1
|
Bernardino ARS, Torres CAV, Crespo JG, Reis MAM. Biotechnological 2-Phenylethanol Production: Recent Developments. Molecules 2024; 29:5761. [PMID: 39683919 DOI: 10.3390/molecules29235761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/16/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
2-Phenylethanol (2-PE) is a key flavor compound with a rose-like scent, used in the cosmetics, perfume, home care and food industries. This aroma compound can be obtained naturally from various flowers, however chemical synthesis is the most used route to meet market demand. The increasing interest in natural products has led to the development of more environmentally friendly alternatives for 2-PE production through biotechnological approaches. The most efficient approach involves the biotransformation of L-phenylalanine into 2-PE via the Ehrlich pathway, a process observed in different microorganisms such as yeasts and bacteria. 2-PE produced by this way can be considered as natural. However, due to the toxicity of the aroma to the producing microorganism, low production yields are typically obtained, motivating efforts to develop production processes that can overcome this bottleneck, enhance 2-PE yields and reduce the production costs. This review presents and discusses the latest advances in the bioproduction of 2-PE through microbial fermentation, in terms of producing strains, the optimization of cultivation processes, strategies to mitigate product toxicity, and the use of low value feedstocks. Novel applications for 2-PE are also highlighted.
Collapse
Affiliation(s)
- Ana R S Bernardino
- Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- LAQVREQUIMTE, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Cristiana A V Torres
- Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - João G Crespo
- LAQVREQUIMTE, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- ITQB, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Maria A M Reis
- Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
2
|
Qian T, Wei W, Dong Y, Zhang P, Chen X, Chen P, Li M, Ye BC. Metabolic engineering of the oleaginous yeast Yarrowia lipolytica for 2-phenylethanol overproduction. BIORESOURCE TECHNOLOGY 2024; 411:131354. [PMID: 39182792 DOI: 10.1016/j.biortech.2024.131354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024]
Abstract
The rose fragrance molecule 2-phenylethanol (2-PE) has huge market demand in the cosmetics, food and pharmaceutical industries. However, current 2-PE synthesis methods do not meet the efficiency market requirement. In this study, CRISPR-Cas9-related metabolic engineering strategies were applied to Yarrowia lipolytica for the de novo biosynthesis of 2-PE. Initially, overexpressing exogenous feedback-resistant EcAROGfbr and EcPheAfbr increased 2-PE production to 276.3 mg/L. Subsequently, the ylARO10 and ylPAR4 from endogenous genes were enhanced with the multi-copies to increase the titer to 605 mg/L. Knockout of ylTYR1 and enhancement of shikimate pathway by removing the precursor metabolic bottleneck and overexpressing the genes ylTKT, ylARO1, and ylPHA2 resulted in a significant increase of the 2-PE titer to 2.4 g/L at 84 h, with the yield of 0.06 g/gglu, which is the highest yield for de novo synthesis in yeast. This study provides a valuable precedent for the efficient biosynthesis of shikimate pathway derivatives.
Collapse
Affiliation(s)
- Tao Qian
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Wenping Wei
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Yuxing Dong
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Ping Zhang
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shang Hai 200237, China
| | - Xiaochuan Chen
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Pinru Chen
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Mengfan Li
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Bang-Ce Ye
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China; Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shang Hai 200237, China.
