1
|
Fan Y, Zhang F, He K, Yu D, Chen H, Tian D, Shi Y, Li Z, Wang X. Functional microorganisms in hydrogen production: Mechanisms and applications. BIORESOURCE TECHNOLOGY 2025; 419:132007. [PMID: 39733810 DOI: 10.1016/j.biortech.2024.132007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 12/31/2024]
Abstract
The rapid growth of global energy demand accelerates the development of sustainable, clean, and renewable energy sources. Biohydrogen production, driven by functional microorganisms, offers a promising solution. Multiple species of bacteria, fungi, microalgae, and archaea were able to produce hydrogen. This study reviewed the typical strains, together with their hydrogen-production mechanisms, e.g., bio-photolysis, photo fermentation, and dark fermentation. Bacteria (e.g., purple non-sulfur bacteria) and microalgae (e.g., cyanobacteria) have been widely investigated, with respect to the limited fungi and archaea. It showed that temperature, pH, and substrate availability could all substantially influence the efficiency of biohydrogen production. Meanwhile, photo and dark fermentations are favored for future possible industrial applications. Furthermore, this review summarized practical applications of biohydrogen production, such as applications of bioreactors, waste treatments, and integrated systems for hydrogen production, highlighting the importance of functional microorganisms in advancing biohydrogen technology under global energy crisis.
Collapse
Affiliation(s)
- Yonghong Fan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Feiran Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Kun He
- Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China.
| | - Dan Yu
- North China Power Engineering Co., Ltd of China Power Engineering Consulting Group, Beijing 100120, China
| | - Haoming Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Da Tian
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Yixiao Shi
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhen Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Xiaomei Wang
- Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China
| |
Collapse
|
2
|
Xu X, Gao Z, Wu X, Chen X. Light and oxygen facilitating the directly treatment food wastewater and poly-β-hydroxybutyrate, 5-aminolevulinic acid, pigment productions by Rubrivivax gelatinosus. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:1367-1375. [PMID: 37001154 DOI: 10.2166/wst.2023.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Rubrivivax gelatinosus has the advantage of using wastewater to realize biomass recovery. However, they still cannot be applied large scale because they cannot directly treat the wastewater containing macromolecular organics. Thus, this article investigated the effects of light-oxygen conditions on R. gelatinosus by directly recycling wastewater containing macromolecular organics to produce biomass, poly-β-hydroxybutyrate (PHB), 5-aminolevulinic acid (5-ALA), and pigment. Results showed that R. gelatinosus directly treated the macromolecule organic (soybean protein and starch) wastewaters and achieved biomass recovery under light-anaerobic and light-micro-oxygen in six conditions. Chemical oxygen demand, protein, and starch removals for two wastewaters all reached above 70%. Renewable bio-resources such as biomass, PHB, 5-ALA, and pigment production were 10 times the initial content. Theoretical analysis indicated that light activated the synthesis of protease and amylase. However, oxygen concentration decided the number of enzymes. When oxygen was at micro-oxygen or anaerobic, the aforementioned expression and synthesis were conducted. In summary, this study expanded the viewpoint ignored by traditional theory. It was realized that R. gelatinosus directly treated wastewater and accumulated nutrients (biomass, PHB, pigment, and 5-ALA) for recycling, which reduced the secondary pollution of excess sludge into the environment.
Collapse
Affiliation(s)
- Xiaohan Xu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China E-mail:
| | - Ziqing Gao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xian Wu
- College of Animal Science and Animal Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Xi Chen
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China E-mail: ; College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Akao PK, Kaplan A, Avisar D, Dhir A, Avni A, Mamane H. Removal of carbamazepine, venlafaxine and iohexol from wastewater effluent using coupled microalgal-bacterial biofilm. CHEMOSPHERE 2022; 308:136399. [PMID: 36099989 DOI: 10.1016/j.chemosphere.2022.136399] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 08/08/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
We evaluated the removal capacity of a coupled microalgal-bacterial biofilm (CMBB) to eliminate three recalcitrant pharmaceuticals. The CMBB's efficiency, operating at different biofilm concentrations, with or without light, was compared and analyzed to correlate these parameters to pharmaceutical removal and their effect on the microorganism community. Removal rates changed with changing pharmaceutical and biofilm concentrations: higher biofilm concentrations presented higher removal. Removal of 82-94% venlafaxine and 18-51% carbamazepine was obtained with 5 days of CMBB treatment. No iohexol removal was observed. Light, microorganism composition, and dissolved oxygen concentration are essential parameters governing the removal of pharmaceuticals and ammonia. Chlorophyll concentration increased with time, even in the dark. Three bacterial phyla were dominant: Proteobacteria, Bacteroidetes and Firmicutes. The dominant eukaryotic supergroups were Archaeplastida, Excavata and SAR. A study of the microorganisms' community indicated that not only do the species in the biofilm play an important role; environment, concentration and interactions among them are also important. CMBB has the potential to provide low-cost and sustainable treatment for wastewater and recalcitrant pharmaceutical removal. The microenvironments on the biofilm created by the microalgae and bacteria improved treatment efficiency.
