1
|
Aronson HS, LaRowe DE, Macalady JL, Amend JP. Isolation of a putative sulfur comproportionating microorganism. Sci Rep 2025; 15:17999. [PMID: 40410200 PMCID: PMC12102312 DOI: 10.1038/s41598-025-01009-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 05/02/2025] [Indexed: 05/25/2025] Open
Abstract
Sulfur comproportionation, the coupled oxidation of sulfide and reduction of sulfate to elemental sulfur, is a heretofore undiscovered microbial catabolism that has been predicted based on thermodynamic calculations. Here, we report the isolation of an Acidithiobacillus thiooxidans strain that grew to cell densities of > 107 cells mL-1 in autotrophic sulfur comproportionation medium. It was isolated from extremely low pH snottite biofilms in the sulfidic karst at Frasassi, Italy. The organism's genome sequence revealed the presence of numerous genes involved in sulfur transformations that could be linked in a sulfur comproportionation pathway. Future investigations of this novel link in the biogeochemical sulfur cycle could include monitoring of the concentrations of sulfate, sulfide, and elemental sulfur during growth to learn whether they are consistent with stoichiometric ratios expected for sulfur comproportionation. In addition, stable and radioisotope incubations coupled with NanoSIMS, scintillation counting, and isotope ratio mass spectrometry should reveal that sulfate and sulfide are coupled in a single catabolic reaction to produce elemental sulfur.
Collapse
Affiliation(s)
- Heidi S Aronson
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.
| | - Douglas E LaRowe
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA
- Department of Earth Sciences, Southern Methodist University, University Park, TX, USA
| | - Jennifer L Macalady
- Department of Geosciences, Pennsylvania State University, University Park, PA, USA
| | - Jan P Amend
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
2
|
Xie Z, Mahmood Q, Zhang S. Copper recovery from waste printed circuit boards using pyrite as the bioleaching substrate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34282-34294. [PMID: 38698096 DOI: 10.1007/s11356-024-33536-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/27/2024] [Indexed: 05/05/2024]
Abstract
Waste printed circuit boards (WPCBs) can be bioleached for Cu recovery, but lack of substrate for the bioleaching culture. In this study, using pyrite as a bacterial substrate for bioleaching WPCBs and recovering Cu was explored. The results showed that the WPCBs bioleaching using pyrite as the bacterial substrate was feasible. Mechanical crushing was a suitable WPCBs pretreatment method. The optimal WPCBs and pyrite pulp densities were respectively found to be 1.25% (w/v) and 1.0% (w/v), and the suitable nitrogen source ratio ((NH4)2SO4: (NH4)2HPO4) was deemed as 2 g/L: 2 g/L, achieving a Cu2+ leaching efficiency of 95.60 ± 1.57% in 14 d. Copper in the bioleaching solution can be directly recovery via electrodeposition. The Cu recovery efficiency in 60 min was up to 92.19 ± 1.35% under the optimal condition that the initial Cu2+ concentration and pH were respectively set at 7.34 g/L and 2.75, and the current density was set at 200 A/m2. Copper was found as the dominant metal in the cathode deposits, existing in the form of Cu and Cu2O. This work provided a novel approach for bioleaching WPCBs and recovering Cu.
Collapse
Affiliation(s)
- Zexiang Xie
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Qaisar Mahmood
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Shaohui Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, People's Republic of China.
- Hubei Key Laboratory of Fuel Cell, Wuhan University of Technology, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
3
|
Zhou X, Yan Z, Zhou X, Wang C, Liu H, Zhou H. RETRACTED: An assessment of volatile organic compounds pollutant emissions from wood materials: A review. CHEMOSPHERE 2022; 308:136460. [PMID: 36116618 DOI: 10.1016/j.chemosphere.2022.136460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/29/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Xihe Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Zhisong Yan
- Zhejiang Shiyou Timber Co., Ltd., 1111 Shiyuan West Road, Huzhou, Zhejiang, 313009, China
| | - Xiang Zhou
- Sinomaple Furnishing (Jiangsu) Co., Ltd., 99 Fen'an Dong Lu, Wujiang District, Suzhou, Jiangsu, 215200, China
| | - Chengming Wang
- Holtrop & Jansma (Qingdao) Environmental Protection Equipment Co., Ltd., 8 Tongshun Road, High-tech District, Qingdao, Shandong, 266114, China
| | - Hailiang Liu
- Jiangsu Shenmao Plastic Products Co., Ltd., Wood Industrial District, Siyang, Jiangsu, 223798, China
| | - Handong Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| |
Collapse
|
4
|
Anupong W, Jutamas K, On-Uma R, Alshiekheid M, Sabour A, Krishnan R, Lan Chi NT, Pugazhendhi A, Brindhadevi K. Bioremediation competence of Aspergillus flavus DDN on pond water contaminated by mining activities. CHEMOSPHERE 2022; 304:135250. [PMID: 35675871 DOI: 10.1016/j.chemosphere.2022.135250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/23/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
This research was performed to evaluate the possibilities of reducing the physicochemical properties of polluted pond water situated around the magnesite mine tailing through indigenous metal tolerant fungi. The physicochemical analysis results revealed that most of the physicochemical properties of pond water sample were crossing the permissible limits. From the muddy pond soil sample, Aspergillus flavus DDN was identified (through molecular characterization) as predominant metal tolerant fungal strain and it showed resistance to Cr(VI), Pb(II), Zn(II), Cd(II), and Mg(IV) up to 1000 μg mL-1 concentrations. This strain also effectively reduced (through biosorption) these metals in a short duration of the bioremediation process. In a lab-scale bioremediation study, the A. flavus DDN significantly reduced most of the physicochemical parameters crossing the permissible limit in polluted pond water in the presence of FM1 minimal media in 10 days of incubation. The dissolved oxygen level was significantly increased up to 74.91% from 5.86 ± 0.39 to 10.25 ± 0.95 in 10 days of treatment. The metal reduction and other physicochemical properties reduction were directly related to the biomass of A. flavus DDN. These findings suggest that A. flavus DDN can remove pollutants from magnesite mine tailing polluted pond water because elevated fungal biomass resulted in the highest percentage of pollutant reduction from the sample.
