1
|
Ganjave SD, O'Niel RA, Wangikar PP. Rate of dilution and redox ratio influence the refolding efficiency of recombinant fungal dehydrogenases. Int J Biol Macromol 2023; 250:126163. [PMID: 37549766 DOI: 10.1016/j.ijbiomac.2023.126163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/19/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Dehydrogenases from fungi are attracting attention as industrial biocatalysts due to their high activity and chiral selectivity. However, these enzymes form insoluble aggregates when overexpressed in E. coli, limiting their industrial application. In the present study, we report the systematic development of a refolding process for selected, industrially relevant fungal dehydrogenases, viz., formate dehydrogenase from Candida boidinii (CbFDH) and formate and alcohol dehydrogenases from Geotrichum candium (GcFDH and GcADH, respectively). We first employed a screen to evaluate the effects of different variables on refolding including the buffer system, additives, and rate of dilution. The extent of refolding was determined by enzyme assays, circular dichroism, and tryptophan fluorescence. Our results showed that glycerol and reducing environment are essential for refolding of these dehydrogenases. Further, slow dilution of solubilized protein over 16 h dramatically improved the recovery of refolded enzymes compared to rapid dilution. The importance of slow dilution was further confirmed in a 10-fold scaled-up refolding trial. Overall, we demonstrate a robust method for refolding of fungal dehydrogenases, thus improving their availability for various biocatalytic applications.
Collapse
Affiliation(s)
- Snehal D Ganjave
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Ruchika Annie O'Niel
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Pramod P Wangikar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
2
|
Shanbhag AP. Stairway to Stereoisomers: Engineering Short- and Medium-Chain Ketoreductases To Produce Chiral Alcohols. Chembiochem 2023; 24:e202200687. [PMID: 36640298 DOI: 10.1002/cbic.202200687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/14/2023] [Accepted: 01/14/2023] [Indexed: 01/15/2023]
Abstract
The short- and medium-chain dehydrogenase/reductase superfamilies are responsible for most chiral alcohol production in laboratories and industries. In nature, they participate in diverse roles such as detoxification, housekeeping, secondary metabolite production, and catalysis of several chemicals with commercial and environmental significance. As a result, they are used in industries to create biopolymers, active pharmaceutical intermediates (APIs), and are also used as components of modular enzymes like polyketide synthases for fabricating bioactive molecules. Consequently, random, semi-rational and rational engineering have helped transform these enzymes into product-oriented efficient catalysts. The rise of newer synthetic chemicals and their enantiopure counterparts has proved challenging, and engineering them has been the subject of numerous studies. However, they are frequently limited to the synthesis of a single chiral alcohol. The study attempts to defragment and describe hotspots of engineering short- and medium-chain dehydrogenases/reductases for the production of chiral synthons.
Collapse
Affiliation(s)
- Anirudh P Shanbhag
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, 700009, India.,Bugworks Research India Pvt. Ltd., C-CAMP, National Centre for Biological Sciences (NCBS-TIFR), Bellary Road, Bangalore, 560003, India
| |
Collapse
|
3
|
Zhang J, Zhou J, Xu G, Ni Y. Stereodivergent evolution of KpADH for the asymmetric reduction of diaryl ketones with para-substituents. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Musa MM. Alcohol Dehydrogenases with anti-Prelog Stereopreference in Synthesis of Enantiopure Alcohols. ChemistryOpen 2022; 11:e202100251. [PMID: 35191611 PMCID: PMC8973272 DOI: 10.1002/open.202100251] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/03/2022] [Indexed: 01/03/2023] Open
Abstract
Biocatalytic production of both enantiomers of optically active alcohols with high enantiopurities is of great interest in industry. Alcohol dehydrogenases (ADHs) represent an important class of enzymes that could be used as catalysts to produce optically active alcohols from their corresponding prochiral ketones. This review covers examples of the synthesis of optically active alcohols using ADHs that exhibit anti-Prelog stereopreference. Both wild-type and engineered ADHs that exhibit anti-Prelog stereopreference are highlighted.