Collapse
Affiliation(s)
- Patricia K Akao
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel; The Water Research Center, Porter School of the Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Aviv Kaplan
- The Water Research Center, Porter School of the Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Dror Avisar
- The Water Research Center, Porter School of the Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Amit Dhir
- School of Energy and Environment, Thapar Institute of Engineering and Technology, Patiala, 69978, India
| | - Adi Avni
- School of Plant Science and Food Security, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Hadas Mamane
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
4
|
Peng L, Lou W, Xu Y, Yu S, Liang C, Alloul A, Song K, Vlaeminck SE. Regulating light, oxygen and volatile fatty acids to boost the productivity of purple bacteria biomass, protein and co-enzyme Q10. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153489. [PMID: 35122839 DOI: 10.1016/j.scitotenv.2022.153489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/16/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Purple non‑sulfur bacteria (PNSB) possess significant potential for bioresource recovery from wastewater. Effective operational tools are needed to boost productivity and direct the PNSB biomass towards abundant value-added substances (e.g., protein and co-enzyme Q10, CoQ10). This study aimed to investigate the impact of light, oxygen and volatile fatty acids (VFAs) on PNSB growth (i.e., Rhodobacter sphaeroides) and productivity of protein and CoQ10. Overall, the biomass yields and specific growth rates of PNSB were in the ranges of 0.57-1.08 g biomass g-1 CODremoved and 0.48-0.71 d-1, respectively. VFAs did not influence the biomass yield, yet acetate and VFA mixtures enhanced the specific growth rate with a factor of 1.2-1.5 compared to propionate and butyrate. The most PNSB biomass (1.08 g biomass g-1 CODremoved and 0.71 d-1) and the highest biomass quality (protein content of 609 mg g-1 dry cell weight (DCW) and CoQ10 content of 13.21 mg g-1 DCW) were obtained in the presence of VFA mixtures under natural light and microaerobic (low light alternated with darkness; dissolved oxygen (DO) between 0.5 and 1 mg L-1) conditions (vs. light anaerobic and dark aerobic cultivations). Further investigation on VFAs dynamics revealed that acetate was most rapidly consumed by PNSB in the individual VFA feeding (specific uptake rate of 0.76 g COD g-1 DCW d-1), while acetate as a co-substrate in the mixed VFAs feeding might accelerate the consumption of propionate and butyrate through providing additional cell metabolism precursor. Enzymes activities of succinate dehydrogenase and fructose-1,6-bisphosphatase as well as the concentration of photo pigments confirmed that light, oxygen and VFAs regulated the key enzymes in the energy metabolism and biomass synthesis to boost PNSB growth. These results provide a promising prospect for utilization of fermented waste stream for the harvest of PNSB biomass, protein and CoQ10.
Collapse
Affiliation(s)
- Lai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China.
