1
|
Ma X, Yan S, Wang M. Spent mushroom substrate: A review on present and future of green applications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123970. [PMID: 39754812 DOI: 10.1016/j.jenvman.2024.123970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/25/2024] [Accepted: 12/28/2024] [Indexed: 01/06/2025]
Abstract
The cultivation of edible mushrooms plays a significant role in revitalizing numerous rural regions in China. However, this process generates a large amount of spent mushroom substrate (SMS). Traditional methods for handling SMS, such as random stacking and incineration, lead to resource waste and environmental pollution. The content of organic matter in SMS can range from 40% to 60%, and it also contains various beneficial elements such as trace minerals, making it a valuable resource for biomass. This review initially explores the unique characteristics of SMS and then summarizes the main methods of utilizing its resources. Presently, common resource utilization techniques for SMS include using it as a second-generation cultivation substrate, preparing animal feed and soil fertilizer, producing methane, bioethanol, hydrogen, bio-oil, and electrodes of energy storage devices, extracting enzymes and polysaccharides, and creating bioremediation materials for heavy metals and organic pollutants removal. While research has been conducted on these utilization methods, there are still relatively few large-scale industrial applications. This review also highlights existing challenges and potential solutions in the SMS utilization. Upcycling SMS via innovative and practical technologies presents a promising approach to transforming organic waste into economic value.
Collapse
Affiliation(s)
- Xiaoyu Ma
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Siyu Yan
- School of Mathematical Sciences, East China Normal University, Shanghai, 200241, China
| | - Menglu Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
2
|
Hans M, Umrao D, Velusamy M, Kumar D, Kumar S. Biochemical conversion of municipal solid waste to biofuels and bioproducts: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-35667-8. [PMID: 39725845 DOI: 10.1007/s11356-024-35667-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/24/2024] [Indexed: 12/28/2024]
Abstract
The disposal of municipal solid waste (MSW) in urban areas is a big issue nowadays in most of the countries. Developing countries like India are struggling with the continuous indiscriminate disposal of MSW due to rapid increase in the urbanization, industrialization, and human population growth. The mismanagement of MSW causes adverse environmental impacts, public health risks, and other socio-economic problems. India, the second most populated country in the world, faces the problem of MSW and simultaneously grave the crisis of energy as management problems of MSW provide a platform to utilize it as a promising renewable energy source, thus resolving the related issues. The pressing need for the development of alternatives gave several different technological solutions; among them, Waste-to-Energy is being recognized as a renewable option for energy generation and waste remediation. The associated challenges of managing regularly generated MSW make it difficult to adopt the suitable technique/process to treat it. However, detailed information and discussion are needed to decide which strategy is to be adopted. Considering the large availability and potential of MSW, this article has been reviewed to collect and represent different strategies of using MSW for different products based on the requirements of society. The article reviews the up-to-date biochemical conversion strategies being employed to treat the MSW and simultaneously harness the energy, and other value-added products. Besides, the life cycle assessment highlights the futuristic scope for industrial growth to determine the environmental impact of using MSW as a renewable energy source and substrate for biopolymers.
Collapse
Affiliation(s)
- Meenu Hans
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-Energy, Kapurthala, Punjab, 144 603, India
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 143 005, India
| | - Deepika Umrao
- Department of Food Engineering and Nutrition, Center of Innovative and Applied Bioprocessing, Mohali, 140 306, India
- Department of Biotechnology, Dr. BR, Ambedkar National Institute of Technology, Jalandhar, Punjab, 144 027, India
| | - Mozhiarasi Velusamy
- CLRI Regional Centre, CSIR-Central Leather Research Institute (CSIR-CLRI), Jalandhar, Punjab, 144 021, India
| | - Deepak Kumar
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY, 13210, USA
| | - Sachin Kumar
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-Energy, Kapurthala, Punjab, 144 603, India.
| |
Collapse
|
3
|
Arora R, Singh P, Sarangi PK, Kumar S, Chandel AK. A critical assessment on scalable technologies using high solids loadings in lignocellulose biorefinery: challenges and solutions. Crit Rev Biotechnol 2024; 44:218-235. [PMID: 36592989 DOI: 10.1080/07388551.2022.2151409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/13/2022] [Accepted: 11/07/2022] [Indexed: 01/04/2023]
Abstract
The pretreatment and the enzymatic saccharification are the key steps in the extraction of fermentable sugars for further valorization of lignocellulosic biomass (LCB) to biofuels and value-added products via biochemical and/or chemical conversion routes. Due to low density and high-water absorption capacity of LCB, the large volume of water is required for its processing. Integration of pretreatment, saccharification, and co-fermentation has succeeded and well-reported in the literature. However, there are only few reports on extraction of fermentable sugars from LCB with high biomass loading (>10% Total solids-TS) feasible to industrial reality. Furthermore, the development of enzymatic cocktails can overcome technology hurdles with high biomass loading. Hence, a better understanding of constraints involved in the development of technology with high biomass loading can result in an economical and efficient yield of fermentable sugars for the production of biofuels and bio-chemicals with viable titer, rate, and yield (TRY) at industrial scale. The present review aims to provide a critical assessment on the production of fermentable sugars from lignocelluloses with high solid biomass loading. The impact of inhibitors produced during both pretreatment and saccharification has been elucidated. Moreover, the limitations imposed by high solid loading on efficient mass transfer during saccharification process have been elaborated.
