1
|
Krishnan S, Venkatachalam P, Shanmugam SR, Paramasivam N. Fractional inhibitory concentration of bio-actives from agricultural waste disassembles biofilms and quenches virulence of nosocomial pathogens. J Med Microbiol 2025; 74. [PMID: 40100248 PMCID: PMC11920071 DOI: 10.1099/jmm.0.001980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
Introduction. The contact surfaces in hospitals serve as reservoirs for pathogens and account for 20-40% of hospital-acquired infections. This resistance is mainly attributed to the biofilm-forming ability of the microbes. These biofilms restrict the entry of the antibiotics to penetrate them, thus giving rise to drug resistance. Hence, there is a renewed interest in formulating an environmentally friendly, non-allergic, quick mode of action, broad-spectrum disinfectant.Hypothesis. We hypothesize that the pure compounds present in the pyrolysis aqueous phase could act as an anti-infective and anti-biofilm agent.Aim. The present work investigates the effectiveness of furfuryl alcohol, 2-methyl-2-cyclopentenone and guaiacol as effective anti-infective agent followed by testing its biofilm eradication potential against the mixed species of multidrug-resistant pathogens such as Acinetobacter baumannii, methicillin-resistant Staphylococcus aureus and Candida auris.Methodology. The MIC and fractional inhibitory concentrations (FIC) of the pure compounds were determined using checkerboard assay for two-compound and three-compound combinations. The biofilm eradication concentration was performed on stainless coupons, followed by RNA isolation and quantitative PCR (qPCR) analysis to elucidate virulence gene downregulation.Results. The individual MICs of furfuryl alcohol, 2-methyl-2-cyclopentenone and guaiacol were found to be 8%, 9% and 2% (v/v), respectively. The two-compound combination FIC index of 0.75 showed partial synergy between the compounds, while the three-compound combination showed an additive effect with a FIC index of 0.87. Further, at ½ FIC (biofilm inhibitory concentration), the compounds showed 52% eradication of preformed biofilms on the hospital contact surfaces (stainless steel). The growth and time-to-kill curve showed that the compounds were not lethal to planktonic cells at BIC. Finally, the qPCR analysis showed a reduction in the expression levels of biofilm and adhesion genes, while the Quorum sensing (QS) genes were affected much more, elucidating a possible eradication mechanism.Conclusion. From this study, we have found a new class of compounds that have potential disinfecting ability. With the current knowledge, the future lead would be to effectively use them in disinfectant formulations.
Collapse
Affiliation(s)
- Srividhya Krishnan
- Biofilm Biology Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, TN, 613401, India
- Biomass, Bioenergy and Bioproducts Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, TN, 613401, India
- Centre for Bioenergy, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, TN, 613401, India
| | - Ponnusami Venkatachalam
- Biomass, Bioenergy and Bioproducts Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, TN, 613401, India
- Centre for Bioenergy, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, TN, 613401, India
| | - Saravanan Ramiah Shanmugam
- Biomass, Bioenergy and Bioproducts Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, TN, 613401, India
- Centre for Bioenergy, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, TN, 613401, India
- Present address: Department of Biosystems Engineering, Auburn University, Auburn, Alabama, 36849, USA
| | - Nithyanand Paramasivam
- Biofilm Biology Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, TN, 613401, India
| |
Collapse
|
2
|
Xu L, Nan J, Han S, Yu Z, Wu S, Fang Y, Dong S. High-Valence Mn MOF Inspired by Laccase Mediators Enables Versatile Nature-Mimicking Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405293. [PMID: 39363691 DOI: 10.1002/smll.202405293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/22/2024] [Indexed: 10/05/2024]
Abstract
In nature, active Mn3+ -ligand complexes produced by laccase catalyzed oxidation can act as the low-molecular mass, diffusible redox mediators to oxidize the phenolic substrates overcoming the limitations of natural enzymes. Learning from the metal-ligand coordination of natural functional units, high-valence Mn metal-organic framework (Mn MOF) is constructed to simulate the catalysis in natural mediator system. Benefiting from the characteristics of nanoscale size, rich metal coordination unsaturated sites, and mixed valence state dominated by Mn(III), Nano Mn(III)-TP exhibits superior laccase-mimicking activity, whose Vmax (maximal reaction rate) is much higher than that of natural laccase. Referring to natural systems, relevant free radical experiments prove that the material induces the production of active oxygen species with the assistance of carboxylic acid, and active oxygen species further oxidize phenolic substrates. Based on its robust performances, the primary oxidative degradation of an emerging pollutant triclosan (TCS) is creatively applied, an important antiasthmatic medicine terbutaline sulfate (TBT) detection, and the synthesis of non-toxic and black near-natural dyes for dyeing. By simulating the essential mediators of natural enzymatic catalysis, an Mn MOF-based material that demonstrates multiple novel applications is successfully developed, which introduces a new reliable strategy for achieving versatile nature-mimicking catalysis.
