1
|
Mahmood S, Iqbal MW, Tang X, Zabed HM, Chen Z, Zhang C, Ravikumar Y, Zhao M, Qi X. A comprehensive review of recent advances in the characterization of L-rhamnose isomerase for the biocatalytic production of D-allose from D-allulose. Int J Biol Macromol 2024; 254:127859. [PMID: 37924916 DOI: 10.1016/j.ijbiomac.2023.127859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/05/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023]
Abstract
D-Allose and D-allulose are two important rare natural monosaccharides found in meager amounts. They are considered to be the ideal substitutes for table sugar (sucrose) for, their significantly lower calorie content with around 80 % and 70 % of the sweetness of sucrose, respectively. Additionally, both monosaccharides have gained much attention due to their remarkable physiological properties and excellent health benefits. Nevertheless, D-allose and D-allulose are rare in nature and difficult to produce by chemical methods. Consequently, scientists are exploring bioconversion methods to convert D-allulose into D-allose, with a key enzyme, L-rhamnose isomerase (L-RhIse), playing a remarkable role in this process. This review provides an in-depth analysis of the extractions, physiological functions and applications of D-allose from D-allulose. Specifically, it provides a detailed description of all documented L-RhIse, encompassing their biochemical properties including, pH, temperature, stabilities, half-lives, metal ion dependence, molecular weight, kinetic parameters, specific activities and specificities of the substrates, conversion ratio, crystal structure, catalytic mechanism as well as their wide-ranging applications across diverse fields. So far, L-RhIses have been discovered and characterized experimentally by numerous mesophilic and thermophilic bacteria. Furthermore, the crystal forms of L-RhIses from E. coli and Stutzerimonas/Pseudomonas stutzeri have been previously cracked, together with their catalytic mechanism. However, there is room for further exploration, particularly the molecular modification of L-RhIse for enhancing its catalytic performance and thermostability through the directed evolution or site-directed mutagenesis.
Collapse
Affiliation(s)
- Shahid Mahmood
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Muhammad Waheed Iqbal
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Xinrui Tang
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Hossain M Zabed
- School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, Guangdong, China
| | - Ziwei Chen
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Cunsheng Zhang
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Yuvaraj Ravikumar
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Mei Zhao
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China.
| | - Xianghui Qi
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China; School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, Guangdong, China.
| |
Collapse
|
2
|
Singh A, Yadav SK. Immobilization of L-ribose isomerase on the surface of activated mesoporous MCM41 and SBA15 for the synthesis of L-ribose. J Biotechnol 2023; 362:45-53. [PMID: 36592665 DOI: 10.1016/j.jbiotec.2022.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
A hexagonal mesoporous molecular sieve-like structure of MCM41 and SBA15 with a large surface area was used to immobilize protein L-ribose isomerase (L-RI) through covalent linkages. The amino group of APTES functionalized nanosilica support MCM41 and SBA15 interacted with glutaraldehyde to promote bidentate linkage and on other side with amino group of enzyme. The use of mesoporous silica matrix for immobilization was observed to conserve the distinctive properties of the protein. The various operational conditions optimized for covalent conjugation of protein with the silica support were found to be dependent on enzyme support ratio, immobilization temperature and time. The immobilization yield of L-RI on MCM41 and SBA15 was achieved to be 60 % (600 mg enzyme /g matrix) and 45 % (450 mg enzyme/g matrix), respectively under the optimized conditions. The immobilized biocatalyst was characterized by various analytical techniques like HR-TEM, EDS, FTIR, TGA and BET. Effects of different experimental conditions were optimized to study enzyme kinetics, pH, temperature, bioconversion, reusability, metal ion effect and storage stability. The biocatalytic efficiency (kcat/Km) was increased by 1.2 fold on immobilization with the catalytic activity of 39.64 IU. Increase in the catalytic efficiency after immobilization could be due to the suitable orientation of enzyme active site and improved accessibility for substrate binding. The immobilization of L-RI on mesoporous silica support could improve the biocatalytic activity, storage stability and reusability. The immobilized biocatalyst was found to be reusable for more than 4 cycles retaining more than 50 % of catalytic activity and promoting the synthesis of a rare sugar L-ribose from L-ribulose with a conversion yield of 22 % in 2 h time.
Collapse
Affiliation(s)
- Aishwarya Singh
- Center of Innovative and Applied Bioprocessing (CIAB), Sector 81, Knowledge City, Mohali 140306, India; Regional Center for Biotechnology (RCB), Faridabad, Haryana 121001, India
| | - Sudesh Kumar Yadav
- Center of Innovative and Applied Bioprocessing (CIAB), Sector 81, Knowledge City, Mohali 140306, India; Regional Center for Biotechnology (RCB), Faridabad, Haryana 121001, India.
