1
|
Khater DZ, Amin RS, Fetohi AE, Mahmoud M, El-Khatib KM. Insights on hexavalent chromium(VI) remediation strategies in abiotic and biotic dual chamber microbial fuel cells: electrochemical, physical, and metagenomics characterizations. Sci Rep 2023; 13:20184. [PMID: 37978236 PMCID: PMC10656525 DOI: 10.1038/s41598-023-47450-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
Hexavalent chromium [Cr(VI)] is one of the most carcinogenic and mutagenic toxins, and is commonly released into the environemt from different industries, including leather tanning, pulp and paper manufacturing, and metal finishing. This study aimed to investigate the performance of dual chamber microbial fuel cells (DMFCs) equipped with a biocathode as alternative promising remediation approaches for the biological reduction of hexavalent chromium [Cr(VI)] with instantaneous power generation. A succession batch under preliminary diverse concentrations of Cr(VI) (from 5 to 60 mg L-1) was conducted to investigate the reduction mechanism of DMFCs. Compared to abiotic-cathode DMFC, biotic-cathode DMFC exhibited a much higher power density, Cr(VI) reduction, and coulombic efficiency over a wide range of Cr(VI) concentrations (i.e., 5-60 mg L-1). Furthermore, the X-ray photoelectron spectroscopy (XPS) revealed that the chemical functional groups on the surface of biotic cathode DMFC were mainly trivalent chromium (Cr(III)). Additionally, high throughput sequencing showed that the predominant anodic bacterial phyla were Firmicutes, Proteobacteria, and Deinococcota with the dominance of Clostridiumsensu strict 1, Enterobacter, Pseudomonas, Clostridiumsensu strict 11 and Lysinibacillus in the cathodic microbial community. Collectively, our results showed that the Cr(VI) removal occurred through two different mechanisms: biosorption and bioelectrochemical reduction. These findings confirmed that the DMFC could be used as a bioremediation approach for the removal of Cr(VI) commonly found in different industrial wastewater, such as tannery effluents. with simultaneous bioenergy production.
Collapse
Affiliation(s)
- Dena Z Khater
- Chemical Engineering and Pilot Plant Department, Engineering Research and Renewable Energy Institute, National Research Centre, 33 El-Buhouth St., Dokki, Cairo, 12311, Egypt
| | - R S Amin
- Chemical Engineering and Pilot Plant Department, Engineering Research and Renewable Energy Institute, National Research Centre, 33 El-Buhouth St., Dokki, Cairo, 12311, Egypt
| | - Amani E Fetohi
- Chemical Engineering and Pilot Plant Department, Engineering Research and Renewable Energy Institute, National Research Centre, 33 El-Buhouth St., Dokki, Cairo, 12311, Egypt
| | - Mohamed Mahmoud
- Water Pollution Research Department, National Research Centre, 33 El-Buhouth St., Dokki, Cairo, 12311, Egypt
- Material and Manufacturing Engineering Department, Faculty of Engineering, Galala University, Galala City, Suez, 43511, Egypt
| | - K M El-Khatib
- Chemical Engineering and Pilot Plant Department, Engineering Research and Renewable Energy Institute, National Research Centre, 33 El-Buhouth St., Dokki, Cairo, 12311, Egypt.
| |
Collapse
|
2
|
Cerrillo M, Riau V, Bonmatí A. Recent Advances in Bioelectrochemical Systems for Nitrogen and Phosphorus Recovery Using Membranes. MEMBRANES 2023; 13:186. [PMID: 36837689 PMCID: PMC9966522 DOI: 10.3390/membranes13020186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/09/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Bioelectrochemical systems (BESs) have emerged as a technology that is able to recover resources from different kinds of substrates, especially wastewater. Nutrient recovery, mostly based on membrane reactor configuration, is a clear niche for BES application. The recovery of nitrogen or phosphorus allows for treatment of wastewater while simultaneously collecting a concentrated stream with nutrients that can be reintroduced into the system, becoming a circular economy solution. The aim of this study is to review recent advances in membrane-based BESs for nitrogen and phosphorus recovery and compare the recovery efficiencies and energy requirements of each system. Finally, there is a discussion of the main issues that arise from using membrane-based BESs. The results presented in this review show that it would be beneficial to intensify research on BESs to improve recovery efficiencies at the lowest construction cost in order to take the final step towards scaling up and commercialising this technology.