Collapse
Affiliation(s)
- Lili Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Jianli Nan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Songxue Han
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zhixuan Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Shuangli Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Youxing Fang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
3
|
Xin X, Wu J, Xia A, Huang Y, Zhu X, Zhu X, Liao Q. Operando Monitoring of the Polymerization Process of Lignin Monomer and Oligomer Surrogates with Microstructured Fiber Grating Sensor. Anal Chem 2024; 96:16179-16185. [PMID: 39233361 DOI: 10.1021/acs.analchem.4c02791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
The enzymatic depolymerization is a promising route to valorize the lignin polymers by turning the cross-linked polymers into monomers or oligomers. However, the lignin polymers cannot be effectively converted into small chemicals, as the oligomers are prone to polymerization, which is particularly challenging to monitor and thus regulate. Here, we develop a microstructured fiber Bragg grating (mFBG) sensor to probe the dynamic polymerization process of typical lignin oligomer surrogates─guaiacol (monomer) and guaiacylglycerol-β-guaiacyl ether (GBG, dimer)─catalyzed by laccase in an operando way. The mFBG sensor was developed with its reliability well validated by control experiments at first. Further, operando monitoring of the polymerization reaction process of the typical lignin monomer (i.e., guaiacol) and dimer (guaiacylglycerol-β-guaiacyl ether, GBG) was demonstrated under various conditions with the mFBG sensor. The GC-MS and UV-vis absorption measurements were carried out as a further check. Finally, the specific polymerization characteristics and reaction mechanism were studied. The mFBG sensor enables operando monitoring of the heterogeneous polymerization process of lignin monomers and oligomers and can potentially be tailored to probe more complex lignin depolymerization processes and unveil enzymatic synergistic mechanisms for the biological transition of biomass.
Collapse
Affiliation(s)
- Xin Xin
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Junjun Wu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Ao Xia
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Yun Huang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Xianqing Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
4
|
Li N, Freitas DS, Santos J, Venâncio A, Noro J, Su J, Wang H, Silva C, Cavaco-Paulo A. Laccase-Catalyzed Synthesis of Added-Value Polymers from Cork and Grape Extracts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18877-18889. [PMID: 37991200 DOI: 10.1021/acs.jafc.3c04798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
The development of products from natural plant sources, including agriculture and food wastes, contributes significantly to the circular economy and global sustainability. Cork and grape wastes were employed as the primary sources in this study to obtain compounds of interest under mild extraction conditions. Laccase was applied to oxidize the cork and grape extracts, with the aim of producing value-added molecules with improved properties. Ultraviolet-visible (UV-vis) spectroscopy was assessed to monitor the oxidation process, and characterization of the end products was performed by matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) spectroscopy. The antioxidant and antiaging properties were evaluated by means of ABTS, DPPH, FRAP, and SPF testing. Overall, as compared to their monomeric counterparts, the polymeric compounds displayed remarkable antioxidant and antiaging characteristics after laccase oxidation, showing tremendous potential for applications in the food, pharmaceutical, cosmetic, and textile industries.