| |
Collapse
|
3
|
Enhancement of L-ribulose Production from L-ribose Through Modification of Ochrobactrum sp. CSL1 Ribose-5-phosphate Isomerase A. Appl Biochem Biotechnol 2022; 194:4852-4866. [PMID: 35670905 DOI: 10.1007/s12010-022-04015-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 11/02/2022]
Abstract
L-ribulose, a kind of high-value rare sugar, could be utilized to manufacture L-form sugars and antiviral drugs, generally produced from L-arabinose as a substrate. However, the production of L-ribulose from L-arabinose is limited by the equilibrium ratio of the catalytic reaction, hence, it is necessary to explore a new biological enzymatic method to produce L-ribulose. Ribose-5-phosphate isomerase (Rpi) is an enzyme that can catalyze the reversible isomerization between L-ribose and L-ribulose, which is of great significance for the preparation of L-ribulose. In order to obtain highly active ribose-5-phosphate isomerase to manufacture L-ribulose, ribose-5-phosphate isomerase A (OsRpiA) from Ochrobactrum sp. CSL1 was engineered based on structural and sequence analyses. Through a rational design strategy, a triple-mutant strain A10T/T32S/G101N with 160% activity was acquired. The enzymatic properties of the mutant were systematically investigated, and the optimum conditions were characterized to achieve the maximum yield of L-ribulose. Kinetic analysis clarified that the A10T/T32S/G101N mutant had a stronger affinity for the substrate and increased catalytic efficiency. Furthermore, molecular dynamics simulations indicated that the binding of the substrate to A10T/T32S/G101N was more stable than that of wild type. The shorter distance between the catalytic residues of A10T/T32S/G101N and L-ribose illuminated the increased activity. Overall, the present study provided a solid basis for demonstrating the complex functions of crucial residues in RpiAs as well as in rare sugar preparation.
Collapse
|
4
|
A review on l-ribose isomerases for the biocatalytic production of l-ribose and l-ribulose. Food Res Int 2021; 145:110409. [PMID: 34112412 DOI: 10.1016/j.foodres.2021.110409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/08/2021] [Accepted: 05/06/2021] [Indexed: 11/21/2022]
Abstract
Presently, because of the extraordinary roles and potential applications, rare sugars turn into a focus point for countless researchers in the field of carbohydrates. l-ribose and l-ribulose are rare sugars and isomers of each other. This aldo and ketopentose are expensive but can be utilized as an antecedent for the manufacturing of various rare sugars and l-nucleoside analogue. The bioconversion approach turns into an excellent alternative method to l-ribulose and l-ribose production, as compared to the complex and lengthy chemical methods. The basic purpose of this research was to describe the importance of rare sugars in various fields and their easy production by using enzymatic methods. l-Ribose isomerase (L-RI) is an enzyme discovered by Tsuyoshi Shimonishi and Ken Izumori in 1996 from Acinetobacter sp. strain DL-28. L-RI structure was cupin-type-β-barrel shaped with a catalytic site between two β-sheets surrounded by metal ions. The crystal structures of the L-RI showed that it contains a homotetramer structure. Current review have concentrated on the sources, characteristics, applications, conclusions and future prospects including the potentials of l-ribose isomerase for the commercial production of l-ribose and l-ribulose. The MmL-RIse and CrL-RIse have the potential to produce the l-ribulose up to 32% and 31%, respectively. The CrL-RIse is highly stable as compared to other L-RIs. The results explained that the L-RIs have great potential in the production of rare sugars especially, l-ribose and l-ribulose, while the immobilization technique can enhance its functionality and properties. The present study precises the applications of L-RIs acquired from various sources for l-ribose and l-ribulose production.
Collapse
|
5
|
Iqbal MW, Riaz T, Mahmood S, Ali K, Khan IM, Rehman A, Zhang W, Mu W. A review on selective l-fucose/d-arabinose isomerases for biocatalytic production of l-fuculose/d-ribulose. Int J Biol Macromol 2020; 168:558-571. [PMID: 33296692 DOI: 10.1016/j.ijbiomac.2020.12.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/16/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022]
Abstract
L-Fuculose and D-ribulose are kinds of rare sugars used in food, agriculture, and medicine industries. These are pentoses and categorized into the two main groups, aldo pentoses and ketopentoses. There are 8 aldo- and 4 ketopentoses and only fewer are natural, while others are rare sugars found in a very small amount in nature. These sugars have great commercial applications, especially in many kinds of drugs in the medicine industry. The synthesis of these sugars is very expensive, difficult by chemical methods due to its absence in nature, and could not meet industry demands. The pentose izumoring strategy offers a complete enzymatic tactic to link all kinds of pentoses using different enzymes. The enzymatic production of L-fuculose and D-ribulose through L-fucose isomerase (L-FI) and D-arabinose isomerase (D-AI) is the inexpensive and uncomplicated method up till now. Both enzymes have similar kinds of isomerizing mechanisms and each enzyme can catalyze both L-fucose and D-arabinose. In this review article, the enzymatic process of biochemically characterized L-FI & D-AI, their application to produce L-fuculose and D-ribulose and its uses in food, agriculture, and medicine industries are reviewed.
Collapse
Affiliation(s)
- Muhammad Waheed Iqbal
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tahreem Riaz
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shahid Mahmood
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Khubaib Ali
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Abdur Rehman
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|