Collapse
|
3
|
Yadav A, Kumar P, Rawat D, Garg S, Mukherjee P, Farooqi F, Roy A, Sundaram S, Sharma RS, Mishra V. Microbial fuel cells for mineralization and decolorization of azo dyes: Recent advances in design and materials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154038. [PMID: 35202698 DOI: 10.1016/j.scitotenv.2022.154038] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Microbial fuel cells (MFCs) exhibit tremendous potential in the sustainable management of dye wastewater via degrading azo dyes while generating electricity. The past decade has witnessed advances in MFC configurations and materials; however, comprehensive analyses of design and material and its association with dye degradation and electricity generation are required for their industrial application. MFC models with high efficiency of dye decolorization (96-100%) and a wide variation in power generation (29.4-940 mW/m2) have been reported. However, only 28 out of 104 studies analyzed dye mineralization - a prerequisite to obviate dye toxicity. Consequently, the current review aims to provide an in-depth analysis of MFCs potential in dye degradation and mineralization and evaluates materials and designs as crucial factors. Also, structural and operation parameters critical to large-scale applicability and complete mineralization of azo dye were evaluated. Choice of materials, i.e., bacteria, anode, cathode, cathode catalyst, membrane, and substrate and their effects on power density and dye decolorization efficiency presented in review will help in economic feasibility and MFCs scalability to develop a self-sustainable solution for treating azo dye wastewater.
Collapse
Affiliation(s)
- Archana Yadav
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110 007, India
| | - Pankaj Kumar
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110 007, India
| | - Deepak Rawat
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110 007, India; Department of Environmental Studies, Janki Devi Memorial College, University of Delhi, Delhi 110060, India
| | - Shafali Garg
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110 007, India
| | - Paromita Mukherjee
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110 007, India
| | - Furqan Farooqi
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110 007, India
| | - Anurag Roy
- Environment and Sustainability Institute ESI Solar Lab, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
| | - Senthilarasu Sundaram
- Environment and Sustainability Institute ESI Solar Lab, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK; Electrical & Electronic Engineering, School of Engineering and the Built Environment, Edinburgh Napier University, Edinburgh EH10 5DT, UK
| | - Radhey Shyam Sharma
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110 007, India; Delhi School of Climate Change & Sustainability, Institute of Eminence, University of Delhi, Delhi 110007, India
| | - Vandana Mishra
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110 007, India.
| |
Collapse
|
4
|
Effect of β-cyclodextrin/polydopamine composite modified anode on the performance of microbial fuel cell. Bioprocess Biosyst Eng 2022; 45:855-864. [PMID: 35230555 DOI: 10.1007/s00449-022-02703-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/28/2022] [Indexed: 11/02/2022]
Abstract
The relatively weak microbial adhesion is a bottleneck in improving the power generation performance of microbial fuel cell (MFC). Anode modification is a simple and effective method to solve this problem. A new type of β-cyclodextrin/polydopamine modified carbon felt anode was prepared, and the effects of β-cyclodextrin/polydopamine modified anode on the main performance indexes such as power density and chemical oxygen demand (COD) removal rate of MFC were evaluated. The maximum power density and the output electric energy during the test period of MFC using the modified anode were 102 mW/m2 and 84.96 J, which were 364% and 295.3% higher than those of MFC with conventional carbon felt anode, respectively; and the COD removal rate was 124.4% higher than that of MFC with unmodified anode. Modifying the anode with β-cyclodextrin-polyacyclic composite materials is an effective method to improve the overall performance of MFC.