Collapse
Affiliation(s)
- Musa M. Musa
- Department of Chemistry Interdisciplinary Research Center for Refining and Advanced ChemicalsKing Fahd University of Petroleum and MineralsDhahran31261Saudi Arabia
| |
Collapse
|
5
|
Ganjave SD, Dodia H, Sunder AV, Madhu S, Wangikar PP. High cell density cultivation of E. coli in shake flasks for the production of recombinant proteins. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2022; 33:e00694. [PMID: 35004235 PMCID: PMC8718739 DOI: 10.1016/j.btre.2021.e00694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/24/2021] [Accepted: 12/15/2021] [Indexed: 12/05/2022]
Abstract
True fed-batch strategy for high cell density cultivation of E. coli in shake flask. Cybernetic model-based optimization of the feeding recipe. Biomass of 19.9–21.5 g DCW/L, in agreement with the model prediction. Volumetric productivity for tested proteins increased 8–34-fold compared to batch. Scale up of fed-batch recipe to bioreactor resulted in further 2.8-fold increase.
Batch cultivation of recombinant bacteria in shake flasks typically results in low cell density due to nutrient depletion. Previous studies on high cell density cultivation in shake flasks have relied mainly on controlled release mechanisms. Here, we report a true fed-batch strategy to achieve high cell density of recombinant E. coli in shake flasks in 24 h by feeding a mixture of glycerol and yeast extract with a syringe pump. Feed composition and feed rate were obtained by cybernetic model-based, multi-objective optimization. Model parameters were estimated from time-course measurement of substrate, biomass, and dissolved oxygen levels. The optimized process yielded 20.7 g dry cell weight/L, in agreement with the model prediction. Volumetric protein productivity improved by 10–34-fold compared to batch cultivation with 2.8-fold further improvement when the fed-batch process was replicated in a 3 L bioreactor. The process has significance in the routine laboratory cultivations and in scaleup studies.
Collapse
Affiliation(s)
- Snehal D Ganjave
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Hardik Dodia
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Avinash Vellore Sunder
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Swati Madhu
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Pramod P Wangikar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.,DBT-Pan IIT Center for Bioenergy, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.,Wadhwani Research Center for Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
6
|
Liu D, Gou L, Bai Y, Fan TP, Zheng X, Cai Y. Converting the 3-quinuclidinone reductase from Agrobacterium tumefaciens into the ethyl 4-chloroacetoacetate reductase by site-directed mutagenesis. Biotechnol Appl Biochem 2021; 69:1428-1437. [PMID: 34148265 DOI: 10.1002/bab.2214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/14/2021] [Indexed: 11/07/2022]
Abstract
In this study, the 3-quinuclidinone reductase from Agrobacterium tumefaciens (AtQR) was modified by site-directed mutagenesis. And we further obtained a saturation mutant library in which the residue 197 was mutated. A single-point mutation converted the wild enzyme that originally had no catalytic activity in reduction of ethyl 4-chloroacetoacetate (COBE) into an enzyme with catalytic activity. The results of enzyme activity assays showed that the seven variants could asymmetrically reduce COBE to ethyl (S)-4-chloro-3-hydroxybutyrate ((S)-CHBE) with NADH as coenzyme. In the library, the variant E197N showed higher catalytic efficiency than others. The E197N was optimally active at pH 6.0 and 40°C, and the catalytic efficiency (kcat /Km ) for COBE was 51.36 s-1 ·mM-1 . This study showed that the substrate specificity of AtQR could be changed through site-directed mutagenesis at the residue 197.
