); (M.F.L.L.); (A.A.); (R.F.); (S.F.J.S.)
- CDRSP-Center for Rapid and Sustainable Product Development, Politécnico de Leiria, 2430-028 Marinha Grande, Portugal
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6AP, UK
| | - Rafael Félix
- MARE-Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, 2520-641 Peniche, Portugal; (T.S.); (J.F.); (M.F.L.L.); (A.A.); (R.F.); (S.F.J.S.)
| | - Susana F. J. Silva
- MARE-Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, 2520-641 Peniche, Portugal; (T.S.); (J.F.); (M.F.L.L.); (A.A.); (R.F.); (S.F.J.S.)
| | - Suzana Ferreira-Dias
- LEAF, Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal;
| | - Carla Tecelão
- MARE-Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, 2520-641 Peniche, Portugal; (T.S.); (J.F.); (M.F.L.L.); (A.A.); (R.F.); (S.F.J.S.)
- LEAF, Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal;
- Correspondence:
| |
Collapse
|
12
|
Huang J, Lu Y, Jin J, Song Z, Tang J. Chemical transesterification of flaxseed oil and medium‐chain triacylglycerols: MLCT yield, DAG content, physicochemical properties, minor compounds and oxidation stability. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jianhua Huang
- International Joint Research Laboratory for Lipid Nutrition and Safety Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province School of Food Science and Technology Jiangnan University Wuxi 214122 China
| | - Yanting Lu
- International Joint Research Laboratory for Lipid Nutrition and Safety Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province School of Food Science and Technology Jiangnan University Wuxi 214122 China
| | - Jun Jin
- International Joint Research Laboratory for Lipid Nutrition and Safety Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province School of Food Science and Technology Jiangnan University Wuxi 214122 China
| | - Zhihua Song
- International Joint Research Laboratory for Lipid Nutrition and Safety Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province School of Food Science and Technology Jiangnan University Wuxi 214122 China
| | - Junjun Tang
- Jiangsu Xingfumen Grain and Oil Co. LTD Taixing 225442 China
| |
Collapse
|
13
|
Jadhav H, Annapure U. Greener route for intensified synthesis of Tricaprylin using Amberlyst-15. J CHEM SCI 2021. [DOI: 10.1007/s12039-020-01869-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Lee YY, Tang TK, Chan ES, Phuah ET, Lai OM, Tan CP, Wang Y, Ab Karim NA, Mat Dian NH, Tan JS. Medium chain triglyceride and medium-and long chain triglyceride: metabolism, production, health impacts and its applications - a review. Crit Rev Food Sci Nutr 2021; 62:4169-4185. [PMID: 33480262 DOI: 10.1080/10408398.2021.1873729] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Structured lipid is a type of modified form of lipid that is "fabricated" with the purpose to improve the nutritional and functional properties of conventional fats and oils derived from animal and plant sources. Such healthier choice of lipid received escalating attention from the public for its capability to manage the rising prevalence of metabolic syndrome. Of which, medium-chain triacylglycerol (MCT) and medium-and long-chain triacylglycerol (MLCT) are the few examples of the "new generation" custom-made healthful lipids which are mainly composed of medium chain fatty acid (MCFA). MCT is made up exclusively of MCFA whereas MLCT contains a mixture of MCFA and long chain fatty acid (LCFA), respectively. Attributed by the unique metabolism of MCFA which is rapidly metabolized by the body, MCFA and MCT showed to acquire multiple physiological and functional properties in managing and reversing certain health disorders. Several chemically or enzymatically oils and fats modification processes catalyzed by a biological or chemical catalyst such as acidolysis, interesterification and esterification are adopted to synthesis MCT and MLCT. With their purported health benefits, MCT and MLCT are widely being used as nutraceutical in food and pharmaceutical sectors. This article aims to provide a comprehensive review on MCT and MLCT, with an emphasis on the basic understanding of its structures, properties, unique metabolism; the current status of the touted health benefits; latest routes of production; its up-to-date applications in the different food systems; relevant patents filed and its drawbacks.