Collapse
|
5
|
Selvasembian R, Mal J, Rani R, Sinha R, Agrahari R, Joshua I, Santhiagu A, Pradhan N. Recent progress in microbial fuel cells for industrial effluent treatment and energy generation: Fundamentals to scale-up application and challenges. BIORESOURCE TECHNOLOGY 2022; 346:126462. [PMID: 34863847 DOI: 10.1016/j.biortech.2021.126462] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
Microbial fuel cells (MFCs) technology have the potential to decarbonize electricity generation and offer an eco-friendly route for treating a wide range of industrial effluents from power generation, petrochemical, tannery, brewery, dairy, textile, pulp/paper industries, and agro-industries. Despite successful laboratory-scale studies, several obstacles limit the MFC technology for real-world applications. This review article aimed to discuss the most recent state-of-the-art information on MFC architecture, design, components, electrode materials, and anodic exoelectrogens to enhance MFC performance and reduce cost. In addition, the article comprehensively reviewed the industrial effluent characteristics, integrating conventional technologies with MFCs for advanced resource recycling with a particular focus on the simultaneous bioelectricity generation and treatment of various industrial effluents. Finally, the article discussed the challenges, opportunities, and future perspectives for the large-scale applications of MFCs for sustainable industrial effluent management and energy recovery.
Collapse
Affiliation(s)
- Rangabhashiyam Selvasembian
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamilnadu, India
| | - Joyabrata Mal
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Uttar Pradesh, India
| | - Radha Rani
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Uttar Pradesh, India
| | - Rupika Sinha
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Uttar Pradesh, India
| | - Roma Agrahari
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Uttar Pradesh, India
| | - Ighalo Joshua
- Department of Chemical Engineering, Nnamdi Azikiwe University, Nigeria
| | - Arockiasamy Santhiagu
- School of Biotechnology, National Institute of Technology Calicut, Kozhikode, Kerala, India
| | - Nirakar Pradhan
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
6
|
Wang Y, Kuntke P, Saakes M, van der Weijden RD, Buisman CJN, Lei Y. Electrochemically mediated precipitation of phosphate minerals for phosphorus removal and recovery: Progress and perspective. WATER RESEARCH 2022; 209:117891. [PMID: 34875541 DOI: 10.1016/j.watres.2021.117891] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
Phosphorus (P) is an essential element for the growth and reproduction of organisms. Unfortunately, the natural P cycle has been broken by the overexploitation of P ores and the associated discharge of P into water bodies, which may trigger the eutrophication of water bodies in the short term and possible P shortage soon. Consequently, technologies emerged to recover P from wastewater to mitigate pollution and exploit secondary P resources. Electrochemically induced phosphate precipitation has the merit of achieving P recovery without dosing additional chemicals via creating a localized high pH environment near the cathode. We critically reviewed the development of electrochemically induced precipitation systems toward P removal and recovery over the past ten years. We summarized and discussed the effects of pH, current density, electrode configuration, and water matrix on the performance of electrochemical systems. Next to ortho P, we identified the potential and illustrated the mechanism of electrochemical P removal and recovery from non-ortho P compounds by combined anodic or anode-mediated oxidation and cathodic reduction (precipitation). Furthermore, we assessed the economic feasibility of electrochemical methods and concluded that they are more suitable for treating acidic P-rich waste streams. Despite promising potentials and significant progress in recent years, the application of electrochemical systems toward P recovery at a larger scale requires further research and development. Future work should focus on evaluating the system's performance under long-term operation, developing an automatic process for harvesting P deposits, and performing a detailed economic and life-cycle assessment.
Collapse
Affiliation(s)
- Yicheng Wang
- Wetsus, Centre of Excellence for Sustainable Water Technology, P.O. Box 1113, 8900CC Leeuwarden, The Netherlands; Environmental Technology, Wageningen University and Research, P.O. Box 17, 6700AA Wageningen, The Netherlands
| | - Philipp Kuntke
- Wetsus, Centre of Excellence for Sustainable Water Technology, P.O. Box 1113, 8900CC Leeuwarden, The Netherlands; Environmental Technology, Wageningen University and Research, P.O. Box 17, 6700AA Wageningen, The Netherlands
| | - Michel Saakes
- Wetsus, Centre of Excellence for Sustainable Water Technology, P.O. Box 1113, 8900CC Leeuwarden, The Netherlands
| | - Renata D van der Weijden
- Wetsus, Centre of Excellence for Sustainable Water Technology, P.O. Box 1113, 8900CC Leeuwarden, The Netherlands; Environmental Technology, Wageningen University and Research, P.O. Box 17, 6700AA Wageningen, The Netherlands
| | - Cees J N Buisman
- Wetsus, Centre of Excellence for Sustainable Water Technology, P.O. Box 1113, 8900CC Leeuwarden, The Netherlands; Environmental Technology, Wageningen University and Research, P.O. Box 17, 6700AA Wageningen, The Netherlands
| | - Yang Lei
- School of Environmental Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China; Wetsus, Centre of Excellence for Sustainable Water Technology, P.O. Box 1113, 8900CC Leeuwarden, The Netherlands; Environmental Technology, Wageningen University and Research, P.O. Box 17, 6700AA Wageningen, The Netherlands.