Collapse
Affiliation(s)
- Richa Arora
- Department of Microbiology, Punjab Agricultural University, Ludhiana, India
| | - Poonam Singh
- Department of Chemistry, University of Petroleum and Energy Studies, Dehradun, India
| | | | - Sachin Kumar
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-Energy, Kapurthala, India
| | - Anuj K Chandel
- Department of Biotechnology, Engineering School of Lorena (EEL), University of São Paulo, Lorena, Brazil
| |
Collapse
|
4
|
Kaur D, Joshi A, Sharma V, Batra N, Sharma AK. An insight into microbial sources, classification, and industrial applications of xylanases: A rapid review. Biotechnol Appl Biochem 2023; 70:1489-1503. [PMID: 37186103 DOI: 10.1002/bab.2469] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/20/2023] [Indexed: 05/17/2023]
Abstract
Endo 1,4-β-d-xylanases (EC3.2.1.8) are one of the key lignocellulose hydrolyzing enzymes. Xylan, which is present in copious amounts on earth, forms the primary substrate of endo-xylanases, which can unchain the constituent monosaccharides linked via β-1,4-glycosidic bonds from the xylan backbone. Researchers have shown keen interest in the xylanases belonging to glycoside hydrolase families 10 and 11, whereas those placed in other glycoside hydrolase families are yet to be investigated. Various microbes such as bacteria and fungi harbor these enzymes for the metabolism of their lignocellulose fibers. These microbes can be used as miniature biofactories of xylanase enzymes for a plethora of environmentally benign applications in pulp and paper industry, biofuel production, and for improving the quality of food in bread baking and fruit juice industry. This review highlights the potential of microbes in production of xylanase for industrial biotechnology.
Collapse
Affiliation(s)
- Damanjeet Kaur
- Department of Biotechnology, Sri Guru Gobind Singh College, Chandigarh, India
| | - Amit Joshi
- Department of Biotechnology, Sri Guru Gobind Singh College, Chandigarh, India
| | - Varruchi Sharma
- Department of Biotechnology, Sri Guru Gobind Singh College, Chandigarh, India
| | - Navneet Batra
- Department of Biotechnology, GGDSD College, Chandigarh, India
| | - Anil K Sharma
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (deemed to be University), Mullana-Ambala, Haryana, India
| |
Collapse
|
5
|
Long X, Lu Y, Guo H, Tang Y. Recent Advances in Solid Residues Resource Utilization in Traditional Chinese Medicine. ChemistrySelect 2023. [DOI: 10.1002/slct.202300383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Xu Long
- Shaanxi Qinling Chinese Herbal Medicine Application Development Engineering Technology Research Center Shaanxi University of Chinese Medicine Xianyang 712046 China
| | - Ying‐Lei Lu
- Shaanxi Qinling Chinese Herbal Medicine Application Development Engineering Technology Research Center Shaanxi University of Chinese Medicine Xianyang 712046 China
| | - Hui Guo
- Shaanxi Qinling Chinese Herbal Medicine Application Development Engineering Technology Research Center Shaanxi University of Chinese Medicine Xianyang 712046 China
| | - Yu‐Ping Tang
- Shaanxi Qinling Chinese Herbal Medicine Application Development Engineering Technology Research Center Shaanxi University of Chinese Medicine Xianyang 712046 China
| |
Collapse
|
6
|
Singh G, Kumar S, Afreen S, Bhalla A, Khurana J, Chandel S, Aggarwal A, Arya SK. Laccase mediated delignification of wasted and non-food agricultural biomass: Recent developments and challenges. Int J Biol Macromol 2023; 235:123840. [PMID: 36849073 DOI: 10.1016/j.ijbiomac.2023.123840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
Utilization of microbial laccases is considered as the cleaner and target specific biocatalytic mechanism for the recovery of cellulose and hemicelluloses from nonfood and wasted agricultural, lignocellulosic biomass (LCB). The extent of lignin removal by laccase depends on the biochemical composition of biomass and the redox potential (E0) of the biocatalyst. Intensive research efforts are going on all over the world for the recognition of appropriate and easily available agricultural lignocellulosic feedstocks to exploit maximally for the production of value-added bioproducts and biofuels. In such circumstances, laccase can play a major role as a leading biocatalyst and potent substitute for chemical based deconstruction of the lignocellulosic materials. The limited commercialization of laccase at an industrial scale has been feasible due to its full working efficiency mostly expressed in the presence of cost intensive redox mediators only. Although, recently there are some reports that came on the mediator free biocatalysis of enzyme but still not considerably explored and neither understood in depth. The present review will address the various research gaps and shortcomings that acted as the big hurdles before the complete exploitation of laccases at an industrial scale. Further, this article also reveals insights on different microbial laccases and their diverse functional environmental conditions that affect the deconstruction process of LCB.
