1
|
Khuntong S, Samranrit T, Koedprasong P, Teeka J, Chiu CH, Srila W, Areesirisuk A. Synergistic effects of Tween 20 and ethephon on yeast oil and β-carotene co-production by Rhodosporidium toruloides using purified biodiesel-derived crude glycerol as an alternative carbon source. BIORESOURCE TECHNOLOGY 2025; 422:132211. [PMID: 39938602 DOI: 10.1016/j.biortech.2025.132211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/15/2025] [Accepted: 02/08/2025] [Indexed: 02/14/2025]
Abstract
This study investigated the impact of chemical inducers on the co-production of yeast oil (YO) and β-carotene from purified biodiesel-derived crude glycerol. The objective was to enhance YO and β-carotene co-production in Rhodosporidium toruloides through the application of individual and combined inducers at both flask and bioreactor scales. Among the individual inducers, 1 % w/v Tween 20 (TW) and 10 ppm ethephon (EP) significantly increased total yeast oil (TO) and total β-carotene (TC) concentrations, respectively. When TW and EP were used together, TO and TC production increased by 2.0 and 2.6-fold, respectively in the bioreactor compared to the flask. The YO primarily consisted of C16 and C18 long-chain fatty acids, and the β-carotene produced showed functional similarities to commercial β-carotene. This research highlights the potential of biodiesel waste as a sustainable feedstock for co-producing YO and β-carotene, with the dual-inducer strategy providing a simple and effective method for enhancing production efficiency.
Collapse
Affiliation(s)
- Sasitorn Khuntong
- Division of Biology, Faculty of Science and Technology, Rajamangala University of Technology, Thanyaburi, Pathum Thani 12110, Thailand
| | - Thidarat Samranrit
- Division of Biology, Faculty of Science and Technology, Rajamangala University of Technology, Thanyaburi, Pathum Thani 12110, Thailand
| | - Parichat Koedprasong
- Division of Biology, Faculty of Science and Technology, Rajamangala University of Technology, Thanyaburi, Pathum Thani 12110, Thailand
| | - Jantima Teeka
- Division of Biology, Faculty of Science and Technology, Rajamangala University of Technology, Thanyaburi, Pathum Thani 12110, Thailand
| | - Chiu-Hsia Chiu
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung 912, Taiwan, ROC
| | - Witsanu Srila
- Division of Biology, Faculty of Science and Technology, Rajamangala University of Technology, Thanyaburi, Pathum Thani 12110, Thailand
| | - Atsadawut Areesirisuk
- Division of Biology, Faculty of Science and Technology, Rajamangala University of Technology, Thanyaburi, Pathum Thani 12110, Thailand.
| |
Collapse
|
2
|
Alizadeh S, Pirsa S, Amiri S. Development of a colorimetric sensor based on nanofiber cellulose film modified with ninhydrin to measure the formalin index of fruit juice. Int J Biol Macromol 2023; 253:127035. [PMID: 37742890 DOI: 10.1016/j.ijbiomac.2023.127035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
In this research, a color sensor based on nanofiber cellulose film modified with ninhydrin was designed to measure amino acids and formalin index in fruit juice. For this purpose, three types of cellulose films with porosity of 5, 30 and 125 μm were used. These films were treated with standard solution of ninhydrin. The characteristics of modified films were investigated using Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM) and X-ray Diffraction (XRD) tests. The color factors of the sensors (a and b) changed in the presence of amino acids and juice with different levels of formalin index. Therefore, the modified films with ninhydrin as a colorimetric sensor were calibrated using 7 types of amino acids and based on the formalin index of 4 types of juice. Then the sensors were used to measure the formalin index in 4 types of juice. The results showed that the sensors have relative selectivity towards methionine amino acid. The formalin index values calculated in the juices by the sensor were compared with the titration method as a reference method. All three types of sensors were able to detect formalin index. The results of the sensor performance verification showed that the sensors can measure formalin index in different juices with 95-98 % accuracy. These sensors showed fast sensitivity and selectivity to the amino acids in juice, also these sensors are safe and the measurement method is fast and simple.