Collapse
Affiliation(s)
- Di Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Linbo Gou
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yajun Bai
- College of Life Sciences, Northwest University, Xi'an, Shanxi, China
| | - Tai-Ping Fan
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Xiaohui Zheng
- College of Life Sciences, Northwest University, Xi'an, Shanxi, China
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
7
|
Lu Y, Dai H, Cheng P, Shi H, Tang L, Sun X, Ou Z. Regenerated coenzyme-based preparation of bienzyme-polymer nanoconjugates and their applications for the synthesis of ethyl (R)-2-hydroxy-4-phenylbutyrate. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0775-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Li A, Wang T, Tian Q, Yang X, Yin D, Qin Y, Zhang L. Single-Point Mutant Inverts the Stereoselectivity of a Carbonyl Reductase toward β-Ketoesters with Enhanced Activity. Chemistry 2021; 27:6283-6294. [PMID: 33475219 DOI: 10.1002/chem.202005195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/29/2020] [Indexed: 01/06/2023]
Abstract
Enzyme stereoselectivity control is still a major challenge. To gain insight into the molecular basis of enzyme stereo-recognition and expand the source of antiPrelog carbonyl reductase toward β-ketoesters, rational enzyme design aiming at stereoselectivity inversion was performed. The designed variant Q139G switched the enzyme stereoselectivity toward β-ketoesters from Prelog to antiPrelog, providing corresponding alcohols in high enantiomeric purity (89.1-99.1 % ee). More importantly, the well-known trade-off between stereoselectivity and activity was not found. Q139G exhibited higher catalytic activity than the wildtype enzyme, the enhancement of the catalytic efficiency (kcat /Km ) varied from 1.1- to 27.1-fold. Interestingly, the mutant Q139G did not lead to reversed stereoselectivity toward aromatic ketones. Analysis of enzyme-substrate complexes showed that the structural flexibility of β-ketoesters and a newly formed cave together facilitated the formation of the antiPrelog-preferred conformation. In contrast, the relatively large and rigid structure of the aromatic ketones prevents them from forming the antiPrelog-preferred conformation.
Collapse
Affiliation(s)
- Aipeng Li
- School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, China.,Research & Development Institute in Shenzhen, Northwestern Polytechnical University, 518057, Shenzhen, China
| | - Ting Wang
- School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, China.,Research & Development Institute in Shenzhen, Northwestern Polytechnical University, 518057, Shenzhen, China
| | - Qing Tian
- School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, China.,Research & Development Institute in Shenzhen, Northwestern Polytechnical University, 518057, Shenzhen, China
| | - Xiaohong Yang
- Department of Chemistry, University of California, One Shields Avenue, Davis, California, 95616, United States
| | - Dongming Yin
- School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, China.,Research & Development Institute in Shenzhen, Northwestern Polytechnical University, 518057, Shenzhen, China
| | - Yong Qin
- School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, China
| | - Lianbing Zhang
- School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, China.,Research & Development Institute in Shenzhen, Northwestern Polytechnical University, 518057, Shenzhen, China
| |
Collapse
|
9
|
Hollmann F, Opperman DJ, Paul CE. Biocatalytic Reduction Reactions from a Chemist's Perspective. Angew Chem Int Ed Engl 2021; 60:5644-5665. [PMID: 32330347 PMCID: PMC7983917 DOI: 10.1002/anie.202001876] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Indexed: 11/09/2022]
Abstract
Reductions play a key role in organic synthesis, producing chiral products with new functionalities. Enzymes can catalyse such reactions with exquisite stereo-, regio- and chemoselectivity, leading the way to alternative shorter classical synthetic routes towards not only high-added-value compounds but also bulk chemicals. In this review we describe the synthetic state-of-the-art and potential of enzymes that catalyse reductions, ranging from carbonyl, enone and aromatic reductions to reductive aminations.
Collapse