| | - Wenjing Lou
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Yifeng Xu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Siwei Yu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Chuanzhou Liang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Abbas Alloul
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Kang Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Siegfried E Vlaeminck
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| |
Collapse
|
5
|
Chaiyarat A, Saejung C. Photosynthetic bacteria with iron oxide nanoparticles as catalyst for cooking oil removal and valuable products recovery with heavy metal co-contamination. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 140:81-89. [PMID: 35074534 DOI: 10.1016/j.wasman.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/18/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Waste cooking oil discharge causes environmental pollution in receiving waters, particularly when associated with heavy metals that can lead to formation of hazardous organometallic compounds. This study combined iron oxide nanomaterial and the anoxygenic photosynthetic bacterium Rhodopseudomonas faecalis PA2 for removal of cooking oil in the presence of heavy metals. R. faecalis PA2, with known capability to generate beneficial substances from several wastes, was capable of cooking oil removal with production of valuable products. Oil removal, biomass, protein, and carotenoid production were 82.38%, 1.48 g/L, 1,600.19 mg/L, and 1,046.33 mg/L, respectively, under optimal conditions (cooking oil as carbon source and 30% inoculum density). Iron (Fe) stimulates growth of R. faecalis; in this study, Fe3O4 nanoparticles were synthesized and used as a catalyst to facilitate interaction and high reactivity between Fe and R. faecalis PA2. Size measurement by transmission electron microscopy (17.44 nm), X-ray diffraction peaks, and magnetic susceptibility confirmed that the synthesized nanoparticles were magnetite Fe3O4. Biomass, protein, and carotenoid production of the Fe3O4 supplemented experiment increased by 61.56%, 70.78%, and 57.2%, respectively, when compared with the control. When different concentrations of heavy metals (Pb, Ni, Co, and Zn) were supplemented in the media containing cooking oil, Fe3O4 addition increased heavy metal tolerance, improved bacterial growth, and enhanced valuable products when compared with the non-supplemented group. This study reports the positive impact of nanoparticle application as a catalyst for valorization of cooking oil waste with heavy metal co-contamination by the photosynthetic bacterium R. faecalis PA2.
Collapse
Affiliation(s)
- Anuwat Chaiyarat
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chewapat Saejung
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; Research Center for Environmental and Hazardous Substance Management (EHSM), Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
6
|
Li D, Chu Z, Zeng Z, Sima M, Huang M, Zheng B. Effects of design parameters, microbial community and nitrogen removal on the field-scale multi-pond constructed wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:148989. [PMID: 34351277 DOI: 10.1016/j.scitotenv.2021.148989] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/07/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Ecological multi-pond constructed wetlands (CWs) are an alternative wastewater treatment technology for nitrogen removal from non-point source pollution. As an important component of nitrogen cycles in the field-scale CWs, microorganisms are affected by design parameters. Nevertheless, the mechanism of design parameters affecting the distribution of microbial community and removal performance remains largely unexplored. In this study, satisfactory nitrogen removal performance was obtained in three multi-pond CWs. The highest mass removal rate per square meter (1104.0 mg/m2/day) and mass removal rate per cubic meter (590.2 mg/m3/day) for total nitrogen removal were obtained in the XY CW system during the wet season. The changes in seasonal parameters accounted for different removal performances and distributions of the microbial community. The combination of wastewater treatment technologies in the XY CW system consisting of ponds, CWs, and eco-floating treatment wetlands enriched the abundances of nitrogen-related functional genera. Correlation network analysis further demonstrated that longer hydraulic residence time and higher nitrogen concentration could intensify the enrichment of nitrogen-related functional genera. Regulating the combination of wastewater treatment technologies, the nitrogen concentration of influent, hydraulic loading rate, and water depth might promote the accumulation of microbial communities and enhance nitrogen removal. Macroscopical spatial/temporal regulation were proposed to enhance the treatment of non-point source pollution. The clarification of driving mechanism on design parameters, microbial community, and removal performance provided a novel perspective on the long-term maintenance of purification performance, practically sustainable applications, and scientific management of field-scale multi-pond CWs.
Collapse
Affiliation(s)
- Dan Li
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Zhaosheng Chu
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Zhenzhong Zeng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Matthew Sima
- Department of Civil and Environmental Engineering, Princeton University, NJ 08540, USA
| | - Minsheng Huang
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Binghui Zheng
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
7
|
Lu H, Zhang G, He S, Zhao R, Zhu D. Purple non-sulfur bacteria technology: a promising and potential approach for wastewater treatment and bioresources recovery. World J Microbiol Biotechnol 2021; 37:161. [PMID: 34436687 DOI: 10.1007/s11274-021-03133-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/18/2021] [Indexed: 11/24/2022]
Abstract
Shortage of water, energy, and bioresources in the world has led to the exploration of new technologies that achieve resource recovery from wastewater, which has become a new sustainable trend. Photosynthetic non-sulfur bacteria (PNSB), the most ancient photo microorganism, not only treats different wastewater types, but also generates PNSB cells, which are non-toxic bioresources and containing many value-added products. These bioresources can be used as raw materials in the agricultural, food, and medical industries. Therefore, PNSB or PNSB-based wastewater resource recovery technology can be simultaneously used to treat wastewater and produce useful bioresources. Compared with traditional wastewater treatment, this technology can reduce CO2 emissions, promote the N recovery ratio and prevent residual sludge disposal or generation. After being developed for over half a century, PNSB wastewater resource recovery technology is currently extended towards industrial applications. Here, this technology is comprehensively introduced in terms of (1) PNSB characteristics and metabolism; (2) PNSB wastewater treatment and bioresource recovery efficiency; (3) the relative factors influencing the performance of this technology, including light, oxygen, strains, wastewater types, hydraulic retention time, on wastewater treatment, and resource production; (4) PNSB value-added bioresources and their generation from wastewater; (5) the scale-up history of PNSB technology; (6) Finally, the future perspectives and challenges of this technology were also analysed and summarised.