Collapse
Affiliation(s)
- Gursharan Singh
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara 144411, Punjab, India.
| | - Shiv Kumar
- Department of Microbiology, Guru Gobind Singh Medical College and Hospital, Baba Farid University of Health Sciences, Faridkot 151203, Punjab, India
| | - Sumbul Afreen
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology-Delhi, New Delhi, India
| | - Aditya Bhalla
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, USA
| | - Jyoti Khurana
- Biotechnology Department, Arka Jain University, Jamshedpur, Jharkhand, India
| | - Sanjeev Chandel
- GHG College of Pharmacy, Raikot Road, Ludhiana, -141109, India
| | | | | |
Collapse
|
7
|
Rajput A, Gupta S, Bansal A. A review on recent eco-friendly strategies to utilize rice straw in construction industry: pathways from bane to boon. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:11272-11301. [PMID: 36520288 DOI: 10.1007/s11356-022-24704-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
With the growing demand, a large amount of paddy has been harvested by growers leaving behind the stubble (left over rice straw), which is being a big burden on the farmers for its management. For the easy access, the burning of stubble has been opted which in turn results in the deterioration of the environment. To mitigate this problem, rice straw utilization strategies should be opted. Therefore, in this review article, the strategies of utilizing rice straw in fiber or ash form to manufacture construction materials have been summarized. The manuscript also considers the method of productions, variability in raw materials, and various mechanical/physical properties of construction materials targeted. Further, the financial aspects related to utilization of rice straw and rice straw ash are also encoded at last. This review will be helpful to expedite the research in this field and may also be used for startups related to various product development using straw in the local areas, which may depreciate the burning of straw in the field and its environmental effects.
Collapse
Affiliation(s)
- Alka Rajput
- RIMT University, Mandi Gobindgarh, Mandi Gobindgarh, 147301, Punjab, India.
| | - Suneha Gupta
- RIMT University, Mandi Gobindgarh, Mandi Gobindgarh, 147301, Punjab, India
| | - Anuj Bansal
- Sant Longowal Institute of Engineering and Technology, Longowal, Sangrur, 148106, Punjab, India
| |
Collapse
|
8
|
Lu Q, Xiao Y, Wu P. Emerging technologies of employing algae and microorganisms to promote the return-to-field of crop straws: A mini-review. Front Bioeng Biotechnol 2023; 11:1152778. [PMID: 37064245 PMCID: PMC10097884 DOI: 10.3389/fbioe.2023.1152778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/16/2023] [Indexed: 04/18/2023] Open
Abstract
As an agricultural waste, crop straw enriched with a variety of nutrients is regarded as an important fertilizer resource. In the past, crop straw return-to-field played a key role in the sustainability of agricultural environment, but some problems, such as ammonia loss in ammoniation, low rate of straw decomposition, and high carbon footprint, attracted researchers' attentions. In this paper, we propose three technical routes, including cyanobacteria-based ammonia assimilation, microorganisms-based crop straw pretreatment, and microalgae-based carbon capture, to address the aforementioned problems. Besides, challenges which may hinder the practical application of these technical routes as well as the potential solutions are discussed in detail. It is expected that this paper could provide new ideas to the practical application of crop straw return-to-field.
Collapse
Affiliation(s)
- Qian Lu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- *Correspondence: Qian Lu, ; Yu Xiao,
| | - Yu Xiao
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- *Correspondence: Qian Lu, ; Yu Xiao,
| | - Pengfei Wu
- College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
9
|
Malacara-Becerra A, Melchor-Martínez EM, Sosa-Hernández JE, Riquelme-Jiménez LM, Mansouri SS, Iqbal HMN, Parra-Saldívar R. Bioconversion of Corn Crop Residues: Lactic Acid Production through Simultaneous Saccharification and Fermentation. SUSTAINABILITY 2022; 14:11799. [DOI: 10.3390/su141911799] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Lactic acid (LA) is a chemical building block with wide applications in the food, cosmetics, and chemical industries. Its polymer polylactic acid further increases this range of applications as a green and biocompatible alternative to petrol-based plastics. Corn is the fourth largest crop in the world, and its residues represent a potentially renewable feedstock for industrial lactic acid production through simultaneous saccharification and fermentation (SSF). The main goal of this work is to summarize and compare the pretreatment methods, enzymatic formulations and microbial strains that have been combined in a SSF setup for bioconversion of corn crop residues into LA. Additionally, the main concerns of scaling-up and the innovation readiness level towards commercial implementation of this technology are also discussed. The analysis on commercial implementation renders the current state of SSF technology unsustainable, mainly due to high wastewater generation and saccharification costs. Nonetheless, there are promising strategies that are being tested and are focused on addressing these issues. The present work proves that the study and optimization of SSF as a biorefinery framework represents a step towards the adoption of potentially sustainable waste management practices.