| |
Collapse
|
3
|
Tong Q, Yang L, Zhang J, Zhang Y, Jiang Y, Liu X, Deng Y. Comprehensive investigations of 2-phenylethanol production by the filamentous fungus Annulohypoxylon stygium. Appl Microbiol Biotechnol 2024; 108:374. [PMID: 38878128 PMCID: PMC11180157 DOI: 10.1007/s00253-024-13226-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/19/2024]
Abstract
2-Phenylethanol (2-PE) is an aromatic compound with a rose-like fragrance that is widely used in food and other industries. Yeasts have been implicated in the biosynthesis of 2-PE; however, few studies have reported the involvement of filamentous fungi. In this study, 2-PE was detected in Annulohypoxylon stygium mycelia grown in both potato dextrose broth (PDB) and sawdust medium. Among the 27 A. stygium strains investigated in this study, the strain "Jinjiling" (strain S20) showed the highest production of 2-PE. Under optimal culture conditions, the concentration of 2-PE was 2.33 g/L. Each of the key genes in Saccharomyces cerevisiae shikimate and Ehrlich pathways was found to have homologous genes in A. stygium. Upon the addition of L-phenylalanine to the medium, there was an upregulation of all key genes in the Ehrlich pathway of A. stygium, which was consistent with that of S. cerevisiae. A. stygium as an associated fungus provides nutrition for the growth of Tremella fuciformis and most spent composts of T. fuciformis contain pure A. stygium mycelium. Our study on the high-efficiency biosynthesis of 2-PE in A. stygium offers a sustainable solution by utilizing the spent compost of T. fuciformis and provides an alternative option for the production of natural 2-PE. KEY POINTS: • Annulohypoxylon stygium can produce high concentration of 2-phenylethanol. • The pathways of 2-PE biosynthesis in Annulohypoxylon stygium were analyzed. • Spent compost of Tremella fuciformis is a potential source for 2-phenylethanol.
Collapse
Affiliation(s)
- Qianwen Tong
- Mycological Research Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lizhi Yang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jinxiang Zhang
- Mycological Research Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yue Zhang
- Mycological Research Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuji Jiang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinrui Liu
- Mycological Research Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Youjin Deng
- Mycological Research Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
4
|
Wang S, Zhao F, Yang M, Lin Y, Han S. Metabolic engineering of Saccharomyces cerevisiae for the synthesis of valuable chemicals. Crit Rev Biotechnol 2024; 44:163-190. [PMID: 36596577 DOI: 10.1080/07388551.2022.2153008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/11/2022] [Accepted: 10/29/2022] [Indexed: 01/05/2023]
Abstract
In the twenty first century, biotechnology offers great opportunities and solutions to climate change mitigation, energy and food security and resource efficiency. The use of metabolic engineering to modify microorganisms for producing industrially significant chemicals is developing and becoming a trend. As a famous, generally recognized as a safe (GRAS) model microorganism, Saccharomyces cerevisiae is widely used due to its excellent operational convenience and high fermentation efficiency. This review summarizes recent advancements in the field of using metabolic engineering strategies to construct engineered S. cerevisiae over the past ten years. Five different types of compounds are classified by their metabolites, and the modified metabolic pathways and strategies are summarized and discussed independently. This review may provide guidance for future metabolic engineering efforts toward such compounds and analogues. Additionally, the limitations of S. cerevisiae as a cell factory and its future trends are comprehensively discussed.
Collapse
Affiliation(s)
- Shuai Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Fengguang Zhao
- School of Light Industry and Engineering, South China University of Technology, Guangzhou, China
| | - Manli Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Ying Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shuangyan Han
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
5
|
Yang Q, Liu S, Zhao Y, Han X, Chang R, Mao J. Enzymatic properties and inhibition tolerance analysis of key enzymes in β-phenylethanol anabolic pathway of Saccharomyces cerevisiae HJ. Synth Syst Biotechnol 2023; 8:772-783. [PMID: 38161995 PMCID: PMC10755794 DOI: 10.1016/j.synbio.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 01/03/2024] Open
Abstract
Huangjiu is known for its unique aroma, primarily attributed to its high concentration of β-phenylethanol (ranging from 40 to 130 mg/L). Phenylalanine aminotransferase Aro9p and phenylpyruvate decarboxylase Aro10p are key enzymes in the β-phenylethanol synthetic pathway of Saccharomyces cerevisiae HJ. This study examined the enzymatic properties of these two enzymes derived from S. cerevisiae HJ and S288C. After substrate docking, Aro9pHJ (-24.05 kJ/mol) and Aro10pHJ (-14.33 kJ/mol) exhibited lower binding free energies compared to Aro9pS288C (-21.93 kJ/mol) and Aro10pS288C (-12.84 kJ/mol). ARO9 and ARO10 genes were heterologously expressed in E. coli BL21. Aro9p, which was purified via affinity chromatography, showed inhibition by l-phenylalanine (L-PHE), but the reaction rate Vmax(Aro9pHJ: 23.89 μmol·(min∙g)-1) > Aro9pS288C: 21.3 μmol·(min∙g)-1) and inhibition constant Ki values (Aro9pHJ: 0.28 mol L-1>Aro9pS288C 0.26 mol L-1) indicated that Aro9p from S. cerevisiae HJ was more tolerant to substrate stress during Huangjiu fermentation. In the presence of the same substrate phenylpyruvate (PPY), Aro10pHJ exhibited a stronger affinity than Aro10pS288C. Furthermore, Aro9pHJ and Aro10pHJ were slightly more tolerant to the final metabolites β-phenylethanol and ethanol, respectively, compared to those from S288C. The study suggests that the mutations in Aro9pHJ and Aro10pHJ may contribute to the increased β-phenylethanol concentration in Huangjiu. This is the first study investigating enzyme tolerance mechanisms in terms of substrate and product, providing a theoretical basis for the regulation of the β-phenylethanol metabolic pathway.