Affiliation(s)
- Frank Hollmann
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelftThe Netherlands
- Department of BiotechnologyUniversity of the Free State205 Nelson Mandela DriveBloemfontein9300South Africa
| | - Diederik J. Opperman
- Department of BiotechnologyUniversity of the Free State205 Nelson Mandela DriveBloemfontein9300South Africa
| | - Caroline E. Paul
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelftThe Netherlands
| |
Collapse
|
10
|
Voss M, Küng R, Hayashi T, Jonczyk M, Niklaus M, Iding H, Wetzl D, Buller R. Multi‐faceted Set‐up of a Diverse Ketoreductase Library Enables the Synthesis of Pharmaceutically‐relevant Secondary Alcohols. ChemCatChem 2021. [DOI: 10.1002/cctc.202001871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Moritz Voss
- Competence Center for Biocatalysis Institute for Chemistry and Biotechnology Zurich University of Applied Sciences Einsiedlerstrasse 31 8820 Wädenswil Switzerland
| | - Robin Küng
- Competence Center for Biocatalysis Institute for Chemistry and Biotechnology Zurich University of Applied Sciences Einsiedlerstrasse 31 8820 Wädenswil Switzerland
- Present address: Fisher Clinical Services Thermo Fisher Scientific Steinbühlweg 69 4123 Allschwil Switzerland
| | - Takahiro Hayashi
- Competence Center for Biocatalysis Institute for Chemistry and Biotechnology Zurich University of Applied Sciences Einsiedlerstrasse 31 8820 Wädenswil Switzerland
- Present address: Science & Innovation Center Mitsubishi Chemical Corporation 1000 Kamoshidacho Aoba ward, Yokohama Kanagawa 227-8502 Japan
| | - Magdalena Jonczyk
- Competence Center for Biocatalysis Institute for Chemistry and Biotechnology Zurich University of Applied Sciences Einsiedlerstrasse 31 8820 Wädenswil Switzerland
| | - Michael Niklaus
- Competence Center for Biocatalysis Institute for Chemistry and Biotechnology Zurich University of Applied Sciences Einsiedlerstrasse 31 8820 Wädenswil Switzerland
| | - Hans Iding
- Process Chemistry & Catalysis F. Hoffmann-La Roche Ltd. CH-4070 Basel Switzerland
| | - Dennis Wetzl
- Process Chemistry & Catalysis F. Hoffmann-La Roche Ltd. CH-4070 Basel Switzerland
| | - Rebecca Buller
- Competence Center for Biocatalysis Institute for Chemistry and Biotechnology Zurich University of Applied Sciences Einsiedlerstrasse 31 8820 Wädenswil Switzerland
| |
Collapse
|
11
|
Wang N, Luo Z, Li K, Xu Y, Peng C. Identification of a newly isolated Sphingomonas sp. LZ1 and its application to biosynthesize chiral alcohols. J GEN APPL MICROBIOL 2020; 66:289-296. [PMID: 32741888 DOI: 10.2323/jgam.2019.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A strain LZ1, which showed efficient asymmetric reduction of 3,5-bis(trifluoromethyl) acetophenone to enantiopure (S)-[3,5-bis(trifluoromethyl)phenyl]ethanol, which is the key intermediate for the synthesis of a receptor antagonist and antidepressant, was isolated from a soil sample. Based on its morphological, 16S rDNA sequence, and phylogenetic analysis, the strain LZ1 was identified to be Sphingomonas sp. LZ1. To our knowledge, this is the first reported case of the species Sphingomonas exhibiting stricter S-enantioselectivity and its use for the asymmetric reduction of 3,5-bis(trifluoromethyl) acetophenone. Some key reaction parameters involved in the bioreduction catalyzed by whole cells of Sphingomonas sp. LZ1 were subsequently optimized, and the optimized conditions for the synthesis of (S)-[3,5-bis(trifluoromethyl)phenyl]ethanol were determined to be as follows: phosphate buffer pH 7.5, 70 mM of 3,5-bis(trifluoromethyl) acetophenone, 30 g/L of glucose as a co-substrate, 300 g (wet weight)/L of resting cell as the biocatalyst, and a reaction for 24 h at 30°C and 180 rpm. Under the above conditions, a best yield of 94% and an excellent enantiomeric excess of 99.6% were obtained, respectively. Sphingomonas sp. LZ1 could also asymmetrically reduce a variety of prochiral ketones to their corresponding optical alcohols with excellent enantioselectivity. These results indicated that Sphingomonas sp. LZ1 had a remarkable capacity to reduce 3,5-bis(trifluoromethyl)acetophenone to its corresponding (S)-[3,5-bis(trifluoromethyl)phenyl]ethanol, and might be a new potential biocatalyst for the production of valuable chiral alcohols in industry.