Collapse
Affiliation(s)
- Alonso Malacara-Becerra
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey 64849, Mexico
- Process and Systems Engineering Center (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Elda M. Melchor-Martínez
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - L. María Riquelme-Jiménez
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey 64849, Mexico
- Process and Systems Engineering Center (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Seyed Soheil Mansouri
- Process and Systems Engineering Center (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| |
Collapse
|
10
|
Verma N, Taggar MS, Kalia A, Kaur J, Javed M. Comparison of various delignification/desilication pre-treatments and indigenous fungal cellulase for improved hydrolysis of paddy straw. 3 Biotech 2022; 12:150. [PMID: 35747505 DOI: 10.1007/s13205-022-03211-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 05/22/2022] [Indexed: 11/28/2022] Open
Abstract
The efficient removal of lignin and silica from paddy straw is essential for its volarization into biofuels and other value-added products. In this work, different chemical pre-treatments viz. acid/alkali, organosolv and deep eutectic solvents were carried out to assess the extent of delignification and desilication of paddy straw. Maximum lignin and silica removal of 96.08 and 95.51% was observed with two step acid (0.5% sulphuric acid) followed by alkali (4% sodium hydroxide) pre-treatment with significantly low total lignin (2.30%) and silica content (0.80%) of the treated straw residue. The treated straw residue contained significantly high holocellulose (91.65%), cellulose (75.01%) and hemicellulose content (16.64%). Among the four indigenous fungal isolates, Penicillium mallochii (JS17) cellulase showed better accessibility for the treated straw residue with maximum release of 504.18 mg g-1 of reducing sugars and saccharification efficiency of 56.90%. The two-step acid/alkali pre-treatment of paddy straw was highly effective for removing lignin and silica from paddy straw, thereby, resulting in enhanced enzymatic accessibility of the substrate and more efficient hydrolysis of cellulose into fermentable sugars.
Collapse
Affiliation(s)
- Nisha Verma
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, Punjab 141 004 India
| | - Monica Sachdeva Taggar
- Department of Renewable Energy Engineering, Punjab Agricultural University, Ludhiana, Punjab 141 004 India
| | - Anu Kalia
- Department of Soil Science, Punjab Agricultural University, Ludhiana, Punjab 141 004 India
| | - Jaspreet Kaur
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, Punjab 141 004 India
| | - Mohammed Javed
- Department of Mathematics, Statistics and Physics, Punjab Agricultural University, Ludhiana, Punjab 141 004 India
| |
Collapse
|
11
|
Sagarika MS, Parameswaran C, Senapati A, Barala J, Mitra D, Prabhukarthikeyan SR, Kumar A, Nayak AK, Panneerselvam P. Lytic polysaccharide monooxygenases (LPMOs) producing microbes: A novel approach for rapid recycling of agricultural wastes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150451. [PMID: 34607097 DOI: 10.1016/j.scitotenv.2021.150451] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Out of the huge quantity of agricultural wastes produced globally, rice straw is one of the most abundant ligno-cellulosic waste. For efficient utilization of these wastes, several cost-effective biological processes are available. The practice of field level in-situ or ex-situ decomposition of rice straw is having less degree of adoption due to its poor decomposition ability within a short time span between rice harvest and sowing of the next crop. Agricultural wastes including rice straw are in general utilized by using lignocellulose degrading microbes for industrial metabolite or compost production. However, bioconversion of crystalline cellulose and lignin present in the waste, into simple molecules is a challenging task. To resolve this issue, researchers have identified a novel new generation microbial enzyme i.e., lytic polysaccharide monooxygenases (LPMOs) and reported that the combination of LPMOs with other glycolytic enzymes are found efficient. This review explains the progress made in LPMOs and their role in lignocellulose bioconversion and the possibility of exploring LPMOs producers for rapid decomposition of agricultural wastes. Also, it provides insights to identify the knowledge gaps in improving the potential of the existing ligno-cellulolytic microbial consortium for efficient utilization of agricultural wastes at industrial and field levels.
Collapse
Affiliation(s)
- Mahapatra Smruthi Sagarika
- ICAR - National Rice Research Institute, Cuttack, Odisha 753006, India; Indira Gandhi Agricultural University, Raipur, Chhattisgarh 492012, India
| | | | - Ansuman Senapati
- ICAR - National Rice Research Institute, Cuttack, Odisha 753006, India
| | - Jatiprasad Barala
- ICAR - National Rice Research Institute, Cuttack, Odisha 753006, India
| | - Debasis Mitra
- ICAR - National Rice Research Institute, Cuttack, Odisha 753006, India
| | | | - Anjani Kumar
- ICAR - National Rice Research Institute, Cuttack, Odisha 753006, India
| | | | | |
Collapse
|
12
|
Li H, Xiao W, Liu J, Ran Q, Wang R, Yu C, Zhang X, Song H, Jiang Z. Combination strategy of laccase pretreatment and rhamnolipid addition enhance ethanol production in simultaneous saccharification and fermentation of corn stover. BIORESOURCE TECHNOLOGY 2022; 345:126414. [PMID: 34838629 DOI: 10.1016/j.biortech.2021.126414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
The effects of laccase pretreatment and surfactant addition in the simultaneous saccharification and fermentation (SSF) of corn stover by engineered Saccharomyces cerevisiae were studied. Surfactants Tween-80, tea saponin and rhamnolipid improved ethanol production in SSF, among which the biosurfactant rhamnolipid reached the highest ethanol yield. At the 6 d in SSF, the ethanol content of addition rhamnolipid of laccase pretreatment corn stover (Lac-CS) and Lac-CS reached 0.73 g/L and 0.56 g/L, which was 2.32 folds and 1.54 folds higher than the control of 0.22 g/L, respectively. These findings suggested that the combination of laccase pretreatment and rhamnolipid addition further improve ethanol production. GC-MS, composition of corn stover, protein concentration of supernatant and glucose content studies were executed to explore the mechanism of combination strategy of laccase pretreatment and rhamnolipid addition enhance ethanol production. This study provides guidance for the application of laccase and surfactant in bioethanol production.
