1
|
Shen SC, Lee NA, Lockett WJ, Acuil AD, Gazdus HB, Spitzer BN, Buehler MJ. Robust myco-composites: a biocomposite platform for versatile hybrid-living materials. MATERIALS HORIZONS 2024; 11:1689-1703. [PMID: 38315077 DOI: 10.1039/d3mh01277h] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Fungal mycelium, a living network of filamentous threads, thrives on lignocellulosic waste and exhibits rapid growth, hydrophobicity, and intrinsic regeneration, offering a potential means to create next-generation sustainable and functional composites. However, existing hybrid-living mycelium composites (myco-composites) are tremendously constrained by conventional mold-based manufacturing processes, which are only compatible with simple geometries and coarse biomass substrates that enable gas exchange. Here we introduce a class of structural myco-composites manufactured with a novel platform that harnesses high-resolution biocomposite additive manufacturing and robust mycelium colonization with indirect inoculation. We leverage principles of hierarchical composite design and selective nutritional provision to create a robust myco-composite that is scalable, tunable, and compatible with complex geometries. To illustrate the versatility of this platform, we characterize the impact of mycelium colonization on mechanical and surface properties of the composite. We found that our method yields the strongest mycelium composite reported to date with a modulus of 160 MPa and tensile strength of 0.72 MPa, which represents over a 15-fold improvement over typical mycelium composites, and further demonstrate unique applications with fabrication of foldable bio-welded containers and flexible mycelium textiles. This study bridges the gap between biocomposite and hybrid-living materials research, opening the door to advanced structural mycelium applications and demonstrating a novel platform for development of diverse hybrid-living materials.
Collapse
Affiliation(s)
- Sabrina C Shen
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Ave. 1-165, Cambridge, MA, 02139, USA.
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Nicolas A Lee
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Ave. 1-165, Cambridge, MA, 02139, USA.
- School of Architecture and Planning, Media Lab, Massachusetts Institute of Technology, 75 Amherst Street, Cambridge, MA, 02139, USA
| | - William J Lockett
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Ave. 1-165, Cambridge, MA, 02139, USA.
- MIT Center for Art, Science & Technology (CAST), Massachusetts Institute of Technology, 77 Massachusetts Ave. 10-183, Cambridge, MA 02139, USA
- Department of Media, Culture, and Communication, New York University, 239 Greene Street, New York, NY, 10003, USA
| | - Aliai D Acuil
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Ave. 1-165, Cambridge, MA, 02139, USA.
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Hannah B Gazdus
- School of Architecture and Planning, Media Lab, Massachusetts Institute of Technology, 75 Amherst Street, Cambridge, MA, 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Branden N Spitzer
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Ave. 1-165, Cambridge, MA, 02139, USA.
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Markus J Buehler
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Ave. 1-165, Cambridge, MA, 02139, USA.
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
- Center for Computational Science and Engineering, Schwarzman College of Computing, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| |
Collapse
|
2
|
Muniasamy R, Rathnasaamy S. Sustainable production and preparative purification of thermostable alkaline α-amylase by Bacillus simplex (ON754233) employing natural deep eutectic solvent-based extractive fermentation. Sci Rep 2024; 14:481. [PMID: 38177253 PMCID: PMC10766970 DOI: 10.1038/s41598-024-51168-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/01/2024] [Indexed: 01/06/2024] Open
Abstract
Using PEG-based deep eutectic solvents (PDES), the current study proposes extractive fermentation as a sustainable process integration for the production and purification of α-amylase from Bacillus simplex (ON754233). Glucose: PEG 400 outperformed five PDES in terms of tie lie length (58) and slope value (1.23) against sodium sulphatt. Apple cider pomace was used as a low-cost, sustainable carbon source to produce-amylase, with a maximum enzyme production of 2200.13 U/mL. PDES concentration (20% w/v), salt (12.75 w/v), and apple waste (2.75 g/mL) were all optimized using response surface methodology. When scaled upto 3 L benchtop bioreactor, extractive fermentation was proved to be better technology with maximum recovery of 92.4% with highest partition coefficient (3.59). The partially purified enzyme was further purified using a Sephadex G 100 followed by DEAE-Sephadex anion exchange chromatography with a purity fold of 33. The enzyme was found to be thermostable at the temperature (60 °C), remains alkaline (pH 8), and the activity was stimulated in the presence of Mg2+ ions. With SDS PAGE electrophoresis, the molecular weight was found to be around 140 kDa. Finally, the enzyme kinetics parameters were evaluated with observed Km (0.00396 mM) and Vmax (37.87 U/mL). Thus scaling up extractive fermentation entails increasing production capacity with improved extraction efficiency using green solvents.
