1
|
Wang N, Li L, Ma Y, Shen C, Ao Z, Song C, Mehmood MA, Zhang P, Liu Y, Sun X, Zhu H. Combined transcriptomics and metabolomics analyses reveal the molecular mechanism of heat tolerance in Pichia kudriavzevii. Front Microbiol 2025; 16:1572004. [PMID: 40270822 PMCID: PMC12014439 DOI: 10.3389/fmicb.2025.1572004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/26/2025] [Indexed: 04/25/2025] Open
Abstract
Introduction Pichia kudriavzevii is a prevalent non-Saccharomyces cerevisiae yeast in baijiu brewing. The aim of this study was to isolate a high temperature resistant Pichia kudriavzevii strain from the daqu of strong flavor baijiu and to elucidate its molecular mechanism. Methods Growth activity was assessed at temperatures of 37°C, 40°C, 45°C, and 50°C. Morphological changes were observed by scanning electron microscopy at 37°C, 45°C, and 50°C. Subsequent analysis of the transcriptomics and metabolomics was undertaken to elucidate the molecular mechanism of heat tolerance. Results The strain was able to tolerate high temperature of 50°C, undergoing substantial morphological alterations. Gene ontology (GO) analysis of the transcriptomics revealed that differentially expressed genes (DEGs) were enriched in pathways such as ATP biosynthesis process and mitochondrion; Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that DEGs were up regulated in oxidative phosphorylation. Utilising liquid chromatograph-mass spectrometer, a total of 463 cationic differential metabolites and 352 anionic differential metabolites were detected and screened for differential substances that were closely related to heat tolerance (NAD+ and ADP); KEGG analysis showed that metabolites were up regulated in purine metabolism. Furthermore, correlation analyses of transcriptomics-metabolomics demonstrated a strong positive correlation between the metabolites NAD+ and ADP, and multiple DEGs of the oxidative phosphorylation pathway. Discussion These results suggest that the heat tolerant strain can be able to counteract high temperature environment by up regulating energy metabolism (especially oxidative phosphorylation) to increase ATP production.
Collapse
Affiliation(s)
- Ning Wang
- Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, School of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, Yibin, China
- National Engineering Research Center of Solid-State Brewing, Luzhou Laojiao Co., Ltd., Luzhou, China
| | - Lu Li
- Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, School of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, Yibin, China
| | - Yi Ma
- Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, School of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, Yibin, China
| | - Caihong Shen
- National Engineering Research Center of Solid-State Brewing, Luzhou Laojiao Co., Ltd., Luzhou, China
| | - Zonghua Ao
- National Engineering Research Center of Solid-State Brewing, Luzhou Laojiao Co., Ltd., Luzhou, China
| | - Chuan Song
- National Engineering Research Center of Solid-State Brewing, Luzhou Laojiao Co., Ltd., Luzhou, China
| | - Muhammad Aamer Mehmood
- Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, School of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
| | - Puyu Zhang
- Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, School of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
| | - Ying Liu
- Sichuan Yibin Hengshengfu Liquor Industry Group Co., Ltd., Yibin, China
| | - Xiaoke Sun
- Sichuan Yibin Hengshengfu Liquor Industry Group Co., Ltd., Yibin, China
| | - Hui Zhu
- Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, School of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, Yibin, China
| |
Collapse
|
2
|
Yang C, Ren Y, Ge L, Xu W, Hang H, Mohsin A, Tian X, Chu J, Zhuang Y. Unveiling the mechanism of efficient β-phenylethyl alcohol conversion in wild-type Saccharomyces cerevisiae WY319 through multi-omics analysis. Biotechnol J 2024; 19:e2300740. [PMID: 38581087 DOI: 10.1002/biot.202300740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/05/2024] [Accepted: 02/15/2024] [Indexed: 04/08/2024]
Abstract
β-Phenylethanol (2-PE), as an important flavor component in wine, is widely used in the fields of flavor chemistry and food health. 2-PE can be sustainably produced through Saccharomyces cerevisiae. Although significant progress has been made in obtaining high-yield strains, as well as improving the synthesis pathways of 2-PE, there still lies a gap between these two fields to unpin. In this study, the macroscopic metabolic characteristics of high-yield and low-yield 2-PE strains were systematically compared and analyzed. The results indicated that the production potential of the high-yield strain might be contributed to the enhancement of respiratory metabolism and the high tolerance to 2-PE. Furthermore, this hypothesis was confirmed through comparative genomics. Meanwhile, transcriptome analysis at key specific growth rates revealed that the collective upregulation of mitochondrial functional gene clusters plays a more prominent role in the production process of 2-PE. Finally, findings from untargeted metabolomics suggested that by enhancing respiratory metabolism and reducing the Crabtree effect, the accumulation of metabolites resisting high 2-PE stress was observed, such as intracellular amino acids and purines. Hence, this strategy provided a richer supply of precursors and cofactors, effectively promoting the synthesis of 2-PE. In short, this study provides a bridge for studying the metabolic mechanism of high-yield 2-PE strains with the subsequent targeted strengthening of relevant synthetic pathways. It also provides insights for the synthesis of nonalcoholic products in S. cerevisiae.