Collapse
Affiliation(s)
- Samira Alizadeh
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Sajad Pirsa
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran.
| | - Saber Amiri
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| |
Collapse
|
3
|
Dasgupta Mandal D, Majumdar S. Bacteria as biofactory of pigments: Evolution beyond therapeutics and biotechnological advancements. J Biosci Bioeng 2023; 135:349-358. [PMID: 36872147 DOI: 10.1016/j.jbiosc.2023.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 03/06/2023]
Abstract
Bacterial pigments are the wonder molecules of nature that have attracted the attention of industries in recent years. To date, various synthetic pigments have been in use in food, cosmetics, and textile industries that have not only shown a notoriously toxic nature but also posed threat to the ecosystem. Moreover, nutraceuticals, fisheries, and animal husbandry were highly dependent on plant sources for products that aid in disease prevention and improve stock health. In this context, the use of bacterial pigments as new-generation colorants, food fortifiers, and supplements can hold great prospects as low-cost, healthy, and eco-friendly alternatives. The majority of studies on these compounds were restricted to antimicrobial, antioxidant, and anticancer potentials to date. Each of these can be highly beneficial for the development of new-generation drugs, but their other potential niche in various industries that pose health and environmental risks needs to be explored. Recent advances in novel strategies of metabolic engineering, advancements in optimization tools for the fermentation process, and the design of appropriate delivery systems will greatly expand the market of bacterial pigments in industries. This review summarizes the current technologies for enhancing production, recovery, stability, and appreciable use of bacterial pigments in industries apart from therapeutics with proper financial aspects. The toxicity perspectives have been focused to emphasize that these wonder molecules are the need of the hour and their future prospects have been highlighted. Extensive literature has been studied to include the challenges of bacterial pigments from environmental and health risk perspectives.
Collapse
Affiliation(s)
- Dalia Dasgupta Mandal
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India.
| | - Subhasree Majumdar
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India; Department of Zoology, Sonamukhi College, Sonamukhi, Bankura 722207, West Bengal, India
| |
Collapse
|
4
|
Mandal DD, Singh G, Majumdar S, Chanda P. Challenges in developing strategies for the valorization of lignin-a major pollutant of the paper mill industry. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:11119-11140. [PMID: 36504305 PMCID: PMC9742045 DOI: 10.1007/s11356-022-24022-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/01/2022] [Indexed: 05/27/2023]
Abstract
Apart from protecting the environment from undesired waste impacts, wastewater treatment is a crucial platform for recovery. The exploitation of suitable technology to transform the wastes from pulp and paper industries (PPI) to value-added products is vital from an environmental and socio-economic point of view that will impact everyday life. As the volume and complexity of wastewater increase in a rapidly urbanizing world, the challenge of maintaining efficient wastewater treatment in a cost-effective and environmentally friendly manner must be met. In addition to producing treated water, the wastewater treatment plant (WWTP) has a large amount of paper mill sludge (PMS) daily. Sludge management and disposal are significant problems associated with wastewater treatment plants. Applying the biorefinery concept is necessary for PPI from an environmental point of view and because of the piles of valuables contained therein in the form of waste. This will provide a renewable source for producing valuables and bio-energy and aid in making the overall process more economical and environmentally sustainable. Therefore, it is compulsory to continue inquiry on different applications of wastes, with proper justification of the environmental and economic factors. This review discusses current trends and challenges in wastewater management and the bio-valorization of paper mills. Lignin has been highlighted as a critical component for generating valuables, and its recovery prospects from solid and liquid PPI waste have been suggested.
Collapse
Affiliation(s)
- Dalia Dasgupta Mandal
- Department of Biotechnology, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, 713209 West Bengal India
| | - Gaurav Singh
- Department of Biotechnology, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, 713209 West Bengal India
| | - Subhasree Majumdar
- Department of Biotechnology, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, 713209 West Bengal India
- Department of Zoology, Sonamukhi College, Sonamukhi, Bankura, 722207 West Bengal India
| | - Protik Chanda
- Department of Biotechnology, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, 713209 West Bengal India
| |
Collapse
|
5
|
Sayed A, Elbalasy I, Mohamed MS. Novel β-Carotene and Astaxanthin-Producing Marine Planococcus sp.: Insights into Carotenogenesis Regulation and Genetic Aspects. Appl Biochem Biotechnol 2023; 195:217-235. [PMID: 36070166 DOI: 10.1007/s12010-022-04148-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/13/2023]
Abstract
Astaxanthin and β-carotene are the most prominent carotenoids extensively used in pharmaceutics. Here, we present a halotolerant bacterium from Lake Wadi El-Natrun capable of producing astaxanthin and β-carotene analyzed by HPLC, ESI-MS, and infrared spectroscopy. The phenotypic and phylogenetic analyses classified the isolate as a novel strain of the genus Planococcus, for which the name Planococcus sp. Eg-Natrun is proposed. Carotenoid biosynthesis can exceptionally occur in a light-inducible or constitutive manner. The maximum carotenoid yields were 610 ± 13 µg/g (~ 38% β-carotene and ~ 21% astaxanthin) in a minimal medium with acetate and 1024 ± 53 µg/g dry cells in a rich marine medium. The carotenogenesis incentives (e.g., acetate) and disincentives (e.g., methomyl) were discussed. Moreover, we successfully isolated the CrtE gene, one of the astaxanthin biosynthesis genes, from the unknown genome using a consensus-based degenerate PCR approach. To our knowledge, this is the first report elucidating astaxanthin and β-carotene in the genus Planococcus.
