1
|
Moktip T, Salaipeth L, Cope AE, Taherzadeh MJ, Watanabe T, Phitsuwan P. Current Understanding of Feather Keratin and Keratinase and Their Applications in Biotechnology. Biochem Res Int 2025; 2025:6619273. [PMID: 40308531 PMCID: PMC12041636 DOI: 10.1155/bri/6619273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/29/2025] [Indexed: 05/02/2025] Open
Abstract
The food industry generates substantial keratin waste, particularly chicken feathers, which are rich in amino acids and essential nutrients. However, the insolubility of keratin presents a significant challenge to its conversion. Keratinase, an enzyme produced by certain fungi and bacteria, offers a promising solution by degrading feather keratin into amino acids and soluble proteins. Among these, bacterial keratinase is notable for its superior stability and activity, although its production remains constrained, necessitating continued research to identify efficient microbial strains. Keratin-derived hydrolyzates, recognized for their biological and immunological properties, have garnered significant research interest. This review examines the structural characteristics of chicken feather keratin, its resistance to conventional proteases, and advances in keratinase production and purification techniques. Additionally, the keratin degradation mechanism and the adoption of environmentally friendly technologies for managing feather waste are explored. Finally, the review highlights the potential applications of keratinase across diverse industries, including animal feed and cosmetics.
Collapse
Affiliation(s)
- Thanakorn Moktip
- LigniTech-Lignin Technology Research Group, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkuntien, Bangkok 10150, Thailand
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkuntien, Bangkok 10150, Thailand
| | - Lakha Salaipeth
- LigniTech-Lignin Technology Research Group, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkuntien, Bangkok 10150, Thailand
- Natural Resource Management and Sustainability, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkuntien, Bangkok 10150, Thailand
| | - Ana Eusebio Cope
- Future Genetic Resources Cluster, Rice Breeding Innovation Platform, IRRI, Los Banos, Philippines
| | | | - Takashi Watanabe
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto 611-0011, Japan
| | - Paripok Phitsuwan
- LigniTech-Lignin Technology Research Group, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkuntien, Bangkok 10150, Thailand
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkuntien, Bangkok 10150, Thailand
| |
Collapse
|
2
|
Bagewadi ZK, Illanad GH, Khan TMY, Shamsudeen SM, Mulla SI. Anticancer, antioxidant and antibacterial potential of L-Glutaminase (Streptomyces roseolus strain ZKB1) capped silver and zinc oxide nanoparticles and its molecular characterization. BIORESOUR BIOPROCESS 2025; 12:23. [PMID: 40121594 PMCID: PMC11930913 DOI: 10.1186/s40643-025-00857-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/25/2025] [Indexed: 03/25/2025] Open
Abstract
The current investigation reports anti-cancer, antioxidant and antibacterial potential of L-Glutaminase (Streptomyces roseolus strain ZKB1) and L-Glutaminase capped nanoparticles. The highest L-Glutaminase production of 9.57 U/mL was achieved on the 4th day of fermentation when L-Glutamine was used as the sole carbon and nitrogen source. Enhanced recycling stability was observed after 6 cycles using L-Glutaminase immobilized in 3% agar and agarose matrices. Free and immobilized L- Glutaminase showed Km of 13.89 ± 0.8 and 7.13 ± 0.3 mM and Vmax of 18.40 ± 1.5 and 24.21 ± 1.7 U/mg respectively. L- Glutaminase capped silver (AgNP) and zinc oxide (ZnONP) nanoparticles were synthesized and structurally characterized using UV visible spectroscopy, FTIR, SEM-EDS, XRD and AFM. L- Glutaminase capped AgNP and ZnONP exhibited good thermal stability with five and three stages weight loss pattern respectively based on TGA. L-Glutaminase capped AgNP exhibited highest inhibitory activity against B. subtilis (45 ± 0.5 mm) and E. coli (33 ± 0.8 mm) whereas, L-Glutaminase capped ZnONP demonstrated highest inhibition against E. coli (30 ± 0.3 mm) and B. cereus (25 ± 0.5 mm). Increased nanoparticles concentration exhibited increased inhibitory potential as compared to wild L-Glutaminase and lowest MIC of 0.09 µg/mL was exhibited against B. cereus. L-Glutaminase capped nanoparticles demonstrated significant antioxidant properties through in-vitro ABTS and DPPH radical scavenging assays in a dosage-dependent manner. L-Glutaminase and capped AgNP and ZnONP, demonstrated pronounced cell cytotoxicity against MCF-7 cancerous cell line with 57.17 µg/mL, 8.13 µg/mL and 28.31 µg/mL IC50 values respectively, suggesting promising properties as anticancer agents in enzyme-based therapy. The results reveal promising biological activities with potential applications in healthcare sector.