Collapse
Affiliation(s)
- Ramya Muniasamy
- Green Separation Engineering Laboratory, School of Chemical and Biotechnology, SASTRA Deemed to Be University, Thanjavur, Tamilnadu, India
| | - Senthilkumar Rathnasaamy
- Green Separation Engineering Laboratory, School of Chemical and Biotechnology, SASTRA Deemed to Be University, Thanjavur, Tamilnadu, India.
| |
Collapse
|
3
|
Abstract
Microbubbles are largely unused in the food industry yet have promising capabilities as environmentally friendly cleaning and supporting agents within products and production lines due to their unique physical behaviors. Their small diameters increase their dispersion throughout liquid materials, promote reactivity because of their high specific surface area, enhance dissolution of gases into the surrounding liquid phase, and promote the generation of reactive chemical species. This article reviews techniques to generate microbubbles, their modes of action to enhance cleaning and disinfection, their contributions to functional and mechanical properties of food materials, and their use in supporting the growth of living organisms in hydroponics or bioreactors. The utility and diverse applications of microbubbles, combined with their low intrinsic ingredient cost, strongly encourage their increased adoption within the food industry in coming years.
Collapse
Affiliation(s)
- Jiakai Lu
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Owen G Jones
- Department of Food Science, Purdue University, West Lafayette, Indiana, USA;
| | - Weixin Yan
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Carlos M Corvalan
- Department of Food Science, Purdue University, West Lafayette, Indiana, USA;
| |
Collapse
|
4
|
Rong S, Tang X, Guan S, Zhang B, Li Q, Cai B, Huang J. Effects of Impeller Geometry on the 11α-Hydroxylation of Canrenone in Rushton Turbine-Stirred Tanks. J Microbiol Biotechnol 2021; 31:890-901. [PMID: 34024892 PMCID: PMC9706011 DOI: 10.4014/jmb.2104.04002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/04/2021] [Accepted: 05/17/2021] [Indexed: 12/15/2022]
Abstract
The 11α-hydroxylation of canrenone can be catalyzed by Aspergillus ochraceus in bioreactors, where the geometry of the impeller greatly influences the biotransformation. In this study, the effects of the blade number and impeller diameter of a Rushton turbine on the 11α-hydroxylation of canrenone were considered. The results of fermentation experiments using a 50 mm four-blade impeller showed that 3.40% and 11.43% increases in the conversion ratio were achieved by increasing the blade number and impeller diameter, respectively. However, with an impeller diameter of 60 mm, the conversion ratio with a six-blade impeller was 14.42% lower than that with a four-blade impeller. Data from cold model experiments with a large-diameter six-blade impeller indicated that the serious leakage of inclusions and a 22.08% enzyme activity retention led to a low conversion ratio. Numerical simulations suggested that there was good gas distribution and high fluid flow velocity when the fluid was stirred by large-diameter impellers, resulting in a high dissolved oxygen content and good bulk circulation, which positively affected hyphal growth and metabolism. However, a large-diameter six-blade impeller created overly high shear compared to a large-diameter four-blade impeller, thereby decreasing the conversion ratio. The average shear rates of the former and latter cases were 43.25 s-1 and 35.31 s-1, respectively. We therefore concluded that appropriate shear should be applied in the 11α-hydroxylation of canrenone. Overall, this study provides basic data for the scaled-up production of 11α-hydroxycanrenone.
Collapse
Affiliation(s)
- Shaofeng Rong
- Department of Biological Engineering, Shanghai Institute of Technology, Shanghai 201418, P.R. China
| | - Xiaoqing Tang
- Department of Biological Engineering, Shanghai Institute of Technology, Shanghai 201418, P.R. China
| | - Shimin Guan
- Department of Biological Engineering, Shanghai Institute of Technology, Shanghai 201418, P.R. China,Corresponding authors S. Guan Phone: +86-021-60873005 E-mail:
| | - Botao Zhang
- Department of Biological Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Qianqian Li
- Department of Biological Engineering, Shanghai Institute of Technology, Shanghai 201418, P.R. China
| | - Baoguo Cai
- Department of Biological Engineering, Shanghai Institute of Technology, Shanghai 201418, P.R. China
| | - Juan Huang
- Department of Biological Engineering, Shanghai Institute of Technology, Shanghai 201418, P.R. China,
J. Huang Phone: +86-021-60873240 E-mail:
| |
Collapse
|