Collapse
Affiliation(s)
- Nengqiang Wang
- School of Life Science, Hunan University of Science and Technology.,Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization
| | - Zhen Luo
- School of Life Science, Hunan University of Science and Technology
| | - Kaiqin Li
- School of Life Science, Hunan University of Science and Technology
| | - Yingcui Xu
- School of Life Science, Hunan University of Science and Technology
| | - Cheng Peng
- School of Life Science, Hunan University of Science and Technology
| |
Collapse
|
12
|
Hollmann F, Opperman DJ, Paul CE. Biokatalytische Reduktionen aus der Sicht eines Chemikers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001876] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Frank Hollmann
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629 HZ Delft Niederlande
- Department of Biotechnology University of the Free State 205 Nelson Mandela Drive Bloemfontein 9300 Südafrika
| | - Diederik J. Opperman
- Department of Biotechnology University of the Free State 205 Nelson Mandela Drive Bloemfontein 9300 Südafrika
| | - Caroline E. Paul
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629 HZ Delft Niederlande
| |
Collapse
|
13
|
Sunder AV, Shah S, Rayavarapu P, Wangikar PP. Expanding the repertoire of nitrilases with broad substrate specificity and high substrate tolerance for biocatalytic applications. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Amirmahani N, Mahmoodi NO, Bahramnejad M, Seyedi N. Recent developments of metallic nanoparticles and their catalytic activity in organic reactions. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.201900534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Najmeh Amirmahani
- Department of ChemistryUniversity Campus 2, University of Guilan Rasht Iran
- Department of Organic Chemistry, Environmental Health Engineering Research CenterKerman University of Medical Sciences Kerman Iran
| | - Nosrat O. Mahmoodi
- Department of Chemistry, Faculty of ScienceUniversity of Guilan Rasht Iran
| | - Mahboubeh Bahramnejad
- Department of Chemistry, Faculty of SciencePayame Noor University of Kerman Kerman Iran
| | - Neda Seyedi
- Department of Chemistry, Faculty of ScienceUniversity of Jiroft Jiroft Iran
| |
Collapse
|
15
|
Yang Z, Ye W, Xie Y, Liu Q, Chen R, Wang H, Wei D. Efficient Asymmetric Synthesis of Ethyl (S)-4-Chloro-3-hydroxybutyrate Using Alcohol Dehydrogenase SmADH31 with High Tolerance of Substrate and Product in a Monophasic Aqueous System. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00088] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zeyu Yang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Wenjie Ye
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Youyu Xie
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Qinghai Liu
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Rong Chen
- School of Medicine, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Hualei Wang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, PR China
| |
Collapse
|
16
|
Shah S, Sunder AV, Singh P, Wangikar PP. Characterization and Application of a Robust Glucose Dehydrogenase from Paenibacillus pini for Cofactor Regeneration in Biocatalysis. Indian J Microbiol 2020; 60:87-95. [PMID: 32089578 DOI: 10.1007/s12088-019-00834-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/23/2019] [Indexed: 02/06/2023] Open
Abstract
Glucose dehydrogenases are important auxiliary enzymes in biocatalysis, employed in the regeneration of reduced nicotinamide cofactors for oxidoreductase catalysed reactions. Here we report the identification and characterization of a novel glucose-1-dehydrogenase (GDH) from Paenibacillus pini that prefers NAD+ as cofactor over NADP+. The purified recombinant P. pini GDH displayed a specific activity of 247.5 U/mg. The enzyme was stable in the pH range 4-8.5 and exhibited excellent thermostability till 50 °C for 24 h, even in the absence of NaCl or glycerol. Paenibacillus pini GDH was also tolerant to organic solvents, demonstrating its potential for recycling cofactors for biotransformation. The potential application of the enzyme was evaluated by coupling with a NAD+-dependent alcohol dehydrogenase for the reduction of acetophenone and ethyl-4-chloro-3-oxo-butanoate. Conversions higher than 95% were achieved within 2 h with low enzyme loading using lyophilized cell lysate, suggesting that P. pini GDH could be highly effective for recycling NADH in redox biocatalysis.
Collapse
Affiliation(s)
- Shikha Shah
- 1Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India
| | - Avinash Vellore Sunder
- 1Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India
| | - Pooja Singh
- 1Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India.,2Department of Biochemistry, Savitribai Phule Pune University, Pune, 411007 India
| | - Pramod P Wangikar
- 1Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India
| |
Collapse
|
17
|
Gu T, Wang B, Zhang Z, Wang Z, Chong G, Ma C, Tang YJ, He Y. Sequential pretreatment of bamboo shoot shell and biosynthesis of ethyl (R)-4-chloro-3-hydroxybutanoate in aqueous-butyl acetate media. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
Jin Q, Wu Z, Dou Y, Yang Y, Xia J, Jin Z. A novel carbonyl reductase with anti-Prelog stereospecificity for the production of t-butyl 6-cyano-(3 R, 5 R)-dihydroxyhexanoate. 3 Biotech 2019; 9:194. [PMID: 31065494 DOI: 10.1007/s13205-019-1722-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 04/17/2019] [Indexed: 11/24/2022] Open
Abstract
A novel gene (crc1) from Candida boidinii was cloned and then overexpressed in a recombinant strain BL21(DE3)/pET30a-crc1 of Escherichia coli. The resulting carbonyl reductase was prepared through fermentations using the recombinant strain. The purified enzyme showed an NADPH-dependent activity and specific activity was 4.65 U/mg using t-butyl 6-cyano-(5R)-hydroxy-3-oxohexanoate (ATS-6) as substrate. The enzyme was optimally active at 35 °C and pH 7, respectively. The apparent K m and V max of the enzyme for ATS-6 are 1.5 mM and 21.1 μmol/min mg, respectively, indicating excellent anti-Prelog stereospecificity. Under the optimum condition, t-butyl 6-cyano-(3R,5R)-dihydroxyhexanoate (ATS-7) was prepared with the enzyme with high d.e. value (99.9%) and good conversion (94%) in 4 h, indicating high stereoselectivity and conversion efficiency in biotransformation of ATS-6 to ATS-7.
