1
|
Zhao H, Guo S, Guo J, Zhang Y. Detection of H 2O 2 by a novel fluorescent probe based on the synergy of "ESIPT + ICT". Talanta 2025; 293:128062. [PMID: 40184937 DOI: 10.1016/j.talanta.2025.128062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
Hydrogen peroxide plays a crucial role in maintaining physiological homeostasis in the human body, so it is imperative to design a highly selective and sensitive fluorescent probe to monitor the content of H2O2 in organisms. Herein, we designed a probe with benzothiazole (HBT) as the main fluorophore backbone, which realized the molecular "ESIPT + ICT" synergistic luminescence effect. An effective response to detect H2O2 within 30 min was achieved by the probe HBT-B, with a detection limit of 1.73 μM and new peaks are presented after the detection of H2O2 in the UV-Vis absorption spectra, with a large Stoke's shift (105 nm). Furthermore, it is demonstrated that the probe HBT-B can be utilized in biological in vivo cellular imaging and has excellent biocompatibility to effectively detect H2O2 at the cellular level.
Collapse
Affiliation(s)
- Hongwei Zhao
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China.
| | - Shijia Guo
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Jingrong Guo
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Yihua Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
2
|
Lin L, Zhao H, Hou J, Lan M. A screen-printed microelectrode for detection of hydrogen peroxide in solid tumor in vivo. Biosens Bioelectron 2025; 284:117561. [PMID: 40349563 DOI: 10.1016/j.bios.2025.117561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/24/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025]
Abstract
Hydrogen peroxide (H2O2), a crucial redox signaling molecule and neuromodulator, is closely associated with pathological processes, including cancer progression and neurodegenerative disorders. Current methods for in vivo H2O2 detection, such as fluorescence imaging and chemiluminescence, suffer from the limitation of spatial resolution and invasiveness, which makes it difficult to monitor oxidative stress gradients in deep-seated tumors. Therefore, this research developed an implantable triple-electrode biosensor fabricated via screen-printing technology based on carboxylated multi-walled carbon nanotubes (MWCNT) and Prussian blue (PB) nanocomposites. The biosensor presented dual linear detection ranges of 0.8-1126 μM (R2 = 0.9937) and 1286-3766 μM (R2 = 0.9939) with a 0.47 μM detection limit. It demonstrated a >95 % specificity compared with other interfering substances and maintained 93.2 % signal retention over 30 days. Particularly, in situ implantation in melanoma-bearing mice with one-week-growth-time solid tumors revealed the H2O2 levels 12- to 18-fold higher than in normal tissues, consistent with cancer-associated oxidative stress mechanisms. This platform addresses challenges such as rapid enzymatic degradation and microenvironmental complexity, enabling invasive profiling of H2O2 detection in solid tumors.
Collapse
Affiliation(s)
- Luhan Lin
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Hongli Zhao
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Jian Hou
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China; Research Center of Analysis and Test, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
3
|
Yang T, Shen T, Duan B, Liu Z, Wang C. In Vivo Electrochemical Biosensing Technologies for Neurochemicals: Recent Advances in Electrochemical Sensors and Devices. ACS Sens 2025; 10:100-121. [PMID: 39748564 DOI: 10.1021/acssensors.4c03314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
In vivo electrochemical sensing of neurotransmitters, neuromodulators, and metabolites plays a critical role in real-time monitoring of various physiological or psychological processes in the central nervous system. Currently, advanced electrochemical biosensors and technologies have been emerging as prominent ways to meet the surging requirements of in vivo monitoring of neurotransmitters and neuromodulators ranging from single cells to brain slices, even the entire brain. This review introduces the fundamental working principles and summarizes the achievements of in vivo electrochemical biosensing technologies including voltammetry, amperometry, potentiometry, field-effect transistor (FET), and organic electrochemical transistor (OECT). According to the elaborate feature of sensing technology, versatile strategies have been devoted to solve critical issues associated with the sensing of neurochemicals under an intricate physiological environment. Voltammetry is a universal technique to investigate electrochemical processes in complex matrices which could realize the miniaturization of electrodes, while amperometry serves as a well-suited approach offering high temporal resolution which is favorable for the fast oxidation-reduction kinetics of neurochemicals. Potentiometry realizes quantitative analysis by recording the potential difference with reduced invasiveness and high compatibility. FET and OECT serve as amplification strategies with higher sensitivity than traditional technologies. Furthermore, we point out the current shortcomings and address the challenges and perspectives of in vivo electrochemical biosensing technologies.