Collapse
Affiliation(s)
- Haifeng Lu
- College of Water Resource and Civil Engineering, China Agriculture University, Beijing, 100083, China.,Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, Beijing, 100083, China
| | - Guangming Zhang
- Key Laboratory of Environmental Biotechnology, China Academy of Science, Shuangqing Road, Beijing, 100084, China. .,School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Shichao He
- College of Water Resource and Civil Engineering, China Agriculture University, Beijing, 100083, China.,Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, Beijing, 100083, China
| | - Ruihan Zhao
- College of Water Resource and Civil Engineering, China Agriculture University, Beijing, 100083, China.,Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, Beijing, 100083, China
| | - Da Zhu
- Nan Tong Ju Yi Cheng Guang Biotechnology Co. LTD., Nantong, 226321, China
| |
Collapse
|
8
|
Capson-Tojo G, Lin S, Batstone DJ, Hülsen T. Purple phototrophic bacteria are outcompeted by aerobic heterotrophs in the presence of oxygen. WATER RESEARCH 2021; 194:116941. [PMID: 33640750 DOI: 10.1016/j.watres.2021.116941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
There is an ongoing debate around the effect of microaerobic/aerobic conditions on the wastewater treatment performance and stability of enriched purple phototrophic bacteria (PPB) cultures. It is well known that oxygen-induced oxidative conditions inhibit the synthesis of light harvesting complexes, required for photoheterotrophy. However, in applied research, several publications have reported efficient wastewater treatment at high dissolved oxygen (DO) levels. This study evaluated the impact of different DO concentrations (0-0.25 mg·L-1, 0-0.5 mg·L-1 and 0-4.5 mg·L-1) on the COD, nitrogen and phosphorus removal performances, the biomass yields, and the final microbial communities of PPB-enriched cultures, treating real wastewaters (domestic and poultry processing wastewater). The results show that the presence of oxygen suppressed photoheterotrophic growth, which led to a complete pigment and colour loss in a matter of 20-30 h after starting the batch. Under aerobic conditions, chemoheterotrophy was the dominant catabolic pathway, with wastewater treatment performances similar to those achieved in common aerobic reactors, rather than those corresponding to phototrophic systems (i.e. considerable total COD decrease (45-57% aerobically vs. ± 10% anaerobically). This includes faster consumption of COD and nutrients, lower nutrient removal efficiencies (50-58% vs. 72-99% for NH4+-N), lower COD:N:P substrate ratios (100:4.5-5.0:0.4-0.8 vs. 100:6.7-12:0.9-1.2), and lower apparent biomass yields (0.15-0.31 vs. 0.8-1.2 g CODbiomass·g CODremoved-1)). The suppression of photoheterotrophy inevitably resulted in a reduction of the relative PPB abundances in all the aerated tests (below 20% at the end of the tests), as PPB lost their main competitive advantage against competing aerobic heterotrophic microbes. This was explained by the lower aerobic PPB growth rates (2.4 d-1 at 35 °C) when compared to common growth rates for aerobic heterotrophs (6.0 d-1 at 20 °C). Therefore, PPB effectively outcompete other microbes under illuminated-anaerobic conditions, but not under aerobic or even micro-aerobic conditions, as shown by continuously aerated tests controlled at undetectable DO levels. While their aerobic heterotrophic capabilities provide some resilience, at non-sterile conditions PPB cannot dominate when growing chemoheterotrophically, and will be outcompeted.