Collapse
Affiliation(s)
- Zabin K Bagewadi
- Department of Biotechnology, KLE Technological University, Vidyanagar, Hubballi, Karnataka, 580031, India.
| | - Gouri H Illanad
- Department of Biotechnology, KLE Technological University, Vidyanagar, Hubballi, Karnataka, 580031, India
| | - T M Yunus Khan
- Department of Mechanical Engineering, College of Engineering, King Khalid University, 61421, Abha, Saudi Arabia
| | - Shaik Mohamed Shamsudeen
- Department of Diagnostic Dental Science and Oral Biology, College of Dentistry, King Khalid University, 61421, Abha, Saudi Arabia
| | - Sikandar I Mulla
- Department of Biochemistry, School of Applied Sciences, REVA University, Bangalore, 560064, India
| |
Collapse
|
3
|
Fan X, Lin Y, Wang S, Zhao Q, Chen Y, Zhang Q, Qiu J. Biodegradation of different keratin waste by newly isolated thermophilic Brevibacillus gelatini LD5: Insights into the degradation mechanism based on genomic analysis and keratin structural changes. Int J Biol Macromol 2024; 283:137757. [PMID: 39577518 DOI: 10.1016/j.ijbiomac.2024.137757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/08/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024]
Abstract
Keratin is an abundant environmental solid waste. This work isolated a thermophilic strain from a hot spring with efficient keratinolytic ability. The strain was identified and named as Brevibacillus gelatini LD5 based on whole-genome sequence analysis. The strain has genes related to keratin degradation, including disulfide reduction, keratin denaturation, protein proteolysis and metabolism of amino acids. The keratinases derived from this strain were the endo-acting M4, M16 and S8 proteases, exo-acting S9 protease and oligo-acting M3 and M32 peptidases via Conserved Unique Peptide Patterns (CUPP) prediction. The LD5 can degrade different keratin biomass, e.g. chicken feathers (CF), goose feathers (GF), pig hair (PH), cat hair (CH) and dog hair (DH). The degradation rate of CF was 62.45 % after 24-h fermentation. The hydrolysates from different keratin biomass have all shown keratinolytic activity, antioxidant and antiradical activities. The random structure of keratin was easier to be degraded by LD5 from Fourier transform infrared (FT-IR) analysis. The optimum temperature-pH conditions of the keratinases were 79.8 °C and pH 7.5, and thermal stability of the keratinases reached 71.5 min at 70 °C. These results demonstrated that B. gelatini LD5 has potential application in keratin wastes biodegradation and thermal stable keratinase production.