Collapse
Affiliation(s)
- Chenghan Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Yilin Ren
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Lihao Ge
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Wenting Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Haifeng Hang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Xiwei Tian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| |
Collapse
|
3
|
Ge X, Chen J, Gu J, Yi W, Xu S, Tan L, Liu T. Metabolomic analysis of hydroxycinnamic acid inhibition on Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2024; 108:165. [PMID: 38252275 PMCID: PMC10803543 DOI: 10.1007/s00253-023-12830-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 01/23/2024]
Abstract
Ferulic acid (FA) and p-coumaric acid (p-CA) are hydroxycinnamic acid inhibitors that are mainly produced during the pretreatment of lignocellulose. To date, the inhibitory mechanism of hydroxycinnamic acid compounds on Saccharomyces cerevisiae has not been fully elucidated. In this study, liquid chromatography-mass spectrometry (LC-MS) and scanning electron microscopy (SEM) were used to investigate the changes in S. cerevisiae cells treated with FA and p-CA. In this experiment, the control group was denoted as group CK, the FA-treated group was denoted as group F, and the p-CA-treated group was denoted as group P. One hundred different metabolites in group F and group CK and 92 different metabolites in group P and group CK were selected and introduced to metaboanalyst, respectively. A total of 38 metabolic pathways were enriched in S. cerevisiae under FA stress, and 27 metabolic pathways were enriched in S. cerevisiae under p-CA stress as identified through Kyoto Encyclopaedia of Genes and Genomes (KEGG) analysis. The differential metabolites involved included S-adenosine methionine, L-arginine, and cysteine, which were significantly downregulated, and acetyl-CoA, L-glutamic acid, and L-threonine, which were significantly upregulated. Analysis of differential metabolic pathways showed that the differentially expressed metabolites were mainly related to amino acid metabolism, nucleotide metabolism, fatty acid degradation, and the tricarboxylic acid cycle (TCA). Under the stress of FA and p-CA, the metabolism of some amino acids was blocked, which disturbed the redox balance in the cells and destroyed the synthesis of most proteins, which was the main reason for the inhibition of yeast cell growth. This study provided a strong scientific reference to improve the durability of S. cerevisiae against hydroxycinnamic acid inhibitors. KEY POINTS: • Morphological changes of S. cerevisiae cells under inhibitors stress were observed. • Changes of the metabolites in S. cerevisiae cells were explored by metabolomics. • One of the inhibitory effects on yeast is due to changes in the metabolic network.
Collapse
Affiliation(s)
- Xiaoli Ge
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Junxiao Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Jie Gu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Wenbo Yi
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Shujie Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Liping Tan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
- Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
| | - Tongjun Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
- Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
| |
Collapse
|
4
|
Wang D, He M, Zhang M, Yang H, Huang J, Zhou R, Jin Y, Wu C. Food yeasts: occurrence, functions, and stress tolerance in the brewing of fermented foods. Crit Rev Food Sci Nutr 2023; 63:12136-12149. [PMID: 35875880 DOI: 10.1080/10408398.2022.2098688] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
With the rapid development of systems biology technology, there is a deeper understanding of the molecular biological mechanisms and physiological characteristics of microorganisms. Yeasts are widely used in the food industry with their excellent fermentation performances. While due to the complex environments of food production, yeasts have to suffer from various stress factors. Thus, elucidating the stress mechanisms of food yeasts and proposing potential strategies to improve tolerance have been widely concerned. This review summarized the recent signs of progress in the variety, functions, and stress tolerance of food yeasts. Firstly, the main food yeasts occurred in fermented foods, and the taxonomy levels are demonstrated. Then, the main functions of yeasts including aroma enhancer, safety performance enhancer, and fermentation period reducer are discussed. Finally, the stress response mechanisms of yeasts and the strategies to improve the stress tolerance of cells are reviewed. Based on sorting out these related recent researches systematically, we hope that this review can provide help and approaches to further exert the functions of food yeasts and improve food production efficiency.