Collapse
Affiliation(s)
- Yee-Ying Lee
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia.,Monash Industry Palm Oil Research and Education Platform, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Teck-Kim Tang
- International Joint Laboratory on Plant Oils Processing and Safety, Jinan University- Universiti Putra Malaysia.Institute of Bioscience, University Putra Malaysia, Serdang, Selangor, Malaysia
| | - Eng-Seng Chan
- Monash Industry Palm Oil Research and Education Platform, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia.,School of Engineering, Department of Chemical Engineering, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Eng-Tong Phuah
- Department of Agricultural and Food Science, Universiti Tunku Abdul Rahman, Kampar, Perak, Malaysia
| | - Oi-Ming Lai
- International Joint Laboratory on Plant Oils Processing and Safety, Jinan University- Universiti Putra Malaysia.Institute of Bioscience, University Putra Malaysia, Serdang, Selangor, Malaysia.,Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, Serdang, Selangor
| | - Chin-Ping Tan
- International Joint Laboratory on Plant Oils Processing and Safety, Jinan University- Universiti Putra Malaysia. Department of Food Technology, Faculty of Food Science and Technology, University Putra Malaysia, Serdang, Selangor, Malaysia
| | - Yong Wang
- International Joint Laboratory on Plant Oils Processing and Safety, Jinan University- Universiti Putra Malaysia. Department of Food Science and Engineering, Jinan University, Guangzhou, P.R. China
| | - Nur Azwani Ab Karim
- Sime Darby Research Sdn Bhd, R&D Carey Island-Upstream, Carey Island, Selangor, Malaysia
| | - Noorlida Habi Mat Dian
- Malaysia Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, Kajang, Selangor, Malaysia
| | - Joo Shun Tan
- Bioprocess Technology, School of Industrial Technology, Universiti Sains Malaysia, Gelugor, Pulau Pinang, Malaysia
| |
Collapse
|
15
|
Li Y, Li C, Feng F, Wei W, Zhang H. Synthesis of medium and long-chain triacylglycerols by enzymatic acidolysis of algal oil and lauric acid. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110309] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Cozentino IDSC, Rodrigues MDF, Mazziero VT, Cerri MO, Cavallini DCU, de Paula AV. Enzymatic synthesis of structured lipids from grape seed (Vitis vinifera L.) oil in associated packed bed reactors. Biotechnol Appl Biochem 2020; 69:101-109. [PMID: 33617040 DOI: 10.1002/bab.2085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/25/2020] [Indexed: 11/06/2022]
Abstract
Triacylglycerols (TAGs) can be modified to increase the absorption of fatty acids, prevent obesity, and treat fat malabsorption disorders and metabolic diseases. Medium-long-medium (MLM)-type TAGs, which contain medium-chain fatty acids in the sn-1 and sn-3 positions of the glycerol backbone and a long-chain fatty acid in the sn-2 position, show particularly interesting nutritional characteristics. This study aimed to synthesize MLM-type TAGs by enzymatic acidolysis of grape seed oil with medium-chain capric acid (C10:0) in associated packed bed reactors. The reaction was carried out during 120 H, at 45 °C, using lipase from Rhizomucor miehei (Lipozyme® RM IM). The residence time distribution of reagents in the reactor was quantified to evaluate the reactor behavior and to diagnose the existence of preferential paths. The reaction progress was monitored by analyzing TAG composition and, at the steady state (after 48 H of reaction), the incorporation degree achieved a value of 39.91 ± 2.77%. To enhance the capric acid incorporation, an acidolysis reaction in associated packed bed reactors was performed. The results showed a good operational stability of the biocatalyst, revealing values of half-life 209.64 H, 235.63 H of packed bed and associated packed bed reactor, respectively, and a deactivation coefficient 0.0061 H-1.