Collapse
Affiliation(s)
- Qingchao Jin
- 1School of Biological and Chemical Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo, 315100 China
| | - Zhige Wu
- 1School of Biological and Chemical Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo, 315100 China
| | - Yanping Dou
- Agriculture, Food & Life, SGS-CSTC Standards Technical Services Co., Ltd, Ningbo Branch, Ningbo, 315040 China
| | - Yu Yang
- 1School of Biological and Chemical Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo, 315100 China
| | - Jingjing Xia
- 1School of Biological and Chemical Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo, 315100 China
| | - Zhihua Jin
- 1School of Biological and Chemical Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo, 315100 China
| |
Collapse
|
19
|
Sengupta A, Sunder AV, Sohoni SV, Wangikar PP. The effect of CO 2 in enhancing photosynthetic cofactor recycling for alcohol dehydrogenase mediated chiral synthesis in cyanobacteria. J Biotechnol 2018; 289:1-6. [PMID: 30412731 DOI: 10.1016/j.jbiotec.2018.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/16/2018] [Accepted: 11/04/2018] [Indexed: 11/17/2022]
Abstract
The light harvesting photosystem in cyanobacteria offers a potential pathway for the regeneration of the nicotinamide cofactor NADPH, thereby facilitating the application of cyanobacteria as excellent whole cell biocatalysts in oxidoreductase-mediated biotransformation. The use of cyanobacterial metabolism for cofactor recycling improves the atom economy of the process compared to the commonly employed enzyme-coupled cofactor recycling using enzymes such as glucose dehydrogenase. Here we report the asymmetric conversion of acetophenone to chiral 1-phenylethanol by recombinant Synechococcus elongatus PCC 7942 whole cell biocatalyst that expresses the NADPH dependent L. kefir alcohol dehydrogenase. Besides light, it was observed that carbon dioxide levels play a critical role in improving the bioconversion efficiency possibly due to the enhanced growth rate and improved cofactor availability at elevated CO2 levels. Complete reduction of acetophenone to optically pure (R)-1-phenylethanol at 99% enantiomeric excess was achieved within 6 h with a relatively low cell density of 0.66 g/l by coupling optimum light and CO2 levels and without the need for a co-substrate.
Collapse
Affiliation(s)
- Annesha Sengupta
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076 India
| | - Avinash Vellore Sunder
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076 India
| | - Sujata V Sohoni
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076 India
| | - Pramod P Wangikar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076 India; DBT-Pan IIT Centre for Bioenergy, Indian Institute of Technology Bombay, Powai, Mumbai 400076 India; Wadhwani Research Centre for Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076 India.
| |
Collapse
|
20
|
Abstract
Enzymes are efficient biocatalysts providing an important tool in many industrial biocatalytic processes. Currently, the immobilized enzymes prepared by the cross-linked enzyme aggregates (CLEAs) have drawn much attention due to their simple preparation and high catalytic efficiency. Combined cross-linked enzyme aggregates (combi-CLEAs) including multiple enzymes have significant advantages for practical applications. In this review, the conditions or factors for the preparation of combi-CLEAs such as the proportion of enzymes, the type of cross-linker, and coupling temperature were discussed based on the reaction mechanism. The recent applications of combi-CLEAs were also reviewed.
Collapse
|