Collapse
Affiliation(s)
- Tuo Yang
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| | - Tongjun Shen
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| | - Boyuan Duan
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| | - Zeyang Liu
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| | - Chunxia Wang
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| |
Collapse
|
4
|
Zhang J, Liu Y, Zhao Y, Zhang S, Xu F, Li F. Synergetic effect of mild hypothermia and antioxidant treatment on ROS-mediated neuron injury under oxygen-glucose deprivation investigated by scanning electrochemical microscopy. Chem Sci 2024; 15:20177-20188. [PMID: 39568945 PMCID: PMC11575619 DOI: 10.1039/d4sc05977h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024] Open
Abstract
Ischemic stroke and reperfusion injury result in neuronal damage and dysfunction associated with oxidative stress, leading to overproduction of cellular reactive oxygen species (ROS) and reactive nitrogen species (RNS). In situ monitoring of the transient ROS and RNS effluxes during rapid pathologic processes is crucial for understanding the relationship between progression of cell damage and role of oxidative stress, and developing the corresponding neuroprotective strategies. Herein, we built oxygen glucose deprivation (OGD) and mild hypothermic (MH) models to mimic the in vitro conditions of ischemic stroke and MH treatment. We used scanning electrochemical microscopy (SECM) to in situ monitor H2O2 and nitric oxide (NO) effluxes from HT22 cells under the OGD and MH treatment conditions. Through quantitative analysis of the H2O2 and NO efflux results, we found that the cellular oxidative stress was primarily manifested through ROS release under OGD conditions, and the MH treatment partially suppressed the excessive H2O2 and NO production induced by reoxygenation. Moreover, the synergistic therapeutic effect of MH with antioxidant treatment significantly reduced the oxidative stress and enhanced the cell survival. Our work reveals the crucial role of oxidative stress in OGD and reperfusion processes, and the effective improvement of cell viability via combination of MH with antioxidants, proposing promising therapeutic interventions for ischemic stroke and reperfusion injury.
Collapse
Affiliation(s)
- Junjie Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University Xi'an 710049 P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Yulin Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University Xi'an 710049 P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Yuxiang Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University Xi'an 710049 P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Siyu Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University Xi'an 710049 P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University Xi'an 710049 P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Fei Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University Xi'an 710049 P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University Xi'an 710049 P. R. China
| |
Collapse
|
5
|
Dutta K, Zheng T, Hetrick EM. Comparative understanding of peroxide quantitation assays: a case study with peptide drug product degradation. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4755-4764. [PMID: 38953302 DOI: 10.1039/d4ay00652f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Peroxide-mediated oxidation of drug molecules is a known challenge faced throughout the pharmaceutical development pathway-from early-stage stability studies to manufacturing processes. During the initial development stage, the major source of peroxide is the formulation excipients, whether they are pre-loaded or generated in situ due to slow degradation, and in the late phase, peroxides can be introduced during sanitization processes or generated via cavitation. In essence, a control strategy for peroxide mitigation often becomes a critical quality attribute for successful drug development. To this end, quantitation of peroxide is essential to monitor the peroxide level to ensure product quality and proposed shelf-life. However, methods for reliable and robust quantitation to detect trace levels of peroxide in a complex drug product matrix become increasingly challenging. This article discusses three high-throughput assays based on absorbance, fluorescence and chemiluminescence measurements to detect peroxide at a low level and compares the methods through validation studies in water. Selected methods have also been tested to understand the forced degradation of model peptide drug products with spiked hydrogen peroxide. Peptide degradation profiles and residual peroxide levels are presented to provide an understanding of the suitability of the quantitation methods and their performance.
Collapse
Affiliation(s)
- Kingshuk Dutta
- Bioproduct Research & Development, Lilly Technology Center-North, Indianapolis, IN 46221, USA.
| | - Tao Zheng
- Bioproduct Research & Development, Lilly Technology Center-North, Indianapolis, IN 46221, USA.
| | - Evan M Hetrick
- Bioproduct Research & Development, Lilly Technology Center-North, Indianapolis, IN 46221, USA.