Collapse
Affiliation(s)
- Nannan Li
- Jiangsu Engineering Technology Research Center for Functional Textiles, Jiangnan University, No. 1800 Lihu Avenue, 214122 Wuxi, P. R. China
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, No. 1800 Lihu Avenue, 214122 Wuxi, P. R. China
| | - David S Freitas
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS─Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Joana Santos
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS─Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Armando Venâncio
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS─Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Jennifer Noro
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS─Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Jing Su
- Jiangsu Engineering Technology Research Center for Functional Textiles, Jiangnan University, No. 1800 Lihu Avenue, 214122 Wuxi, P. R. China
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, No. 1800 Lihu Avenue, 214122 Wuxi, P. R. China
| | - Hongbo Wang
- Jiangsu Engineering Technology Research Center for Functional Textiles, Jiangnan University, No. 1800 Lihu Avenue, 214122 Wuxi, P. R. China
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, No. 1800 Lihu Avenue, 214122 Wuxi, P. R. China
| | - Carla Silva
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS─Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Artur Cavaco-Paulo
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS─Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| |
Collapse
|
5
|
Singh AK, Iqbal HMN, Cardullo N, Muccilli V, Fernández-Lucas J, Schmidt JE, Jesionowski T, Bilal M. Structural insights, biocatalytic characteristics, and application prospects of lignin-modifying enzymes for sustainable biotechnology. Int J Biol Macromol 2023; 242:124968. [PMID: 37217044 DOI: 10.1016/j.ijbiomac.2023.124968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/22/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023]
Abstract
Lignin modifying enzymes (LMEs) have gained widespread recognition in depolymerization of lignin polymers by oxidative cleavage. LMEs are a robust class of biocatalysts that include lignin peroxidase (LiP), manganese peroxidase (MnP), versatile peroxidase (VP), laccase (LAC), and dye-decolorizing peroxidase (DyP). Members of the LMEs family act on phenolic, non-phenolic substrates and have been widely researched for valorization of lignin, oxidative cleavage of xenobiotics and phenolics. LMEs implementation in the biotechnological and industrial sectors has sparked significant attention, although its potential future applications remain underexploited. To understand the mechanism of LMEs in sustainable pollution mitigation, several studies have been undertaken to assess the feasibility of LMEs in correlating to diverse pollutants for binding and intermolecular interactions at the molecular level. However, further investigation is required to fully comprehend the underlying mechanism. In this review we presented the key structural and functional features of LMEs, including the computational aspects, as well as the advanced applications in biotechnology and industrial research. Furthermore, concluding remarks and a look ahead, the use of LMEs coupled with computational framework, built upon artificial intelligence (AI) and machine learning (ML), has been emphasized as a recent milestone in environmental research.
Collapse
Affiliation(s)
- Anil Kumar Singh
- Environmental Microbiology Laboratory, Environmental Toxicology Group CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Nunzio Cardullo
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Vera Muccilli
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Jesús Fernández-Lucas
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, 28670, Villaviciosa de Odón, Spain; Grupo de Investigación en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Calle 58 # 55-66, 080002, Barranquilla, Colombia
| | - Jens Ejbye Schmidt
- Department of Green Technology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza 11/12 Str., 80-233 Gdansk, Poland.