Collapse
Affiliation(s)
- Xuefen Fan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yicen Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Shaobin Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Qianbin Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yuan Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Qi Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Jingwen Qiu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
4
|
Shettar SS, Bagewadi ZK, Yunus Khan T, Mohamed Shamsudeen S, Kolvekar HN. Biochemical characterization of immobilized recombinant subtilisin and synthesis and functional characterization of recombinant subtilisin capped silver and zinc oxide nanoparticles. Saudi J Biol Sci 2024; 31:104009. [PMID: 38766505 PMCID: PMC11101740 DOI: 10.1016/j.sjbs.2024.104009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024] Open
Abstract
This pioneering research explores the transformative potential of recombinant subtilisin, emphasizing its strategic immobilization and nanoparticle synthesis to elevate both stability and therapeutic efficacy. Achieving an impressive 95.25 % immobilization yield with 3 % alginate composed of sodium along with 0.2 M CaCl2 indicates heightened pH levels and thermal resistance, with optimal action around pH 10 as well as 80 °C temperature. Notably, the Ca-alginate-immobilized subtilisin exhibits exceptional storage longevity and recyclability, affirming its practical viability. Comprehensive analyses of the recombinant subtilisin under diverse conditions underscore its adaptability, reflected in kinetic enhancements with increased Vmax (10.7 ± 15 × 103 U/mg) and decreased Km (0.19 ± 0.3 mM) values post-immobilization using N-Suc-F-A-A-F-pNA. UV-visible spectroscopy confirms the successful capping of nanoparticles made of Ag and ZnO by recombinant subtilisin, imparting profound antibacterial efficacy against diverse organisms and compelling antioxidant properties. Cytotoxicity was detected against the MCF-7 breast cancer line of cells, exhibiting IC50 concentrations at 8.87 as well as 14.52 µg/mL of AgNP as well as ZnONP, correspondingly, indicating promising anticancer potential. Rigorous characterization, including FTIR, SEM-EDS, TGA and AFM robustly validate the properties of the capped nanoparticles. Beyond therapeutic implications, the investigation explores industrial applications, revealing the versatility of recombinant subtilisin in dehairing, blood clot dissolution, biosurfactant activity, and blood stain removal. In summary, this research unfolds the exceptional promise of recombinant subtilisin and its nanoparticles, presenting compelling opportunities for diverse therapeutic applications in medicine. These findings contribute substantively to biotechnology and healthcare and stimulate avenues for further innovation and exploration.
Collapse
Affiliation(s)
- Shreya S. Shettar
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Zabin K. Bagewadi
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - T.M. Yunus Khan
- Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Shaik Mohamed Shamsudeen
- Department of Diagnostic Dental Science and Oral Biology, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia
| | - Harsh N. Kolvekar
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| |
Collapse
|
5
|
Li K, Li G, Liang Y, Zhang R, Peng S, Tan M, Ma D. Structural and enzymatic characterization of a novel metallo-serine keratinase KerJY-23. Int J Biol Macromol 2024; 260:129659. [PMID: 38266845 DOI: 10.1016/j.ijbiomac.2024.129659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/02/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
KerJY-23 was a novel keratinase from feather-degrading Ectobacillus sp. JY-23, but its enzymatic characterization and structure are still unclear. In this study, the KerJY-23 was obtained by heterologous expression in Escherichia coli BL21(DE3), and enzymatic properties indicated that KerJY-23 was optimal at 60 °C and pH 9.0 and could be promoted by divalent metal ions or reducing agents. Furthermore, KerJY-23 had a broad substrate specificity towards casein, soluble keratin, and expanded feather powder, but its in vitro degradation against chicken feathers required an additional reducing agent. Homology modeling indicated that KerJY-23 contained a highly conserved zinc-binding HELTH motif and a His-Asp-Ser catalytic triad that belonged to the typical characteristics of M4-family metallo-keratinase and serine-keratinase, respectively. Molecular docking revealed that KerJY-23 achieved a reinforced binding on feather keratin via abundant hydrogen bonding interactions. This work not only deepened understanding of the novel and interesting metallo-serine keratinase KerJY-23, but also provided a theoretical basis for realizing the efficient use of waste feather keratin.
Collapse
Affiliation(s)
- Kuntai Li
- College of Food Science and Technology of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Ganghui Li
- College of Food Science and Technology of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Yingyin Liang
- College of Food Science and Technology of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Rong Zhang
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shuaiying Peng
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Minghui Tan
- College of Food Science and Technology of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Donglin Ma
- College of Food Science and Technology of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China.