Collapse
Affiliation(s)
| | - Marina de Freitas Rodrigues
- Department of Engineering Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, Sao Paulo, Brazil
| | - Vitor Teixeira Mazziero
- Department of Engineering Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, Sao Paulo, Brazil
| | - Marcel Otávio Cerri
- Department of Engineering Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, Sao Paulo, Brazil
| | | | - Ariela Veloso de Paula
- Department of Engineering Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, Sao Paulo, Brazil
| |
Collapse
|
17
|
Korma SA, Li L, Abdrabo KAE, Ali AH, Rahaman A, Abed SM, Bakry IA, Wei W, Wang X. A comparative study of lipid composition and powder quality among powdered infant formula with novel functional structured lipids and commercial infant formulas. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03597-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Huang Z, Cao Z, Guo Z, Chen L, Wang Z, Sui X, Jiang L. Lipase catalysis of α-linolenic acid-rich medium- and long-chain triacylglycerols from perilla oil and medium-chain triacylglycerols with reduced by-products. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:4565-4574. [PMID: 32419135 DOI: 10.1002/jsfa.10515] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/10/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Medium- and long- chain triacylglycerols (MLCTs) are functional structural lipids that can provide the human body with essential fatty acids and a faster energy supply. This study aimed to prepare MLCTs rich in α-linolenic by enzymatic interesterification of perilla oil and medium-chain triacylglycerols (MCTs), catalyzed by Lipozyme RM IM, Lipozyme TL IM, Lipozyme 435, and Novozyme 435 respectively. RESULTS The effects of lipase loading, concentration of MCTs, reaction temperature, and reaction time on the yield of MLCTs were investigated. It was found that the reaction achieved more than a 70% yield of MLCTs in triacylglycerols under the conditions of 400 g kg-1 MCTs and 60 g kg-1 lipase loading after equilibrium. A novel two-stage deodorization was also applied to purify the interesterification products. The triacylglycerols reach over 97% purity in the products with significant removal (P < 0.05) of the free fatty acids, and the trans fatty acids were strictly controlled at below 1%. There was more than 40% α-linolenic in the purified products, with long-chain fatty acids mostly occupying the desired sn-2 position in acylglycerols, which are more active in hydrolysis. CONCLUSION A series of novel α-linolenic acid-rich medium- and long-chain triacylglycerols was prepared. Under appropriate reaction conditions, the yield of MLCTs in triacylglycerols was above 70%. A novel two-stage deodorization can be used to promote the elimination of free fatty acids and limit the generation of trans fatty acids. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhaoxian Huang
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Zhenyu Cao
- Beijing Key Laboratory of Nutrition & Health and Food Safety, COFCO Nutrition & Health Research Institute, Beijing, China
| | - Zengwang Guo
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Liang Chen
- Jiangsu Yiming Biological Technology Co., Ltd, Taizhou, China
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin, China
- National Research Center of Soybean Engineering and Technology, Harbin, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin, China
- National Research Center of Soybean Engineering and Technology, Harbin, China
| |
Collapse
|
19
|
Zhang Z, Zhang S, Lee WJ, Lai OM, Tan CP, Wang Y. Production of Structured Triacylglycerol
via
Enzymatic Interesterification of Medium‐Chain Triacylglycerol and Soybean Oil Using a Pilot‐Scale Solvent‐Free Packed Bed Reactor. J AM OIL CHEM SOC 2020. [DOI: 10.1002/aocs.12319] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhen Zhang
- JNU‐UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and EngineeringJinan University Guangzhou Guangdong 510632 China
| | - Siwen Zhang
- JNU‐UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and EngineeringJinan University Guangzhou Guangdong 510632 China
- National R&D Center for Freshwater Fish ProcessingJiangxi Normal University Nanchang Jiangxi 330022 China
| | - Wan Jun Lee
- JNU‐UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and EngineeringJinan University Guangzhou Guangdong 510632 China
| | - Oi Ming Lai
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular SciencesUniversiti Putra Malaysia UPM Serdang Selangor 43400 Malaysia
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and TechnologyUniversiti Putra Malaysia UPM Serdang Selangor 43400 Malaysia
| | - Yong Wang
- JNU‐UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and EngineeringJinan University Guangzhou Guangdong 510632 China
| |
Collapse
|
20
|
Yue C, Ben H, Wang J, Li T, Yu G. Ultrasonic Pretreatment in Synthesis of Caprylic-Rich Structured Lipids by Lipase-Catalyzed Acidolysis of Corn Oil in Organic System and Its Physicochemical Properties. Foods 2019; 8:foods8110566. [PMID: 31718043 PMCID: PMC6915483 DOI: 10.3390/foods8110566] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/31/2019] [Accepted: 11/08/2019] [Indexed: 12/16/2022] Open
Abstract
The current work was to evaluate the lipase-catalyzed acidolysis of corn oil with caprylic acid (CA) in organic system under bath ultrasonic pretreatment and to analyze the physicochemical properties of structured lipids (SLs). Under optimum conditions (Novozym 40086 lipase, 200 W ultrasound power, 10 min ultrasound pretreatment time, 12% dosage of lipase, Triacylglycerol (TAG)/Free fatty acids (FFA): 1/8, 40 °C for 6 h), a 45.55% CA incorporation was obtained (named SLs-U). The highest CA incorporation was 32.75% for conventional method at reaction time of 10 h (named SLs-N). The predominant TAG types of SLs were MLM (medium-, long- and medium-chain-type TAGs) and MLL (medium-, long- and long-chain-type TAGs). X-ray diffraction analysis revealed that both SLs-U and SLs-N present β form. Differential scanning calorimetry (DSC) analysis showed that both SLs-U and SLs-N show a lower melting and crystallization temperature than corn oil. This study suggested that bath ultrasonic pretreatment can accelerate lipase-catalyzed acidolysis synthesis of MLM structured lipids in an organic system, and two kinds of structured lipids show similar physicochemical properties.