Collapse
Affiliation(s)
- Gabriel Capson-Tojo
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD 4072, Australia; CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - Shengli Lin
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Damien J Batstone
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Tim Hülsen
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
9
|
New progress of ammonia recovery during ammonia nitrogen removal from various wastewaters. World J Microbiol Biotechnol 2020; 36:144. [PMID: 32856187 DOI: 10.1007/s11274-020-02921-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/22/2020] [Indexed: 12/17/2022]
Abstract
The recovery of ammonia-nitrogen during wastewater treatment and water purification is increasingly critical in energy and economic development. The concentration of ammonia-nitrogen in wastewater is different depending on the type of wastewater, making it challenging to select ammonia-nitrogen recovery technology. Meanwhile, the conventional nitrogen removal method wastes ammonia-nitrogen resources. Based on the circular economy, this review comprehensively introduces the characteristics of several main ammonia-nitrogen source wastewater plants and their respective challenges in treatment, including municipal wastewater, industrial wastewater, livestock and poultry wastewater and landfill leachate. Furthermore, we introduce the main methods currently adopted in the ammonia-nitrogen removal process of wastewater from physical (air stripping, ion exchange and adsorption, membrane and capacitive deionization), chemical (chlorination, struvite precipitation, electrochemical oxidation and photocatalysis) and biological (classical and typical activated sludge, novel methods based on activated sludge, microalgae and photosynthetic bacteria) classification based on the ammonia recovery concept. We discuss the applicable methods of recovering ammonia nitrogen in several main wastewater plants. Finally, we prospect the research direction of ammonia removal and recovery in wastewater based on sustainable development.
Collapse
|
10
|
Sepúlveda-Muñoz CA, de Godos I, Puyol D, Muñoz R. A systematic optimization of piggery wastewater treatment with purple phototrophic bacteria. CHEMOSPHERE 2020; 253:126621. [PMID: 32278906 DOI: 10.1016/j.chemosphere.2020.126621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/10/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
The increase in natural water bodies pollution caused by intensive animal farming requires the development of innovative sustainable treatment processes. This study assessed the influence of piggery wastewater (PWW) load, air dosing, CO2/NaHCO3- supplementation and pH control on PWW treatment by mixed cultures of purple phototrophic bacteria (PPB) under infrared radiation in batch photobioreactors. PPB was not able to grow in raw PWW but PWW dilution prevented inhibition and supported an effective light penetration. Despite the fact that PPB were tolerant to O2, carbon recovery decreased in the presence of air (induced by stripping). CO2 supplementation was identified as an effective strategy to maximize the removal of carbon during PPB-based PWW treatment with removal efficiencies of 72% and 74% for TOC and VFAs. However, the benefits derived from CO2 addition were induced by the indirect pH control exerted in the cultivation medium. Thus, PPB supported an optimal pollutant removal performance at pH 7, with removal efficiencies of 75%, 39% and 98% for TOC, TN and VFAs.
Collapse
Affiliation(s)
- Cristian A Sepúlveda-Muñoz
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Ignacio de Godos
- Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain; School of Forestry, Agronomic and Bioenergy Industry Engineering (EIFAB), University of Valladolid, Campus Duques de Soria, 42004, Soria, Spain
| | - Daniel Puyol
- Department of Chemical and Environmental Technology, ESCET, King Juan Carlos University, 28933, Móstoles, Madrid, Spain
| | - Raúl Muñoz
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain.
| |
Collapse
|
11
|
Activated Sludge Microbial Community and Treatment Performance of Wastewater Treatment Plants in Industrial and Municipal Zones. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17020436. [PMID: 31936459 PMCID: PMC7014234 DOI: 10.3390/ijerph17020436] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 11/16/2022]
Abstract
Controlling wastewater pollution from centralized industrial zones is important for reducing overall water pollution. Microbial community structure and diversity can adversely affect wastewater treatment plant (WWTP) performance and stability. Therefore, we studied microbial structure, diversity, and metabolic functions in WWTPs that treat industrial or municipal wastewater. Sludge microbial community diversity and richness were the lowest for the industrial WWTPs, indicating that industrial influents inhibited bacterial growth. The sludge of industrial WWTP had low Nitrospira populations, indicating that influent composition affected nitrification and denitrification. The sludge of industrial WWTPs had high metabolic functions associated with xenobiotic and amino acid metabolism. Furthermore, bacterial richness was positively correlated with conventional pollutants (e.g., carbon, nitrogen, and phosphorus), but negatively correlated with total dissolved solids. This study was expected to provide a more comprehensive understanding of activated sludge microbial communities in full-scale industrial and municipal WWTPs.