| |
Collapse
|
6
|
Shettar SS, Bagewadi ZK, Yaraguppi DA, Das S, Mahanta N, Singh SP, Katti A, Saikia D. Gene expression and molecular characterization of recombinant subtilisin from Bacillus subtilis with antibacterial, antioxidant and anticancer properties. Int J Biol Macromol 2023; 249:125960. [PMID: 37517759 DOI: 10.1016/j.ijbiomac.2023.125960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 06/12/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023]
Abstract
This study investigated the multifunctional attributes such as, antibacterial, antioxidant and anticancer potential of recombinant subtilisin. A codon-optimized subtilisin gene was synthesized from Bacillus subtilis and was successfully transformed into E. coli DH5α cells which was further induced for high level expression in E. coli BL21 (DE3). An affinity purified ~40 kDa recombinant subtilisin was obtained that revealed to be highly alkali-thermostable based on the thermodynamic parameters. The kinetic parameters were deduced that indicated higher affinity of N-Suc-F-A-A-F-pNA substrate towards subtilisin. Recombinant subtilisin demonstrated strong antibacterial activity against several pathogens and showed minimum inhibitory concentration of 0.06 μg/mL against B. licheniformis and also revealed high stability under the influence of several biochemical factors. It also displayed antioxidant potential in a dose dependent manner and exhibited cell cytotoxicity against A549 and MCF-7 cancerous cell lines with IC50 of 5 μM and 12 μM respectively. The identity of recombinant subtilisin was established by MALDI-TOF mass spectrum depicting desired mass peaks and N-terminal sequence as MRSK by MALDI-TOF-MS. The deduced N- terminal amino acid sequence by Edman degradation revealed high sequence similarity with subtilisins from Bacillus strains. The structural and functional analysis of recombinant antibacterial subtilisin was elucidated by Raman, circular dichroism and nuclear magnetic resonance spectroscopy and thermogravimetric analysis. The results contribute to the development of highly efficient subtilisin with enhanced catalytic properties making it a promising candidate for therapeutic applications in healthcare industries.
Collapse
Affiliation(s)
- Shreya S Shettar
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Zabin K Bagewadi
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India.
| | - Deepak A Yaraguppi
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Simita Das
- Department of Chemistry, Indian Institute of Technology, Dharwad, Karnataka 580011, India
| | - Nilkamal Mahanta
- Department of Chemistry, Indian Institute of Technology, Dharwad, Karnataka 580011, India
| | - Surya P Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Karnataka 580011, India
| | - Aditi Katti
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Dimple Saikia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Karnataka 580011, India
| |
Collapse
|
7
|
Devi S, Chauhan A, Bishist R, Sankhyan N, Rana K, Sharma N. Production, partial purification and efficacy of keratinase from Bacillus halotolerans L2EN1 isolated from the poultry farm of Himachal Pradesh as a potential laundry additive. BIOCATAL BIOTRANSFOR 2022. [DOI: 10.1080/10242422.2022.2029851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Sunita Devi
- Department of Basic Sciences, Dr YS Parmar University of Horticulture and Forestry Nauni, Solan, India
| | - Aishwarya Chauhan
- Department of Basic Sciences, Dr YS Parmar University of Horticulture and Forestry Nauni, Solan, India
| | - Rohit Bishist
- Department of Silviculture and Agroforestry, College of Forestry, Dr Y S Parmar University of Horticulture and Forestry, Nauni, Solan, India
| | - Neeraj Sankhyan
- Department of Basic Sciences, Dr YS Parmar University of Horticulture and Forestry Nauni, Solan, India
| | - Kavita Rana
- Department of Basic Sciences, Dr YS Parmar University of Horticulture and Forestry Nauni, Solan, India
| | - Nisha Sharma
- Department of Basic Sciences, Dr YS Parmar University of Horticulture and Forestry Nauni, Solan, India
| |
Collapse
|
8
|
A substrate protection approach to applying the calcium ion for improving the proteolysis resistance of the collagen. Appl Microbiol Biotechnol 2021; 105:9191-9209. [PMID: 34841465 DOI: 10.1007/s00253-021-11704-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/16/2021] [Accepted: 11/20/2021] [Indexed: 10/19/2022]
Abstract