Collapse
|
21
|
Korma SA, Wei W, Ali AH, Abed SM, Zheng L, Jin Q, Wang X. Spray-dried novel structured lipids enriched with medium-and long-chain triacylglycerols encapsulated with different wall materials: Characterization and stability. Food Res Int 2019; 116:538-547. [DOI: 10.1016/j.foodres.2018.08.071] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 06/14/2018] [Accepted: 08/23/2018] [Indexed: 12/11/2022]
|
22
|
Ortiz C, Ferreira ML, Barbosa O, dos Santos JCS, Rodrigues RC, Berenguer-Murcia Á, Briand LE, Fernandez-Lafuente R. Novozym 435: the “perfect” lipase immobilized biocatalyst? Catal Sci Technol 2019. [DOI: 10.1039/c9cy00415g] [Citation(s) in RCA: 263] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Novozym 435 (N435) is a commercially available immobilized lipase produced by Novozymes with its advantages and drawbacks.
Collapse
Affiliation(s)
- Claudia Ortiz
- Escuela de Microbiología
- Universidad Industrial de Santander
- Bucaramanga
- Colombia
| | - María Luján Ferreira
- Planta Piloto de Ingeniería Química – PLAPIQUI
- CONICET
- Universidad Nacional del Sur
- 8000 Bahía Blanca
- Argentina
| | - Oveimar Barbosa
- Departamento de Química
- Facultad de Ciencias
- Universidad del Tolima
- Ibagué
- Colombia
| | - José C. S. dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável
- Universidade da Integração Internacional da Lusofonia Afro-Brasileira
- Redenção
- Brazil
| | - Rafael C. Rodrigues
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute
- Federal University of Rio Grande do Sul
- Porto Alegre
- Brazil
| | - Ángel Berenguer-Murcia
- Instituto Universitario de Materiales
- Departamento de Química Inorgánica
- Universidad de Alicante
- Alicante
- Spain
| | - Laura E. Briand
- Centro de Investigación y Desarrollo en Ciencias Aplicadas-Dr. Jorge J. Ronco
- Universidad Nacional de La Plata
- CONICET
- Buenos Aires
- Argentina
| | | |
Collapse
|
23
|
Lian W, Wang W, Tan CP, Wang J, Wang Y. Immobilized Talaromyces thermophilus lipase as an efficient catalyst for the production of LML-type structured lipids. Bioprocess Biosyst Eng 2018; 42:321-329. [DOI: 10.1007/s00449-018-2036-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/02/2018] [Indexed: 10/27/2022]
|
24
|
Abed SM, Wei W, Ali AH, Korma SA, Mousa AH, Hassan HM, Jin Q, Wang X. Synthesis of structured lipids enriched with medium-chain fatty acids via solvent-free acidolysis of microbial oil catalyzed by Rhizomucor miehei lipase. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.03.057] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Enzymatic preparation and facile purification of medium-chain, and medium- and long-chain fatty acid diacylglycerols. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.02.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Synthesis of novel medium-long-medium type structured lipids from microalgae oil via two-step enzymatic reactions. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
27
|
Monitoring the Activity of Immobilized Lipase with Quinizarin Diester Fluoro-Chromogenic Probe. Molecules 2017; 22:molecules22122136. [PMID: 29207517 PMCID: PMC6149872 DOI: 10.3390/molecules22122136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 11/23/2017] [Accepted: 12/01/2017] [Indexed: 11/25/2022] Open
Abstract
Quinizarin diester is used as a fluoro-chromogenic substrate of the activity of lipase supported in poly(methylmetacrylate) beads (CALB, Novozym® 435) dispersed in organic solvents. The monoester and diester of quinizarin are both non-fluorescent species contrasting with the enzymatic product quinizarin that shows optical absorption in the visible region and strong fluorescence signal. The enzymatic conversion is accomplished by spectroscopic measurements and it follows a sigmoid curve from which the mean reaction time of the enzymatic process can be determined. This parameter indicates the enzyme activity of the immobilized lipase. Its dependency with the amount of lipase allowed the determination of the ratio of the catalytic rate and the Michaelis constant (kc/Km) and the experimental value found was (1.0 ± 0.1) × 10−2 mg−1/min in the case of quinizarin diacetate.
Collapse
|