Collapse
|
12
|
Song J, Zhang W, Gao J, Hu X, Zhang C, He Q, Yang F, Wang H, Wang X, Zhan X. A pilot-scale study on the treatment of landfill leachate by a composite biological system under low dissolved oxygen conditions: Performance and microbial community. BIORESOURCE TECHNOLOGY 2020; 296:122344. [PMID: 31708387 DOI: 10.1016/j.biortech.2019.122344] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/19/2019] [Accepted: 10/24/2019] [Indexed: 05/27/2023]
Abstract
In this work, a pilot-scale low dissolved oxygen (DO) composite biological system (LDOCBS) composed of an anoxic rotating biological contactor (RBC) and four aeration tanks with gradient aeration was used to treat landfill leachate for 88 d. The maximum removals of 85.65%, 99.92% and 84.06% for chemical oxygen demand (COD), ammonia (NH4+-N) and total nitrogen (TN) were achieved, respectively. The three-dimensional exaction and emission matrix (3D-EEM) fluorescence spectroscopy revealed that the biodegradability of leachate was significantly improved by the LDOCBS. Mass balance calculations showed that the COD removal and denitrification process mainly occurred in RBC while 1# contributed primarily to nitrification. High-throughput sequencing analysis indicated that denitrifying bacteria with highly relative abundances of 46.45%-53.81% played key roles in organic degradation and nitrogen removal. This work could add some guiding insights into the cost-efficient treatment of landfill leachate by the composite biological system.
Collapse
Affiliation(s)
- Jianyang Song
- School of Civil Engineering, Wuhan University, Wuhan 430072, China; School of Civil Engineering, Nanyang Institute of Technology, Nanyang 473004, China
| | - Wei Zhang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Junfeng Gao
- Wuhan Environment Investment & Development Group Municipal Waste Management Co., Ltd, Wuhan 430014, China
| | - Xiaoling Hu
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Chenlu Zhang
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang 473004, China
| | - Qiulai He
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Fei Yang
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang 473004, China
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China.
| | - Xueyu Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Xiang Zhan
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| |
Collapse
|
13
|
|
14
|
Yang A, Zhao W, Peng M, Zhang G, Zhi R, Meng F. A special light-aerobic condition for photosynthetic bacteria-membrane bioreactor technology. BIORESOURCE TECHNOLOGY 2018; 268:820-823. [PMID: 30104104 DOI: 10.1016/j.biortech.2018.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
The combined photosynthetic bacteria (PSB) and membrane bioreactor (MBR) technology has the great advantage of simultaneously realizing wastewater purification and bio-resource recovery and has attracted increasing attention in recent years. Light-oxygen conditions are the most vital factor in wastewater treatment. The special light-aerobic condition was first applied to PSB-MBR wastewater treatment, and it was compared with three typical light-oxygen conditions. The results showed that the highest chemical oxygen demand (COD) removal efficiency (96.28%) and the highest biomass production (1.12 g/L/d) were simultaneously obtained under light-aerobic condition. This phenomenon overcame the limitations whereby optimal pollutant removal and bio-resource recovery could not be achieved at the same time. An analysis of the microbial community showed that different light-oxygen conditions caused large variations in the microbial community composition of PSB-MBR. The microbial diversity was lower when light and oxygen co-existed.
Collapse
Affiliation(s)
- Anqi Yang
- School of Environment and Natural Resource, Renmin University of China, Beijing 100872, China
| | - Wei Zhao
- Heilongjiang Province Hydraulic Research Institute, Harbin 150080, China
| | - Meng Peng
- School of Environment and Natural Resource, Renmin University of China, Beijing 100872, China
| | - Guangming Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment and Natural Resource, Renmin University of China, Beijing 100872, China.
| | - Ran Zhi
- School of Environment and Natural Resource, Renmin University of China, Beijing 100872, China
| | - Fan Meng
- School of Environment and Natural Resource, Renmin University of China, Beijing 100872, China
| |
Collapse
|