Enzymatic dehairing, as a crucial part of cleaner leather processing, has reached processive advancement with potentially replacing the traditional hair removal due to increasing pressure from environmental demand. However, this cleaner technology based on proteases has a problem that the hide grain (collagen-rich structure) is susceptible to be hydrolyzed, decreasing the quality of finished leather. From the perspective of improving the stability of collagen fibers and their resistance to proteolysis, a method for protecting the hide grain during the enzymatic dehairing process was developed. The results showed that calcium ions had a swelling effect on collagen fibers under near-neutral conditions (pH 6.0-10.0), decreasing the thermal stability of collagen and the proteolysis resistance of collagen significantly. The alkaline environment (pH 10.0-12.0) will promote the dissociation of carboxyl groups in hide collagen, promoting the combination of calcium ions and carboxyl groups. This strategy can change the surface charge of collagen fibers and strengthen the connection between collagen fibers, thus improving protease resistance and the thermal stability of collagen. However, collagen fibers could swell violently once the alkalinity of the solution environment was extreme. Despite the above situation, calcium ion was still conducive to maintain the structural stability of collagen fibers. At pH 10.0-12.0, pretreating animal hide with a solution containing calcium ions can improve the protease resistance of hide grain, making the hide grain well-protected. This method provided an effective way to establish a safer enzymatic unhairing technology based on substrate protection. KEY POINTS: • A collagen protection method for hair removal of animal hide was developed. • This method applied calcium ions to collagen at alkaline conditions (pH 10.0-12.0). • Pretreatment results of calcium ions at different pH values on animal hide were compared.
Collapse
|
9
|
Kee PE, Yim HS, Kondo A, Lan JCW, Ng HS. Evaluation of Aqueous Biphasic Electrophoresis System Based on Halide-Free Ionic Liquids for Direct Recovery of Keratinase. Mar Drugs 2021; 19:463. [PMID: 34436302 PMCID: PMC8398788 DOI: 10.3390/md19080463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 11/17/2022] Open
Abstract
Aqueous biphasic electrophoresis system (ABES) incorporates electric fields into the biphasic system to separate the target biomolecules from crude feedstock. Ionic liquid (IL) is regarded as an excellent candidate as the phase-forming components for ABES because of the great electrical conductivity, which can promote the electromigration of biomolecules in ABES, and thereby enhances the separation efficiency of the target biomolecules from crude feedstock. The application of electric fields to the conventional biphasic system expedites the phase settling time of the biphasic system, which eases the subsequent scaling-up steps and reduces the overall processing time of the recovery process. Alkyl sulphate-based IL is a green and economical halide-free surfactant when compared to the other halide-containing IL. The feasibility of halide-free IL-based ABES to recover Kytococcus sedentarius TWHK01 keratinase was studied. Optimum partition coefficient (Ke = 7.53 ± 0.35) and yield (YT = 80.36% ± 0.71) were recorded with IL-ABES comprised of 15.0% (w/w) [EMIM][ESO4], 20.0% (w/w) sodium carbonate and 15% (w/w) crude feedstock. Selectivity (S) of 5.75 ± 0.27 was obtained with the IL-ABES operated at operation time of 5 min with 10 V voltage supplied. Halide-free IL is proven to be a potential phase-forming component of IL-ABES for large-scale recovery of keratinase.
Collapse
Affiliation(s)
- Phei Er Kee
- Faculty of Applied Sciences, UCSI University, UCSI Heights, Cheras, Kuala Lumpur 56000, Malaysia; (P.E.K.); (H.S.Y.)
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Chungli, Taoyuan 320, Taiwan
| | - Hip Seng Yim
- Faculty of Applied Sciences, UCSI University, UCSI Heights, Cheras, Kuala Lumpur 56000, Malaysia; (P.E.K.); (H.S.Y.)
| | - Akihiko Kondo
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan;
| | - John Chi-Wei Lan
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Chungli, Taoyuan 320, Taiwan
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, No. 135 Yuan-Tung Road, Chungli, Taoyuan 320, Taiwan
| | - Hui Suan Ng
- Faculty of Applied Sciences, UCSI University, UCSI Heights, Cheras, Kuala Lumpur 56000, Malaysia; (P.E.K.); (H.S.Y.)
| |
Collapse
|