Collapse
Affiliation(s)
- Wongchai Anupong
- Department of Agricultural Economy and Development, Faculty of Agriculture, Chiang Mai University, 50200, Thailand; Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Khumchai Jutamas
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, 50200, Thailand; Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Ruangwong On-Uma
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, 50200, Thailand; Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Maha Alshiekheid
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Amal Sabour
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Ramakrishnan Krishnan
- Department of Business, Harrisburg University of Science and Technology, Harrisburg, PA, 17101, USA
| | - Nguyen Thuy Lan Chi
- School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam.
| | - Arivalagan Pugazhendhi
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Kathirvel Brindhadevi
- Center for Transdisciplinary Research (CFTR), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| |
Collapse
|
5
|
Anupong W, Jutamas K, On-Uma R, Sabour A, Alshiekheid M, Karuppusamy I, Lan Chi NT, Pugazhendhi A. Sustainable bioremediation approach to treat the sago industry effluents and evaluate the possibility of yielded biomass as a single cell protein (SCP) using cyanide tolerant Streptomyces tritici D5. CHEMOSPHERE 2022; 304:135248. [PMID: 35679978 DOI: 10.1016/j.chemosphere.2022.135248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/23/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
This sustainable approach was performed to evaluate the bioremediation potential of cyanide resistant bacterial species on sago industry effluents and assess the possibility of using the yielded biomass as single cell protein (SCP). The predominant cyanide tolerant bacterium enumerated from muddy soil was identified as Streptomyces tritici D5 through 16S rRNA sequencing. The identified S. tritici D5 strains showed excellent resistant and degradation potential at 100 mM concentration of potassium cyanide. Furthermore, the physicochemical properties analysis of sago industry effluents results revealed that the most of the parameters were crossing the permissible limits of Pollution control board of India. The bioremediation process was performed at various temperatures at 25 °C, 35 °C, and 45 °C for a period of 30 days of continuous bioremediation process with the aid of an aerator. Surprisingly, the best organic pollutant reduction was found at 35 °C and 45 °C, with 25 °C following close behind. Remarkably, the dissolved oxygen (DO) level was gradually increased from 2.24 to 12.04 mg L-1 at 35 °C in 30 days of the remediation process. The pH and ammonia were also significantly increased during the bioremediation process in 30 days of treatment. Similarly, at 35 °C of bioremediation process the S. tritici D5 yielded maximum dried biomass (6.9 g L-1) with the total crude protein (SCP) as 4.8 g L-1 (69.56%) in 30 days of growth. These findings stated that S. tritici D5 can treat sago industry effluents and that the biomass produced may be considered SCP after some in-vitro and in-vivo analyses.
Collapse
Affiliation(s)
- Wongchai Anupong
- Department of Agricultural Economy and Development, Faculty of Agriculture, Chiang Mai University, 50200, Thailand; Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Khumchai Jutamas
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, 50200, Thailand; Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Ruangwong On-Uma
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, 50200, Thailand; Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Amal Sabour
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Maha Alshiekheid
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Indira Karuppusamy
- Research Center for Strategic Materials, Corrosion Resistant Steel Group, National Institute for Materials Science (NIMS), Tsukuba, Japan
| | - Nguyen Thuy Lan Chi
- School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam.