Collapse
Affiliation(s)
- Huanan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, PR China; Hubei Key Laboratory of Industrial Biotechnology, School of Life Science, Hubei University, Wuhan 430062, PR China
| | - Wenjing Xiao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, PR China; College of Life Science and Technology, Hubei Engineering University, Xiaogan 435003, PR China
| | - Jiashu Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, PR China; Hubei Key Laboratory of Industrial Biotechnology, School of Life Science, Hubei University, Wuhan 430062, PR China
| | - Qiuping Ran
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, PR China; Hubei Key Laboratory of Industrial Biotechnology, School of Life Science, Hubei University, Wuhan 430062, PR China
| | - Rui Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, PR China; Hubei Key Laboratory of Industrial Biotechnology, School of Life Science, Hubei University, Wuhan 430062, PR China
| | - Cairong Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, PR China; Hubei Key Laboratory of Industrial Biotechnology, School of Life Science, Hubei University, Wuhan 430062, PR China
| | - Xinyuan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, PR China; Hubei Key Laboratory of Industrial Biotechnology, School of Life Science, Hubei University, Wuhan 430062, PR China
| | - Huiting Song
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, PR China; College of Resources and Environmental Science, Hubei University, Wuhan, PR China
| | - Zhengbing Jiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, PR China; Hubei Key Laboratory of Industrial Biotechnology, School of Life Science, Hubei University, Wuhan 430062, PR China.
| |
Collapse
|
13
|
Singh RS, Singh T, Hassan M, Larroche C. Biofuels from inulin-rich feedstocks: A comprehensive review. BIORESOURCE TECHNOLOGY 2022; 346:126606. [PMID: 34974098 DOI: 10.1016/j.biortech.2021.126606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Biofuels are considered as a pre-eminent alternate to fossil fuels to meet the demand of future energy supply in a sustainable manner. Conventionally, they are produced from lignocellulosic raw materials. Saccharification of lignocellulosic raw materials for bioethanol production is a cumbersome process as compared to inulin-rich feedstocks. Various inulin-rich feedstocks, viz. jerusalem artichoke, chicory, dahlia, asparagus sp., etc. has also been exploited for the production of biofuels, viz. bioethanol, acetone, butanol, etc. The ubiquitous availability of inulin-rich feedstocks and presence of large amount of inulin makes them a robust substrate for biofuels production. Different strategies, viz. separate hydrolysis and fermentation, simultaneous saccharification and fermentation and consolidated bioprocessing have been explored for the conversion of inulin-rich feedstocks into biofuels. These bioprocess strategies are simple and efficient. The present review elaborates the prospective of inulin-rich feedstocks for biofuels production. Bioprocess strategies exploited for the conversion of inulin-rich feedstocks have also been highlighted.
Collapse
Affiliation(s)
- R S Singh
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala 147 002, India.
| | - Taranjeet Singh
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala 147 002, India
| | - Muhammad Hassan
- U.S. - Pakistan Centre for Advanced Studies in Energy, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Christian Larroche
- Université Clermont Auvergne, Institut Pascal, UMR, CNRS 6602, and Labex, IMobS3, 4 Avenue Blaise Pascal, TSA 60026, CS 60026, F-63178 Aubiere Cedex, France
| |
Collapse
|
14
|
Mao W, Jiang H. Determination of ethanol content during simultaneous saccharification and fermentation (SSF) of cassava based on a colorimetric sensor technique. RSC Adv 2022; 12:3996-4004. [PMID: 35425420 PMCID: PMC8981118 DOI: 10.1039/d1ra07859c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/25/2022] [Indexed: 12/04/2022] Open
Abstract
Ethanol content is an important indicator reflecting the yield of simultaneous saccharification and fermentation (SSF) of cassava. This study proposes an innovative method based on a colorimetric sensor technique to determine the ethanol content during the SSF of cassava. First, 14 kinds of porphyrin material and one kind of pH indicator were used to form a colorimetric sensor array for collecting odor data during the SSF of cassava. Then, the ant colony algorithm (ACO) and the simulated annealing algorithm (SA) were used to optimize and reconstruct the input color feature components of the support vector regression (SVR) model. The differential evolution algorithm (DE) was used to optimize the penalty factor (c) and the kernel function (g) of the SVR model. The results obtained showed that the combined prediction model of SA-DE-SVR had the highest accuracy, and the coefficient of determination (R P 2) in the prediction set was 0.9549, and the root mean square error of prediction (RMSEP) was 0.1562. The overall results reveal that the use of a colorimetric sensor technique combined with different intelligent optimization algorithms to establish a model can quantitatively determine the ethanol content in the SSF of cassava, and has broad development prospects.