Collapse
Affiliation(s)
- Ahmed Sayed
- Biochemistry Division, Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt.
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany.
| | - Iman Elbalasy
- Biochemistry Division, Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
- Peter-Debye Institute for Soft Matter Physics, Leipzig University, Leipzig, Germany
| | - Mervat S Mohamed
- Biochemistry Division, Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt.
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Kingdom of Saudi Arabia.
| |
Collapse
|
6
|
Current Challenges in the Sustainable Valorisation of Agri-Food Wastes: A Review. Processes (Basel) 2022. [DOI: 10.3390/pr11010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In the upcoming years, the world will face societal challenges arising, in particular, from the impact of climate change and the inefficient use of natural resources, in addition to an exponential growth of the world population, which according to the United Nations (UN) estimations will be 9.8 billion in 2050. This increasing trend requires optimized management of natural resources with the use of value-added waste and a significant reduction in food loss and food waste. Moreover, the recent pandemic situation, COVID-19, has contributed indisputably. Along with the agri-food supply chain, several amounts of waste or by-products are generated. In most cases, these biomass wastes cause serious environmental concerns and high costs to enterprises. The valorisation of the agri-food loss and food industry wastes emerged as a useful strategy to produce certain value-added compounds with several potential applications, namely in the food, health, pharmaceutical, cosmetic, and environmental fields. Therefore, in this review, some of the crucial sustainable challenges with impacts on the valorisation of agri-food loss/wastes and by-products are discussed and identified, in addition to several opportunities, trends and innovations. Potential applications and usages of the most important compounds found in food loss/waste will be highlighted, with a focus on the food industry, pharmaceutical industry, and the environment.
Collapse
|
7
|
Reconnoitring the Usage of Agroindustrial Waste in Carotenoid Production for Food Fortification: a Sustainable Approach to Tackle Vitamin A Deficiency. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02888-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
de Medeiros TDM, Dufossé L, Bicas JL. Lignocellulosic substrates as starting materials for the production of bioactive biopigments. Food Chem X 2022; 13:100223. [PMID: 35128384 PMCID: PMC8808281 DOI: 10.1016/j.fochx.2022.100223] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/22/2021] [Accepted: 01/18/2022] [Indexed: 12/14/2022] Open
Abstract
The search for sustainable processes is constantly increasing in the last years, so reusing, recycling and adding value to residues and by-products from agroindustry is a consolidated area of research. Particularly in the field of fermentation technology, the lignocellulosic substrates have been used to produce a diversity of chemicals, fuels and food additives. These residues or by-products are rich sources of carbon, which may be used to yield fermentescible sugars upon hydrolysis, but are usually inaccessible to enzyme and microbial attack. Therefore, pre-treatments (e.g. hydrolysis, steam explosion, biological pretreatment or others) are required prior to microbial action. Biopigments are added-value compounds that can be produced biotechnologically, including fermentation processes employing lignocellulosic substrates. These molecules are important not only for their coloring properties, but also for their biological activities. Therefore, this paper discusses the most recent and relevant processes for biopigment production using lignocellulosic substrates (solid-state fermentation) or their hydrolysates.
Collapse
Affiliation(s)
- Tiago Daniel Madureira de Medeiros
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80. Campinas-SP, Brazil
| | - Laurent Dufossé
- Chemistry and Biotechnology of Natural Products, CHEMBIOPRO, Université de La Réunion, ESIROI Agroalimentaire, 15 Avenue René Cassin, CEDEX 9, F-97744 Saint-Denis, France
| | - Juliano Lemos Bicas
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80. Campinas-SP, Brazil
| |
Collapse
|
9
|
Majumdar S, Mandal T, Dasgupta Mandal D. Comparative performance evaluation of chitosan based polymeric microspheres and nanoparticles as delivery system for bacterial β-carotene derived from Planococcus sp. TRC1. Int J Biol Macromol 2022; 195:384-397. [PMID: 34863970 DOI: 10.1016/j.ijbiomac.2021.11.167] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 02/07/2023]
Abstract
β-carotene is a natural compound with immense healthcare benefits. To overcome insolubility and lack of stability which restricts its application, in this study, β-carotene from Planococcus sp. TRC1 was entrapped into formulations of chitosan‑sodium alginate microspheres (MF1, MF2 and MF3) and chitosan nanoparticles (NF1, NF2 and NF3). The maximum entrapment efficiency (%) and loading capacity (%) were 80.6 ± 4.28 and 26 ± 3.05 (MF2) and 92.1 ± 3.44 and 41.86 ± 4.65 (NF2) respectively. Korsmeyer-Peppas model showed best fit with release, revealing non-Fickian diffusion. Thermal and UV treatment exhibited higher activation energy (kJ/mol), 17.76 and 15.57 (MF2) and 37.03 and 19.33 (NF2) compared to free β-carotene (3.7 and 3.9), uncovering enhanced stability. MF2 and NF2 revealed swelling index (%) 721 ± 1.7 and 18.1 ± 1.5 (pH 6.8) and particle size 69.5 ± 3.2 μm and 92 ± 2.5 nm respectively. FESEM, FT-IR, XRD and DSC depicted spherical morphology, intactness of functional groups and masking of crystallinity. The IC50 (μg ml-1) values for antioxidant and anticancer (A-549) activities were 33.1 ± 1.7, 45.1 ± 2.8, 39.3 ± 2.9 and 31.3 ± 1.7, 27.9 ± 2.4, 25.3 ± 2.2 for β-carotene, MF2 and NF2 respectively with no significant cytotoxicity on HEK-293 cells and RBCs (p > 0.05). This comparative study of microspheres and nanoparticles may allow the diverse applications of an unconventional bacterial β-carotene with promising stability and efficacies.
