1
|
Chen W, Huang L, Zhou B. Gold nanourchin on multiple-point dielectrode for glucose biosensing by current-potential measurement. Biotechnol Appl Biochem 2024; 71:1262-1271. [PMID: 38867452 DOI: 10.1002/bab.2626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024]
Abstract
Gestational diabetes (GD) is a condition characterized by elevated blood sugar levels during pregnancy. GD poses various health risks, such as serious birth injuries, the need for cesarean delivery, and the necessity of newborn care. Monitoring glucose levels is essential for ensuring safe delivery and reducing the risks to both the mother and fetus. Various sensors are readily available for monitoring glucose levels, and researchers are continually working to develop highly sensitive glucose sensors. This research aimed to develop a gold nanourchin (AuNU)-hybrid biosensor for quantifying glucose on a multi-point electrode sensor. Glucose oxidase (GOx) was attached to the AuNU and seeded on the sensing surface using an amine linker. The current-potential (1-2 V at 0.1 V sweep) was recorded for the GOx-glucose interaction, with a limit of detection of 560 μM and a regression coefficient (R2) of 0.9743 [y = 0.9106x - 0.9953] on the linear curve. The sensitivity was estimated to be 3.5 mAcm-2M-1. Furthermore, control experiments with galactose, sucrose, and fructose did not yield an increase in current-potential, confirming specific glucose detection. This experiment helps in monitoring glucose levels to manage conditions associated with GD.
Collapse
Affiliation(s)
- Wei Chen
- Department of Obstetrics (Guoxing), Haikou Hospital of The Maternal and Child Health, Haikou, Hainan Province, China
| | - Lili Huang
- Department of Obstetrics (Guoxing), Haikou Hospital of The Maternal and Child Health, Haikou, Hainan Province, China
| | - Bing Zhou
- Department of Obstetrics (Guoxing), Haikou Hospital of The Maternal and Child Health, Haikou, Hainan Province, China
| |
Collapse
|
2
|
Gopinath SCB. Response to Article "Ultrasensitive Hierarchical AuNRs@SiO 2@Ag SERS Probes for Enrichment and Detection of Insulin and C-Peptide in Serum" [Letter]. Int J Nanomedicine 2024; 19:11161-11162. [PMID: 39502634 PMCID: PMC11537192 DOI: 10.2147/ijn.s502364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024] Open
Affiliation(s)
- Subash C B Gopinath
- Center for Global Health Research, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, 602 105, India
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| |
Collapse
|
3
|
Hwang YM, Piekos SN, Paquette AG, Wei Q, Price ND, Hood L, Hadlock JJ. Accelerating adverse pregnancy outcomes research amidst rising medication use: parallel retrospective cohort analyses for signal prioritization. BMC Med 2024; 22:495. [PMID: 39456023 PMCID: PMC11520034 DOI: 10.1186/s12916-024-03717-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Pregnant women are significantly underrepresented in clinical trials, yet most of them take medication during pregnancy despite the limited safety data. The objective of this study was to characterize medication use during pregnancy and apply propensity score matching method at scale on patient records to accelerate and prioritize the drug effect signal detection associated with the risk of preterm birth and other adverse pregnancy outcomes. METHODS This was a retrospective study on continuously enrolled women who delivered live births between 2013/01/01 and 2022/12/31 (n = 365,075) at Providence St. Joseph Health. Our exposures of interest were all outpatient medications prescribed during pregnancy. We limited our analyses to medication that met the minimal sample size (n = 600). The primary outcome of interest was preterm birth. Secondary outcomes of interest were small for gestational age and low birth weight. We used propensity score matching at scale to evaluate the risk of these adverse pregnancy outcomes associated with drug exposure after adjusting for demographics, pregnancy characteristics, and comorbidities. RESULTS The total medication prescription rate increased from 58.5 to 75.3% (P < 0.0001) from 2013 to 2022. The prevalence rate of preterm birth was 7.7%. One hundred seventy-five out of 1329 prenatally prescribed outpatient medications met the minimum sample size. We identified 58 medications statistically significantly associated with the risk of preterm birth (P ≤ 0.1; decreased: 12, increased: 46). CONCLUSIONS Most pregnant women are prescribed medication during pregnancy. This highlights the need to utilize existing real-world data to enhance our knowledge of the safety of medications in pregnancy. We narrowed down from 1329 to 58 medications that showed statistically significant association with the risk of preterm birth even after addressing numerous covariates through propensity score matching. This data-driven approach demonstrated that multiple testable hypotheses in pregnancy pharmacology can be prioritized at scale and lays the foundation for application in other pregnancy outcomes.