Collapse
Affiliation(s)
- Wencheng Mao
- School of Electrical and Information Engineering, Jiangsu University Zhenjiang 212013 PR China +86 511 88780088 +86 511 88791960
| | - Hui Jiang
- School of Electrical and Information Engineering, Jiangsu University Zhenjiang 212013 PR China +86 511 88780088 +86 511 88791960
| |
Collapse
|
15
|
Zhu C, Jiang H, Chen Q. Rapid determination of process parameters during simultaneous saccharification and fermentation (SSF) of cassava based on molecular spectral fusion (MSF) features. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120245. [PMID: 34364037 DOI: 10.1016/j.saa.2021.120245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Simultaneous saccharification and fermentation (SSF) of cassava is one of the key steps in the production of fuel ethanol. In order to improve the monitoring efficiency of the ethanol production process and the product yield, this study puts forward a new idea for monitoring of the cassava SSF process based on the molecular spectroscopy fusion (MSF) technique. Savisky-Golay (SG) combined with standard normal variable (SNV) was used to preprocess the obtained Raman spectra and near-infrared (NIR) spectra. Competitive adaptive reweighted sampling (CARS) was used to optimize the characteristic wavelengths of the preprocessed Raman spectra and the NIR spectra, and the optimized features were fused in the feature layer. The support vector machine (SVM) model of the process parameters during the cassava SSF based on the MSF features was established. The experimental results showed that compared with the best CARS-SVM model based on the single-molecule spectral features, the performance of the best CARS-SVM model based on fusion features has been significantly improved. For detection of the glucose content, the RMSEP, RP2 and RPD of the best CARS-SVM model were 5.398, 0.957 and 4.922, respectively. For detection of the ethanol content, the RMSEP, RP2 and RPD of the best CARS-SVM model were 4.394, 0.977 and 6.758, respectively. The obtained results reveal that the combination of MSF technique and appropriate chemometric methods can achieve high-precision quantitative detection of the process parameters during the cassava SSF. This study can provide technical basis and experimental reference for the development of portable spectrometer equipment for process monitoring of the cassava SSF.
Collapse
Affiliation(s)
- Chengyun Zhu
- School of Physics and Electronic Engineering, Yancheng Teachers University, Yancheng 224007, PR China
| | - Hui Jiang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
16
|
Liu Y, Tang Y, Gao H, Zhang W, Jiang Y, Xin F, Jiang M. Challenges and Future Perspectives of Promising Biotechnologies for Lignocellulosic Biorefinery. Molecules 2021; 26:5411. [PMID: 34500844 PMCID: PMC8433869 DOI: 10.3390/molecules26175411] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/23/2021] [Accepted: 08/31/2021] [Indexed: 02/07/2023] Open
Abstract
Lignocellulose is a kind of renewable bioresource containing abundant polysaccharides, which can be used for biochemicals and biofuels production. However, the complex structure hinders the final efficiency of lignocellulosic biorefinery. This review comprehensively summarizes the hydrolases and typical microorganisms for lignocellulosic degradation. Moreover, the commonly used bioprocesses for lignocellulosic biorefinery are also discussed, including separated hydrolysis and fermentation, simultaneous saccharification and fermentation and consolidated bioprocessing. Among these methods, construction of microbial co-culturing systems via consolidated bioprocessing is regarded as a potential strategy to efficiently produce biochemicals and biofuels, providing theoretical direction for constructing efficient and stable biorefinery process system in the future.
Collapse
Affiliation(s)
- Yansong Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; (Y.L.); (Y.T.); (H.G.); (W.Z.); (M.J.)
| | - Yunhan Tang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; (Y.L.); (Y.T.); (H.G.); (W.Z.); (M.J.)
| | - Haiyan Gao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; (Y.L.); (Y.T.); (H.G.); (W.Z.); (M.J.)
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; (Y.L.); (Y.T.); (H.G.); (W.Z.); (M.J.)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; (Y.L.); (Y.T.); (H.G.); (W.Z.); (M.J.)
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; (Y.L.); (Y.T.); (H.G.); (W.Z.); (M.J.)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; (Y.L.); (Y.T.); (H.G.); (W.Z.); (M.J.)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, China
| |
Collapse
|
17
|
Damayanti D, Supriyadi D, Amelia D, Saputri DR, Devi YLL, Auriyani WA, Wu HS. Conversion of Lignocellulose for Bioethanol Production, Applied in Bio-Polyethylene Terephthalate. Polymers (Basel) 2021; 13:2886. [PMID: 34502925 PMCID: PMC8433819 DOI: 10.3390/polym13172886] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/16/2021] [Accepted: 08/25/2021] [Indexed: 12/05/2022] Open
Abstract
The increasing demand for petroleum-based polyethylene terephthalate (PET) grows population impacts daily. A greener and more sustainable raw material, lignocellulose, is a promising replacement of petroleum-based raw materials to convert into bio-PET. This paper reviews the recent development of lignocellulose conversion into bio-PET through bioethanol reaction pathways. This review addresses lignocellulose properties, bioethanol production processes, separation processes of bioethanol, and the production of bio-terephthalic acid and bio-polyethylene terephthalate. The article also discusses the current industries that manufacture alcohol-based raw materials for bio-PET or bio-PET products. In the future, the production of bio-PET from biomass will increase due to the scarcity of petroleum-based raw materials.