| |
Collapse
|
6
|
Khalifa Z, Abo Oura MF, Hathoot A, Azzem MA. Voltammetric determination of hydrogen peroxide at decorated palladium nanoparticles/poly 1,5-diaminonaphthalene modified carbon-paste electrode. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231894. [PMID: 39100189 PMCID: PMC11296075 DOI: 10.1098/rsos.231894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/27/2024] [Indexed: 08/06/2024]
Abstract
In this work, palladium nanoparticles (PdNPs)/p1,5-DAN/ carbon paste electrode (CPE) and p1,5-DAN/CPE sensors have been developed for determination of hydrogen peroxide. Both sensors showed a highly sensitive and selective electrochemical behaviour, which were derived from a large specific area of poly 1,5 DAN and super excellent electroconductibility of PdNPs. PdNPs/p1,5-DAN/CPE exhibited excellent performance over p1,5-DAN/CPE. Thus, it was used for detecting hydrogen peroxide (H2O2) with linear ranges of 0.1 to 250 µM and 0.2 to 300 µM as well as detection limits (S/N = 3) of 1.0 and 5.0 nM for square wave voltammetry (SWV) and cyclic voltammetry (C.V) techniques, respectively. The modified CPE has good reproducibility, adequate catalytic activity, simple synthesis and stability of peak response during H2O2 oxidation on long run that exceeds many probes. Both reproducibility and stability for H2O2 detection are attributable to the PdNPs immobilized on the surface of p1,5-DAN/CPE. The modified CPE was used for determining H2O2 in real specimens with good stability, sensitivity, and reproducibility.
Collapse
Affiliation(s)
- Ziad Khalifa
- Chemical Engineering Department, Faculty of Engineering, The British University in Egypt, El Sherouk City 11837, Egypt
| | - Mohamed Fathi Abo Oura
- Electrochemistry Laboratory, Chemistry Department, Faculty of Science, Menoufia University 32512, Egypt
| | - Abla Hathoot
- Electrochemistry Laboratory, Chemistry Department, Faculty of Science, Menoufia University 32512, Egypt
| | - Magdi Abdel Azzem
- Electrochemistry Laboratory, Chemistry Department, Faculty of Science, Menoufia University 32512, Egypt
| |
Collapse
|
7
|
Tao Y, Jin Y, Cui Y, Yu T, Ji J, Zhu W, Fang M, Li C. A novel fluorescent probe based on carbazole-thiophene for the recognition of hypochlorite and its applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123912. [PMID: 38266605 DOI: 10.1016/j.saa.2024.123912] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/28/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
A carbazole thiophene-aldehyde and 4-methylbenzenesulfonhydrazide conjugate CSH was synthesized by introducing 5-thiophene aldehyde at the 3-position of the carbazole group as the precursor and then condensing it with 4-methylbenzenesulfonhydrazide. CSH has high selectivity and sensitivity towards ClO-, which can specifically identify ClO- by UV-Vis and fluorescence spectroscopy. CSH can rapidly respond to ClO- in the physiological pH range through a fluorescence quenching pattern, accompanied by the color of CSH changing markedly from turquoise to yellowish green under the 365 nm UV light. Probe CSH exhibits a quantitative response to ClO- (0-11 μM) with a low detection limit (1.16 × 10-6 M). Cell imaging experiments have shown that CSH can capture fluorescent signals in the cyan and yellow channels of HeLa cells through fluorescence confocal microscopy, and can successfully identify exogenous ClO- in HeLa cells. In addition, probe CSH can also be used to detect ClO- in environmental water samples. These results indicate that CSH has potential application prospects in the environmental analysis and biological aspects.
Collapse
Affiliation(s)
- Yana Tao
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, PR China
| | - Yu Jin
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, PR China
| | - Yuanyuan Cui
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, PR China
| | - Taotao Yu
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, PR China
| | - Jiayu Ji
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, PR China
| | - Weiju Zhu
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, PR China; AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, PR China.
| | - Min Fang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, PR China; Anhui Province Key Laboratory of Environment-friendly Polymer Materials, Anhui University, Hefei 230601, PR China
| | - Cun Li
- AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, PR China; School of Materials Science and Engineering, Anhui University, Hefei 230601, PR China
| |
Collapse
|
8
|
Zeng Z, Wang J, Zhao S, Zhang Y, Fan J, Wu H, Chen J, Zhang Z, Meng Z, Yang L, Wang R, Zhang B, Wang G, Li C, Zang G. A Bioinspired Flexible Sensor for Electrochemical Probing of Dynamic Redox Disequilibrium in Cancer Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304079. [PMID: 37943018 PMCID: PMC10754098 DOI: 10.1002/advs.202304079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/15/2023] [Indexed: 11/10/2023]
Abstract
Malignant tumors pose a serious risk to human health. Ascorbic acid (AA) has potential for tumor therapy; however, the mechanism underlying the ability of AA to selectively kill tumor cells remains unclear. AA can cause redox disequilibrium in tumor cells, resulting in the release of abundant reactive oxygen species, represented by hydrogen peroxide (H2 O2 ). Therefore, the detection of H2 O2 changes can provide insight into the selective killing mechanism of AA against tumor cells. In this work, inspired by the ion-exchange mechanism in coral formation, a flexible H2 O2 sensor (PtNFs/CoPi@CC) is constructed to monitor the dynamics of H2 O2 in the cell microenvironment, which exhibits excellent sensitivity and spatiotemporal resolution. Moreover, the findings suggest that dehydroascorbic acid (DHA), the oxidation product of AA, is highly possible the substance that actually acts on tumor cells in AA therapy. Additionally, the intracellular redox disequilibrium and H2 O2 release caused by DHA are positively correlated with the abundance and activity of glucose transporter 1 (GLUT1). In conclusion, this work has revealed the potential mechanism underlying the ability of AA to selectively kill tumor cells through the construction and use of PtNFs/CoPi@CC. The findings provide new insights into the clinical application of AA.