Collapse
Affiliation(s)
- Subhasree Majumdar
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India; Department of Zoology, Sonamukhi College, Sonamukhi, Bankura 722207, West Bengal, India
| | - Tamal Mandal
- Department of Chemical Engineering, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India
| | - Dalia Dasgupta Mandal
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India.
| |
Collapse
|
10
|
Aman Mohammadi M, Ahangari H, Mousazadeh S, Hosseini SM, Dufossé L. Microbial pigments as an alternative to synthetic dyes and food additives: a brief review of recent studies. Bioprocess Biosyst Eng 2021; 45:1-12. [PMID: 34373951 DOI: 10.1007/s00449-021-02621-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/04/2021] [Indexed: 12/21/2022]
Abstract
Synthetic coloring agents have been broadly utilized in several industries such as food, pharmaceuticals, cosmetic and textile. Recent surveys on the potential of teratogenicity and carcinogenicity of synthetic dyes have expressed concerns regarding their use in foods. Worldwide, food industries have need for safe, natural and new colorings to add variety to foods and make them appealing to consumers. Natural colorings not only expand the marketability of the food product, but also add further healthful features such as antibacterial, antioxidant, anticancer and antiviral properties. Novel microbial strains should be explored to meet the increasing global search of natural pigments and suitable techniques must be developed for the marketable production of new pigments, using microbial cultures, viz., fungi, and bacteria. To address the issue of the natural coloring agents, this review presents the recent trends in several studies of microbial pigments, their biological properties and industrial applications.
Collapse
Affiliation(s)
- Masoud Aman Mohammadi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences, Food Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Ahangari
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Mousazadeh
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyede Marzieh Hosseini
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences, Food Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Laurent Dufossé
- CHEMBIOPRO Lab, Ecole Supérieure d'Ingénieurs Réunion Océan Indien (ESIROI), Université de La Réunion, Département Agroalimentaire, 97744, Saint-Denis, France.
| |
Collapse
|
11
|
Lopes FC, Ligabue-Braun R. Agro-Industrial Residues: Eco-Friendly and Inexpensive Substrates for Microbial Pigments Production. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.589414] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Many commodities are abundantly produced around the world, including soybean, corn, rice sugarcane, cassava, coffee, fruits, and many others. These productions are responsible for the generation of enormous amounts of daily residues, such as cassava and sugarcane bagasses, rice husk, and coffee peel. These residues are rich sources for renewable energy and can be used as substrates for industrial interest products. Microorganisms are useful biofactories, capable of producing important primary and secondary metabolites, including alcohol, enzymes, antibiotics, pigments, and many other molecules. The production of pigments was reported in bacteria, filamentous fungi, yeasts, and algae. These natural microbial pigments are very promising because synthetic colorants present a long history of allergies and toxicity. In addition, many natural pigments present other biological activities, such as antioxidant and antimicrobial activities, that are interesting for industrial applications. The use of inexpensive substrates for the production of these metabolites is very attractive, considering that agro-industrial residues are generated in high amounts and usually are a problem to the industry. Therefore, in this article we review the production of microbial pigments using agro-industrial residues during the current decade (2010–2020), considering both submerged and solid state fermentations, wild-type and genetically modified microorganisms, laboratorial to large-scale bioprocesses, and other possible biological activities related to these pigments.
Collapse
|
12
|
Majumdar S, Paul I, Dey S, Dutta S, Mandal T, Mandal DD. Biotransformation of paper mill sludge by Serratia marcescens NITDPER1 for prodigiosin and cellulose nanocrystals: A strategic valorization approach. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|