Collapse
Affiliation(s)
- Damayanti Damayanti
- Department of Chemical Engineering and Materials Science, Yuan Ze University, 135 Yuan-Tung Road, Chung-Li, Taoyuan 32003, Taiwan;
- Department of Chemical Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung 35365, Indonesia; (D.S.); (D.A.); (D.R.S.); (Y.L.L.D.); (W.A.A.)
| | - Didik Supriyadi
- Department of Chemical Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung 35365, Indonesia; (D.S.); (D.A.); (D.R.S.); (Y.L.L.D.); (W.A.A.)
| | - Devita Amelia
- Department of Chemical Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung 35365, Indonesia; (D.S.); (D.A.); (D.R.S.); (Y.L.L.D.); (W.A.A.)
| | - Desi Riana Saputri
- Department of Chemical Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung 35365, Indonesia; (D.S.); (D.A.); (D.R.S.); (Y.L.L.D.); (W.A.A.)
| | - Yuniar Luthfia Listya Devi
- Department of Chemical Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung 35365, Indonesia; (D.S.); (D.A.); (D.R.S.); (Y.L.L.D.); (W.A.A.)
| | - Wika Atro Auriyani
- Department of Chemical Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung 35365, Indonesia; (D.S.); (D.A.); (D.R.S.); (Y.L.L.D.); (W.A.A.)
| | - Ho Shing Wu
- Department of Chemical Engineering and Materials Science, Yuan Ze University, 135 Yuan-Tung Road, Chung-Li, Taoyuan 32003, Taiwan;
| |
Collapse
|
18
|
Hans M, Lugani Y, Chandel AK, Rai R, Kumar S. Production of first- and second-generation ethanol for use in alcohol-based hand sanitizers and disinfectants in India. BIOMASS CONVERSION AND BIOREFINERY 2021; 13:1-18. [PMID: 34075327 PMCID: PMC8155184 DOI: 10.1007/s13399-021-01553-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Emergence of "severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)" causing "COVID-19" or "coronavirus disease 19" as pandemic has got worldwide attention towards hygiene as the first line of defense for the infection control. It is first line of defense not only from COVID-19 but also from other infectious diseases caused by deadly pathogens such as cholera, hepatitis, tuberculosis, polio, etc. Absence of any particular vaccine or treatment let World Health Organization (WHO) recommend to the public to maintain social distancing along with regularly washing their hands with soap, sanitize their hands (where washing is not possible), and disinfect their belongings and buildings to avoid the infection. Out of various formulations available in the market, WHO has recommended alcohol-based hand sanitizers, which mainly comprise of ethanol, isopropyl alcohols, and hydrogen peroxides in different combinations due to their high potential to kill the broad range of pathogens including bacterial, viral, fungal, helminthes, etc. Therefore, alcohol-based sanitizers are in high demand since centuries to prevent infection from pathogenic diseases. Ethanol is the most common and popular alcohol in terms of vanishing wide range of pathogens, convenient to use and its production. Ethanol is produced worldwide and is used in various sectors, e.g., beauty and cosmetics, food and beverages, and as the most demanding gasoline additive. The present review is focused on the ethanol production in India, its diversified applications emphasizing hand sanitizers with discussions on formulation of sanitizer and disinfectants, and viability of lignocellulosic and food grain-based ethanol. The review article also emphasizes on the technological details of 1G and 2G ethanol production, their associated challenges, and inputs for the improved ethanol yields so as to strengthen the supply chain of ethanol in India, and making "Atmanirbhar Bharat" (Self-reliant India) campaign of Indian government successfully viable.