Collapse
Affiliation(s)
- Dingkang Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Muwen He
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Min Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Huan Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Yao Jin
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Li Y, Hou S, Ren Z, Fu S, Wang S, Chen M, Dang Y, Li H, Li S, Li P. Transcriptomic analysis reveals hub genes and pathways in response to acetic acid stress in Kluyveromyces marxianus during high-temperature ethanol fermentation. STRESS BIOLOGY 2023; 3:26. [PMID: 37676394 PMCID: PMC10441953 DOI: 10.1007/s44154-023-00108-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/11/2023] [Indexed: 09/08/2023]
Abstract
The thermotolerant yeast Kluyveromyces marxianus is known for its potential in high-temperature ethanol fermentation, yet it suffers from excess acetic acid production at elevated temperatures, which hinders ethanol production. To better understand how the yeast responds to acetic acid stress during high-temperature ethanol fermentation, this study investigated its transcriptomic changes under this condition. RNA sequencing (RNA-seq) was used to identify differentially expressed genes (DEGs) and enriched gene ontology (GO) terms and pathways under acetic acid stress. The results showed that 611 genes were differentially expressed, and GO and pathway enrichment analysis revealed that acetic acid stress promoted protein catabolism but repressed protein synthesis during high-temperature fermentation. Protein-protein interaction (PPI) networks were also constructed based on the interactions between proteins coded by the DEGs. Hub genes and key modules in the PPI networks were identified, providing insight into the mechanisms of this yeast's response to acetic acid stress. The findings suggest that the decrease in ethanol production is caused by the imbalance between protein catabolism and protein synthesis. Overall, this study provides valuable insights into the mechanisms of K. marxianus's response to acetic acid stress and highlights the importance of maintaining a proper balance between protein catabolism and protein synthesis for high-temperature ethanol fermentation.
Collapse
Affiliation(s)
- Yumeng Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
- Engineering Research Center for Water Pollution Source Control & Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Shiqi Hou
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
- Engineering Research Center for Water Pollution Source Control & Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Ziwei Ren
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
- Engineering Research Center for Water Pollution Source Control & Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Shaojie Fu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
- Engineering Research Center for Water Pollution Source Control & Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Sunhaoyu Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
- Engineering Research Center for Water Pollution Source Control & Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Mingpeng Chen
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
- Engineering Research Center for Water Pollution Source Control & Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yan Dang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
- Engineering Research Center for Water Pollution Source Control & Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Hongshen Li
- Institute of New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Shizhong Li
- Institute of New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Pengsong Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
- Engineering Research Center for Water Pollution Source Control & Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
6
|
Qiu Y, Lei P, Wang R, Sun L, Luo Z, Li S, Xu H. Kluyveromyces as promising yeast cell factories for industrial bioproduction: From bio-functional design to applications. Biotechnol Adv 2023; 64:108125. [PMID: 36870581 DOI: 10.1016/j.biotechadv.2023.108125] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
As the two most widely used Kluyveromyces yeast, Kluyveromyces marxianus and K. lactis have gained increasing attention as microbial chassis in biocatalysts, biomanufacturing and the utilization of low-cost raw materials owing to their high suitability to these applications. However, due to slow progress in the development of molecular genetic manipulation tools and synthetic biology strategies, Kluyveromyces yeast cell factories as biological manufacturing platforms have not been fully developed. In this review, we provide a comprehensive overview of the attractive characteristics and applications of Kluyveromyces cell factories, with special emphasis on the development of molecular genetic manipulation tools and systems engineering strategies for synthetic biology. In addition, future avenues in the development of Kluyveromyces cell factories for the utilization of simple carbon compounds as substrates, the dynamic regulation of metabolic pathways, and for rapid directed evolution of robust strains are proposed. We expect that more synthetic systems, synthetic biology tools and metabolic engineering strategies will adapt to and optimize for Kluyveromyces cell factories to achieve green biofabrication of multiple products with higher efficiency.
Collapse
Affiliation(s)
- Yibin Qiu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Peng Lei
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Rui Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Liang Sun
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Zhengshan Luo
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Sha Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Hong Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| |
Collapse
|
7
|
|