| |
Collapse
|
6
|
Semi-VOCs of Wood Vinegar Display Strong Antifungal Activities against Oomycete Species Globisporangium ultimum and Pythium aphanidermatum. MICROBIOLOGY RESEARCH 2023. [DOI: 10.3390/microbiolres14010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
Plant disease outbreaks are increasingly exacerbated by climate change and the conditions of stress combinations. They are negatively affecting crop yield and driving threats to food security in many areas of the world. Although synthetic pesticides offer relative success in the control of pests and plant diseases, they are often overused, and this method faces numerous drawbacks, including environmental toxicity, soil degradation, and adverse effects on human health. Therefore, alternatives are being developed and examined, including the biocontrol of pests and pathogens and biomass pyrolysis leading to wood vinegar that has shown great promise in agriculture and organic farming. However, while wood vinegar use is expanding and allows the control of numerous pests and bacterial and fungal diseases, its application to control oomycete diseases is limited. This study aimed to test wood vinegar for the control of oomycete plant pathogens from which six wood vinegars of pistachio, pomegranate, almond, pine, cypress, and walnut were produced. The inhibitory effects of volatile metabolites (semi-VOCs) of different wood vinegars concentrations (100%, 50%, 25%, 12.5%, and 6.25%) were examined against the hyphal growth of Globisporangium ultimum and Pythium aphanidermatum isolates. An in vitro analysis unambiguously demonstrated that for Globisporangium ultimum, the wood vinegar semi-VOCs of almond, pistachio (C 100% and 50%), and walnut (C 100%) totally inhibited mycelial growth. On the other hand, Pythium aphanidermatum, pistachio (C 100%, 50%, and 25%), and cypress (C 100%) expressed their abilities to completely inhibit the mycelial growth. Other treatments, including relevant concentrations of pine and pomegranate significantly inhibited the growth of mycelia of both species compared to the control (p ≤ 0.05). Therefore, wood vinegar could be considered a natural and organic product to use in agriculture to cope not only against pests, bacterial and fungal pests but also against emerging oomycete plant diseases.
Collapse
|
7
|
Efficient and Stable O-Methylation of Catechol with Dimethyl Carbonate over Aluminophosphate Catalysts. Catalysts 2023. [DOI: 10.3390/catal13010150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The O-methylation of catechol is an effective method for the industrial production of guaiacol used as an important chemical. However, the low catechol conversion and poor catalyst stability are the most critical issues that need to be addressed. Herein, the O-methylation of catechol with dimethyl carbonate was investigated over aluminophosphate (APO) catalysts, using a continuous-flow system to produce guaiacol. APO catalysts were synthesized with varying P/Al molar ratios and calcination temperatures to study their effects on catalytic performance for the reaction. The physico-chemical properties of the APO catalysts were thoroughly investigated using XRD, NH3-TPD, CO2-TPD, FTIR, and Py-FTIR. The P/Al molar ratio and catalyst calcination temperature significantly influenced the structure and texture, as well as the surface acid-base properties of APO. Both the medium acid and medium base sites were observed over APO catalysts, and the Lewis acid sites acted as the main active sites. The APO (P/Al = 0.7) exhibited the highest catalytic activity and excellent stability, due to the suitable medium acid-base pairs.
Collapse
|
8
|
Recent Advancements in Enhancing Antimicrobial Activity of Plant-Derived Polyphenols by Biochemical Means. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050401] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plants are a reservoir of phytochemicals, which are known to possess several beneficial health properties. Along with all the secondary metabolites, polyphenols have emerged as potential replacements for synthetic additives due to their lower toxicity and fewer side effects. However, controlling microbial growth using these preservatives requires very high doses of plant-derived compounds, which limits their use to only specific conditions. Their use at high concentrations leads to unavoidable changes in the organoleptic properties of foods. Therefore, the biochemical modification of natural preservatives can be a promising alternative to enhance the antimicrobial efficacy of plant-derived compounds/polyphenols. Amongst these modifications, low concentration of ascorbic acid (AA)–Cu (II), degradation products of ascorbic acid (DPAA), Maillard reaction products (MRPs), laccase–mediator (Lac–Med) and horse radish peroxidase (HRP)–H2O2 systems standout. This review reveals the importance of plant polyphenols, their role as antimicrobial agents, the mechanism of the biochemical methods and the ways these methods may be used in enhancing the antimicrobial potency of the plant polyphenols. Ultimately, this study may act as a base for the development of potent antimicrobial agents that may find their use in food applications.
Collapse
|