Collapse
Affiliation(s)
- Meenu Hans
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-Energy, Jalandhar-Kapurthala Road, Wadala Kalan, Kapurthala, Punjab 144601 India
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - Yogita Lugani
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonepat, Haryana 131028 India
| | - Anuj K. Chandel
- Department of Biotechnology, Engineering School of Lorena (EEL), University of São Paulo, Lorena, SP Brazil
| | - Rohit Rai
- Faculty of Applied Medical Sciences, Lovely Professional University, Phagwara, Punjab 144411 India
| | - Sachin Kumar
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-Energy, Jalandhar-Kapurthala Road, Wadala Kalan, Kapurthala, Punjab 144601 India
| |
Collapse
|
19
|
Characteristics of SSSF of rice straw and mass transfer of ethanol in a granular packed bed with N2 sparging. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
High temperature simultaneous saccharification and fermentation of corn stover for efficient butanol production by a thermotolerant Clostridium acetobutylicum. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.09.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Arora R, Behera S, Sharma NK, Singh I, Ransore V, Saiyyed R, Kumar S. Bioprospecting Saccharification of Alkali Pretreated Paddy Straw Through Statistically Designed Parameters for Biofuel Production. Ind Biotechnol (New Rochelle N Y) 2020. [DOI: 10.1089/ind.2020.0015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Richa Arora
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-Energy, Kapurthala, India
| | - Shuvashish Behera
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-Energy, Kapurthala, India
| | - Nilesh Kumar Sharma
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-Energy, Kapurthala, India
| | - Isheeta Singh
- Department of Chemical Engineering, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar, India
| | - Vishnu Ransore
- School of Life Sciences, Devi Ahilya Vishwavidyalaya, Indore, India
| | - Rehan Saiyyed
- School of Life Sciences, Devi Ahilya Vishwavidyalaya, Indore, India
| | - Sachin Kumar
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-Energy, Kapurthala, India
| |
Collapse
|
22
|
Naicker JE, Govinden R, Lekha P, Sithole B. Transformation of pulp and paper mill sludge (PPMS) into a glucose-rich hydrolysate using green chemistry: Assessing pretreatment methods for enhanced hydrolysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 270:110914. [PMID: 32721348 DOI: 10.1016/j.jenvman.2020.110914] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 04/30/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
Pulp and paper mill sludge is a waste stream derived from the pulp and paper making industry, comprised of organic and inorganic material in the form of cellulose, hemicellulose, lignin and ash. In South Africa, approximately fivefour hundred thousand wet tonnes are produced per annum and is currently disposed via landfilling or incineration. However, these disposal methods raise environmental and financial concerns. This waste stream is an attractive feedstock for fermentable sugars, mainly glucose, recovery and can be redirected for valorisation as a feedstock for microbial fermentation to produce value-added products. Sugar recovery by enzymatic hydrolysis, as opposed to acidic hydrolysis, is a promising approach but is hampered by the lignin and inorganic material found in pulp and paper mill sludge. Several treatment steps to reduce or remove these components prior to enzymatic hydrolysis are assessed in this review. Pretreatment improves hydrolysis of cellulosic fibres and ensures a substantial yield of sugars.
Collapse
Affiliation(s)
- Justin Emmanuel Naicker
- University of KwaZulu-Natal (Westville Campus), Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Sciences, University Road, Westville, Private Bag X 54001, Durban, 4000, South Africa.
| | - Roshini Govinden
- University of KwaZulu-Natal (Westville Campus), Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Sciences, University Road, Westville, Private Bag X 54001, Durban, 4000, South Africa
| | - Prabashni Lekha
- Council for Scientific and Industrial Research, Biorefinery Industry Development Facility, PO Box 59081, Umbilo, 4075, South Africa
| | - Bruce Sithole
- Council for Scientific and Industrial Research, Biorefinery Industry Development Facility, PO Box 59081, Umbilo, 4075, South Africa; University of KwaZulu-Natal (Howard Campus), Discipline of Chemical Engineering, College of Agriculture, Engineering and Sciences, Private Bag X 54001, Durban, 4000, South Africa
| |
Collapse
|
23
|
Toor M, Kumar SS, Malyan SK, Bishnoi NR, Mathimani T, Rajendran K, Pugazhendhi A. An overview on bioethanol production from lignocellulosic feedstocks. CHEMOSPHERE 2020; 242:125080. [PMID: 31675581 DOI: 10.1016/j.chemosphere.2019.125080] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/25/2019] [Accepted: 10/05/2019] [Indexed: 05/22/2023]
Abstract
Lignocellulosic ethanol has been proposed as a green alternative to fossil fuels for many decades. However, commercialization of lignocellulosic ethanol faces major hurdles including pretreatment, efficient sugar release and fermentation. Several processes were developed to overcome these challenges e.g. simultaneous saccharification and fermentation (SSF). This review highlights the various ethanol production processes with their advantages and shortcomings. Recent technologies such as singlepot biorefineries, combined bioprocessing, and bioenergy systems with carbon capture are promising. However, these technologies have a lower technology readiness level (TRL), implying that additional efforts are necessary before being evaluated for commercial availability. Solving energy needs is not only a technological solution and interlinkage of various factors needs to be assessed beyond technology development.
Collapse
Affiliation(s)
- Manju Toor
- Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar, 125 001, Haryana, India
| | - Smita S Kumar
- Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar, 125 001, Haryana, India
| | - Sandeep K Malyan
- Institute for Soil, Water, and Environmental Sciences, The Volcani Center, Agricultural Research Organization (ARO), Rishon LeZion - 7505101, Israel
| | - Narsi R Bishnoi
- Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar, 125 001, Haryana, India
| | - Thangavel Mathimani
- Department of Energy and Environment, National Institute of Technology, Tiruchirappalli - 620 015, Tamil Nadu, India
| | - Karthik Rajendran
- Department of Environmental Science, SRM University-AP, Amaravati, Andhra Pradesh - 522502, India
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|