| | - Arivalagan Pugazhendhi
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
6
|
Lan Chi NT, Veeraragavan GR, Brindhadevi K, Chinnathambi A, Salmen SH, Alharbi SA, Krishnan R, Pugazhendhi A. Fungi fabrication, characterization, and anticancer activity of silver nanoparticles using metals resistant Aspergillus niger. ENVIRONMENTAL RESEARCH 2022; 208:112721. [PMID: 35031337 DOI: 10.1016/j.envres.2022.112721] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
The purpose of this study was to assess the bio-fabrication possibilities of pre-isolated (from bauxite mine tailings) metal-tolerant Aspergillus niger biomass filtrate and the anticancer potential of synthesized silver nanoparticles (AgNPs) tested with a Human Cervical cancer cell line (HeLa cells: Henrietta Lacks cells). The nitrate reduction test demonstrated that A. niger has the ability to reduce nitrate, and filtrate derived from A. niger biomass efficiently fabricated AgNPs from AgNO3, as demonstrated by a visible color change from pale greenish to brownish. The UV-visible spectroscopy analysis revealed an absorbance peak at 435 nm, which corresponded to the AgNPs. These AgNPs have been capped and stabilized with several functional groups related to various bioactive molecules such as aldehyde, benzene rings, aldehydic, amines, alcohols, and carbonyl stretch protein molecules. Fourier-Transform Infrared Spectroscopy (FTIR) analysis confirmed the capping and stabilizing chemical bonding pattern. Scanning Electron Microscopy (SEM) revealed that the synthesized AgNPs were spherical, with an average size of 21.38 nm. This bio-fabricated AgNPs has in-vitro anticancer potential when tested against the HeLa cell line due to its potential size and shape. At 100 g mL-1 concentrations of this bio-fabricated AgNPs, the anticancer activity percentage was found to be 70.2%, and the IC50 value was found to be 66.32 g m-1. These findings demonstrated that the metal-tolerant A. niger cell filtrate could produce AgNPs with anticancer potential.
Collapse
Affiliation(s)
- Nguyen Thuy Lan Chi
- Van Lang School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| | - Geetha Royapuram Veeraragavan
- Department of Microbiology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Kathirvel Brindhadevi
- Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Center for Transdisciplinary Research (CFTR), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Saleh H Salmen
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Ramakrishnan Krishnan
- Department of Business, Harrisburg University of Science and Technology, Harrisburg, PA, 17101, USA
| | - Arivalagan Pugazhendhi
- School of Renewable Energy, Maejo University, Chiang Mai, 50290, Thailand; College of Medical and Health Science, Asia University, Taichung, Taiwan.
| |
Collapse
|
7
|
Thanh NC, Pugazhendhi A, Chinnathambi A, Alharbi SA, Subramani B, Brindhadevi K, Whangchai N, Pikulkaew S. Silver nanoparticles (AgNPs) fabricating potential of aqueous shoot extract of Aristolochia bracteolata and assessed their antioxidant efficiency. ENVIRONMENTAL RESEARCH 2022; 208:112683. [PMID: 35016870 DOI: 10.1016/j.envres.2022.112683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 12/27/2021] [Accepted: 01/03/2022] [Indexed: 05/27/2023]
Abstract
This research was performed to evaluate the silver nanoparticles (AgNPs) fabricating potential of aqueous shoot extract of Aristolochia bracteolata and also assess the free radicals scavenging potential of synthesized AgNPs. The results obtained from this study showed that the aqueous shoot extract of A. bracteolata has the potential to synthesize the AgNPs and it was initially confirmed by color change in the reaction blend as yellow to dark brownish. Subsequently, a clear absorbance peak was found at 425 nm in UV-visible spectrum analysis. The functional groups involved in the capping and stabilization of AgNPs were confirmed by Fourier Transform-Infrared spectroscopy (FTIR) analysis and recorded about 10 sharp peaks 3688, 3401, 2980, 2370, 1948, 1642, 1480, 1280, 782, and 628 cm-1. The Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) observations revealed that the predominant shape of the AgNPs was spherical and size ranged from 41.43 to 60.51 nm. Interestingly, the green fabricated AgNPs showed significant free radicals scavenging activity and were confirmed with ferric reducing assay, 1, 1-diphenyl-2-picryl-hydrazyl (DPPH), H2O2 radicals, and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals scavenging activity. Thus, after a few in-vivo antioxidant studies, Aristolochia bracteolata-mediated AgNPs can be considered as an antioxidant agent.
Collapse
Affiliation(s)
- Nguyen Chi Thanh
- Faculty of Applied Sciences, Ho Chi Minh City University of Technology and Education, Ho Chi Minh City, Viet Nam
| | - Arivalagan Pugazhendhi
- College of Medical and Health Science, Asia University, Taichung, Taiwan; Center for Transdisciplinary Research (CFTR), Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Baskaran Subramani
- Division of Hematology and Oncology, Department of Medicine, Mays Cancer Center, University of Texas Health, San Antonio, TX, USA
| | - Kathirvel Brindhadevi
- Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Center for Transdisciplinary Research (CFTR), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Niwooti Whangchai
- Faculty of Fisheries Technology and Aquatic Resources, Maejo University, Chiang Mai, 50290, Thailand
| | - Surachai Pikulkaew
- Research Center of Producing and Development of Products and Innovations for Animal Health and Production, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand.
| |
Collapse
|