Collapse
Affiliation(s)
- Qilin Yang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Shuangping Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang, 312000, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing, Zhejiang, 312000, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yuzong Zhao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xiao Han
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang, 312000, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing, Zhejiang, 312000, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Rui Chang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jian Mao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang, 312000, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing, Zhejiang, 312000, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
6
|
Álvarez-Barragán J, Mallard J, Ballester J, David V, Vichy S, Tourdot-Maréchal R, Alexandre H, Roullier-Gall C. Influence of spontaneous, "pied de cuve" and commercial dry yeast fermentation strategies on wine molecular composition and sensory properties. Food Res Int 2023; 174:113648. [PMID: 37981362 DOI: 10.1016/j.foodres.2023.113648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/21/2023]
Abstract
While most producers in recent decades have relied on commercial yeasts (ADY) as their primary choice given their reliability and reproducibility, the fear of standardising the taste and properties of wine has led to the employment of alternative strategies that involve autochthonous yeasts such as pied de cuve (PdC) and spontaneous fermentation (SF). However, the impact of different fermentation strategies on wine has been a subject of debate and speculation. Consequently, this study describes, for the first time, the differences between the three kinds of fermentation at the metabolomic, chemical, and sensory levels in two wines: Chardonnay and Pinot Noir. The results showed how the yeast chosen significantly impacted the molecular composition of the wines, as revealed by metabolomic analysis that identified biomarkers with varying chemical compositions according to the fermentation modality. Notably, higher numbers of lipid markers were found for SF and PdC than ADY, which contained more peptides. Key molecules from the metabolic amino acid pathway, which are addressed in this article, showed evidence of such variations. In addition, the analysis of volatile aromatic compounds revealed an increase in groups of compounds specific to each fermentation. The sensorial analysis of Chardonnay wine showed a more qualitative sensory outcome (Higher fruit intensity) for ADY and SF compared to PdC. Our finding challenges the common speculation among wine producers that autochthonous yeast fermentations may offer greater complexity and uniqueness in comparison to commercial yeast fermentations.
Collapse
Affiliation(s)
- Joyce Álvarez-Barragán
- Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France; Institut Universitaire de la Vigne et du Vin (IUVV), Rue Claude Ladrey, BP 27877, CEDEX, 21078 Dijon, France
| | - Jérôme Mallard
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne, Franche-Comté, 21000 Dijon, France
| | - Jordi Ballester
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne, Franche-Comté, 21000 Dijon, France
| | - Vanessa David
- Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France; Institut Universitaire de la Vigne et du Vin (IUVV), Rue Claude Ladrey, BP 27877, CEDEX, 21078 Dijon, France
| | - Stephania Vichy
- LiBiFOOD Research Group, Nutrition and Food Science Department-XaRTA-INSA, University of Barcelona, Food and Nutrition Torribera Campus, Avenida Prat de la Riba, 171. Edificio Gaudí, 08921 Santa Coloma de Gramenet, España
| | - Raphaëlle Tourdot-Maréchal
- Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France; Institut Universitaire de la Vigne et du Vin (IUVV), Rue Claude Ladrey, BP 27877, CEDEX, 21078 Dijon, France
| | - Hervé Alexandre
- Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France; Institut Universitaire de la Vigne et du Vin (IUVV), Rue Claude Ladrey, BP 27877, CEDEX, 21078 Dijon, France.