Collapse
Affiliation(s)
- Yeon Mi Hwang
- Institute for Systems Biology, Seattle, WA, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, USA
- Center for Biomedical Informatics Research, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Alison G Paquette
- Institute for Systems Biology, Seattle, WA, USA
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, Division of Genetic Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Qi Wei
- Institute for Systems Biology, Seattle, WA, USA
| | - Nathan D Price
- Institute for Systems Biology, Seattle, WA, USA
- Buck Institute for Research On Aging, Novato, CA, USA
- Thorne Healthtech, New York, NY, USA
| | - Leroy Hood
- Institute for Systems Biology, Seattle, WA, USA
- Buck Institute for Research On Aging, Novato, CA, USA
- Phenome Health, Seattle, WA, USA
| | - Jennifer J Hadlock
- Institute for Systems Biology, Seattle, WA, USA.
- Department of Biomedical Informatics and Medical Education, School of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
4
|
Mohammadpour-Haratbar A, Mohammadpour-Haratbar S, Zare Y, Rhee KY, Park SJ. A Review on Non-Enzymatic Electrochemical Biosensors of Glucose Using Carbon Nanofiber Nanocomposites. BIOSENSORS 2022; 12:bios12111004. [PMID: 36421123 PMCID: PMC9688744 DOI: 10.3390/bios12111004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 05/09/2023]
Abstract
Diabetes mellitus has become a worldwide epidemic, and it is expected to become the seventh leading cause of death by 2030. In response to the increasing number of diabetes patients worldwide, glucose biosensors with high sensitivity and selectivity have been developed for rapid detection. The selectivity, high sensitivity, simplicity, and quick response of electrochemical biosensors have made them a popular choice in recent years. This review summarizes the recent developments in electrodes for non-enzymatic glucose detection using carbon nanofiber (CNF)-based nanocomposites. The electrochemical performance and limitations of enzymatic and non-enzymatic glucose biosensors are reviewed. Then, the recent developments in non-enzymatic glucose biosensors using CNF composites are discussed. The final section of the review provides a summary of the challenges and perspectives, for progress in non-enzymatic glucose biosensors.
Collapse
Affiliation(s)
- Ali Mohammadpour-Haratbar
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1949635881, Iran
| | | | - Yasser Zare
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1949635881, Iran
- Correspondence: (Y.Z.); (K.Y.R.); (S.-J.P.)
| | - Kyong Yop Rhee
- Department of Mechanical Engineering (BK21 Four), College of Engineering, Kyung Hee University, Yongin 17104, Korea
- Correspondence: (Y.Z.); (K.Y.R.); (S.-J.P.)
| | - Soo-Jin Park
- Department of Chemistry, Inha University, Incheon 22212, Korea
- Correspondence: (Y.Z.); (K.Y.R.); (S.-J.P.)
| |
Collapse
|
5
|
Du Y, Zhang X, Liu P, Yu DG, Ge R. Electrospun nanofiber-based glucose sensors for glucose detection. Front Chem 2022; 10:944428. [PMID: 36034672 PMCID: PMC9403008 DOI: 10.3389/fchem.2022.944428] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/30/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetes is a chronic, systemic metabolic disease that leads to multiple complications, even death. Meanwhile, the number of people with diabetes worldwide is increasing year by year. Sensors play an important role in the development of biomedical devices. The development of efficient, stable, and inexpensive glucose sensors for the continuous monitoring of blood glucose levels has received widespread attention because they can provide reliable data for diabetes prevention and diagnosis. Electrospun nanofibers are new kinds of functional nanocomposites that show incredible capabilities for high-level biosensing. This article reviews glucose sensors based on electrospun nanofibers. The principles of the glucose sensor, the types of glucose measurement, and the glucose detection methods are briefly discussed. The principle of electrospinning and its applications and advantages in glucose sensors are then introduced. This article provides a comprehensive summary of the applications and advantages of polymers and nanomaterials in electrospun nanofiber-based glucose sensors. The relevant applications and comparisons of enzymatic and non-enzymatic nanofiber-based glucose sensors are discussed in detail. The main advantages and disadvantages of glucose sensors based on electrospun nanofibers are evaluated, and some solutions are proposed. Finally, potential commercial development and improved methods for glucose sensors based on electrospinning nanofibers are discussed.
Collapse
Affiliation(s)
- Yutong Du
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Xinyi Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Ping Liu
- The Base of Achievement Transformation, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
- Institute of Orthopaedic Basic and Clinical Transformation, University of Shanghai for Science and Technology, Shanghai, China
- Shidong Hospital, Shanghai, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Ruiliang Ge
- Department of Outpatient, the Third Afiliated Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|