| |
Collapse
|
7
|
Ali AKM, Ali MEA, Younes AA, Abo El Fadl MM, Farag AB. Proton exchange membrane based on graphene oxide/polysulfone hybrid nano-composite for simultaneous generation of electricity and wastewater treatment. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126420. [PMID: 34166952 DOI: 10.1016/j.jhazmat.2021.126420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/27/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Microbial fuel cell (MFC) is a combined technology for simultaneous generation of electricity and wastewater treatment. In MFC, the proton exchange membrane (PEM) is an essential component affecting electricity generation. In the current study, two proton exchange membranes, namely sulfonated polyethersulfone (SPES) and graphene oxide/sulfonated -polyethersulfone hybrid nanocomposite (GO-SPES), were prepared and characterized using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The collected information confirmed the successful preparation of the membranes. Moreover, contact angle measurements, ion exchange capacity and degree of sulfonation of the prepared membranes were determined. The results showed that the introduction of GO nanoparticles into SPES membrane improved its proton exchange capability and resulted in better performance. The power density and the current generated from SPES membrane were 60 mW/m2 and 425 mA/m2, respectively. For GO-SPES, the obtained power density was 101.2 mW/m2 and the current was 613 mA/m2. Both membranes showed comparable chemical oxygen demand (COD) removal efficiency of about 80%; suggesting that the prepared membranes are working efficiently in wastewater treatment as PEMs in MFCs. As a final point, the performance of GO-SPES membrane was compared to the performance of the well-known Nafion® 117 membrane and the results were promising. To conclude, the GO-SPES membrane is an outstanding membrane for use as PEM in MFCs for simultaneous generation of electricity and wastewater treatment.
Collapse
Affiliation(s)
- Amira K M Ali
- Egypt Desalination Research Center of Excellence (EDRC) & Hydrogeochemistry Department, Desert Research Center, Cairo 11753, Egypt
| | - Mohamed E A Ali
- Egypt Desalination Research Center of Excellence (EDRC) & Hydrogeochemistry Department, Desert Research Center, Cairo 11753, Egypt
| | - Ahmed A Younes
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt.
| | - Moustafa M Abo El Fadl
- Egypt Desalination Research Center of Excellence (EDRC) & Hydrogeochemistry Department, Desert Research Center, Cairo 11753, Egypt
| | - A B Farag
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
8
|
Liu N, Yun Y, Hu L, Xin L, Han M, Zhang P. Study on Start-Up Membraneless Anaerobic Baffled Reactor Coupled with Microbial Fuel Cell for Dye Wastewater Treatment. ACS OMEGA 2021; 6:23515-23527. [PMID: 34549148 PMCID: PMC8444317 DOI: 10.1021/acsomega.1c03560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
In this study, the antitoxicity performance of the traditional anaerobic baffled reactor (ABR) and the newly constructed membraneless anaerobic baffled reactor coupled with microbial fuel cell (ABR-MFC) was compared for the treatment of simulated printing and dyeing wastewater under the same hydraulic residence time. The sludge performances of ABR-MFC and ABR were evaluated on the dye removal rate, extracellular polymer (EPS) content, sludge particle size, methane yield, and the surface morphology of granular sludge. It was found that the maximum power density of the ABR-MFC reactor reached 1226.43 mW/m3, indicating that the coupled system has a good power generation capacity. The concentration of the EPS in the ABR-MFC reactor was about 3 times that in the ABR, which could be the result of the larger average particle size of sludge in the ABR-MFC reactor than in the ABR. The dye removal rate of the ABR-MFC reactor (91.71%) was higher than that of the ABR (1.49%). The methane production and microbial species in the ABR-MFC system were higher than those in the ABR. Overall, the MFC embedded in the ABR can effectively increase the resistance of the reactor, promote the formation of granular sludge, and improve the performance of the reactor for wastewater treatment.
Collapse
|