| | - Chloé Roullier-Gall
- Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France; Institut Universitaire de la Vigne et du Vin (IUVV), Rue Claude Ladrey, BP 27877, CEDEX, 21078 Dijon, France
| |
Collapse
|
7
|
Mastella L, Senatore VG, Guzzetti L, Coppolino M, Campone L, Labra M, Beltrani T, Branduardi P. First report on Vitamin B9 production including quantitative analysis of its vitamers in the yeast Scheffersomyces stipitis. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:98. [PMID: 36123695 PMCID: PMC9487109 DOI: 10.1186/s13068-022-02194-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/26/2022] [Indexed: 11/10/2022]
Abstract
Abstract
Background
The demand for naturally derived products is continuously growing. Nutraceuticals such as pre- and post-biotics, antioxidants and vitamins are prominent examples in this scenario, but many of them are mainly produced by chemical synthesis. The global folate market is expected to register a CAGR of 5.3% from 2019 to 2024 and reach USD 1.02 billion by the end of 2024. Vitamin B9, commonly known as folate, is an essential micronutrient for humans. Acting as a cofactor in one-carbon transfer reactions, it is involved in many biochemical pathways, among which the synthesis of nucleotides and amino acids. In addition to plants, many microorganisms can naturally produce it, and this can pave the way for establishing production processes. In this work, we explored the use of Scheffersomyces stipitis for the production of natural vitamin B9 by microbial fermentation as a sustainable alternative to chemical synthesis.
Results
Glucose and xylose are the main sugars released during the pretreatment and hydrolysis processes of several residual lignocellulosic biomasses (such as corn stover, wheat straw or bagasse). We optimized the growth conditions in minimal medium formulated with these sugars and investigated the key role of oxygenation and nitrogen source on folate production. Vitamin B9 production was first assessed in shake flasks and then in bioreactor, obtaining a folate production up to 3.7 ± 0.07 mg/L, which to date is the highest found in literature when considering wild type microorganisms. Moreover, the production of folate was almost entirely shifted toward reduced vitamers, which are those metabolically active for humans.
Conclusions
For the first time, the non-Saccharomyces yeast S. stipitis was used to produce folate. The results confirm its potential as a microbial cell factory for folate production, which can be also improved both by genetic engineering strategies and by fine-tuning the fermentation conditions and nutrient requirements.
Collapse
|
8
|
Guo D, Wu S, Fu X, Pan H. De Novo Biosynthesis of Methyl Cinnamate in Engineered Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7736-7741. [PMID: 35709502 DOI: 10.1021/acs.jafc.2c02638] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Methyl cinnamate with a fruity balsamic odor is an important fragrance ingredient in perfumes and cosmetics. Chemical processes are currently the only means of producing methyl cinnamate. But consumers prefer natural flavors. Therefore, it is necessary to design and develop microbial cell factories for the production of methyl cinnamate. In this study, we established for the first time a biosynthetic pathway in engineered Escherichia coli for production of methyl cinnamate from glucose. We further increased the methyl cinnamate production to 302 mg/L by increasing the availability of the metabolic precursors. Finally, the titer was increased to 458 mg/L in a two-phase culture system.
Collapse
Affiliation(s)
- Daoyi Guo
- Key Laboratory of Organo-Pharmaceutical Chemistry, Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Shaoting Wu
- Key Laboratory of Organo-Pharmaceutical Chemistry, Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Xiao Fu
- Key Laboratory of Organo-Pharmaceutical Chemistry, Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Hong Pan
- Key Laboratory of Organo-Pharmaceutical Chemistry, Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|