Collapse
Affiliation(s)
- Zhongyuan Zeng
- Institute of Life Science and Laboratory of Tissue and Cell BiologyLab Teaching & Management CenterChongqing Medical UniversityChongqing400016P. R. China
| | - Jian Wang
- Institute of Life Science and Laboratory of Tissue and Cell BiologyLab Teaching & Management CenterChongqing Medical UniversityChongqing400016P. R. China
- Department of PathophysiologyChongqing Medical UniversityChongqing400016P. R. China
| | - Shuang Zhao
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing UniversityChongqing400030P. R. China
- Jinfeng LaboratoryChongqing401329P. R. China
| | - Yuchan Zhang
- Institute of Life Science and Laboratory of Tissue and Cell BiologyLab Teaching & Management CenterChongqing Medical UniversityChongqing400016P. R. China
| | - Jingchuan Fan
- Institute of Life Science and Laboratory of Tissue and Cell BiologyLab Teaching & Management CenterChongqing Medical UniversityChongqing400016P. R. China
| | - Hui Wu
- Institute of Life Science and Laboratory of Tissue and Cell BiologyLab Teaching & Management CenterChongqing Medical UniversityChongqing400016P. R. China
| | - Jiajia Chen
- Institute of Life Science and Laboratory of Tissue and Cell BiologyLab Teaching & Management CenterChongqing Medical UniversityChongqing400016P. R. China
| | - Zaikuan Zhang
- The M.O.E. Key Laboratory of Laboratory Medical DiagnosticsThe College of Laboratory MedicineChongqing Medical UniversityChongqing400016P. R. China
| | - Zexuan Meng
- Institute of Life Science and Laboratory of Tissue and Cell BiologyLab Teaching & Management CenterChongqing Medical UniversityChongqing400016P. R. China
| | - Lu Yang
- Institute of Life Science and Laboratory of Tissue and Cell BiologyLab Teaching & Management CenterChongqing Medical UniversityChongqing400016P. R. China
| | - Renzhi Wang
- Bioelectronics and Biosensors CenterSchool of MedicineChinese University of Hong KongShenzhen 2001 Longxiang Avenue, Longgang DistrictShenzhen518172P. R. China
| | - Bo Zhang
- Bioelectronics and Biosensors CenterSchool of MedicineChinese University of Hong KongShenzhen 2001 Longxiang Avenue, Longgang DistrictShenzhen518172P. R. China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing UniversityChongqing400030P. R. China
- Jinfeng LaboratoryChongqing401329P. R. China
| | - Chen‐Zhong Li
- Bioelectronics and Biosensors CenterSchool of MedicineChinese University of Hong KongShenzhen 2001 Longxiang Avenue, Longgang DistrictShenzhen518172P. R. China
| | - Guangchao Zang
- Institute of Life Science and Laboratory of Tissue and Cell BiologyLab Teaching & Management CenterChongqing Medical UniversityChongqing400016P. R. China
- Department of PathophysiologyChongqing Medical UniversityChongqing400016P. R. China
- Jinfeng LaboratoryChongqing401329P. R. China
| |
Collapse
|
9
|
Liu M, He D, Liu Z, Hu C. Disposable solar microcell array-based addressable photoelectrochemical sensor for high-throughput and multiplexed analysis of salivary metabolites. Biosens Bioelectron 2023; 232:115312. [PMID: 37060863 DOI: 10.1016/j.bios.2023.115312] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/16/2023] [Accepted: 04/08/2023] [Indexed: 04/17/2023]
Abstract
The high-throughput detection of multiple metabolites in saliva by electrochemical sensors is usually a challenge, which however is essential to the comprehensive evaluation of health status or screening of diseases. Here, a light-addressable and paper-based hydrogen peroxide (H2O2) photoelectrochemical (PEC) sensor for the high-throughput detection of multiple salivary metabolites is reported. This sensor has a unique solar microcell array structure with a silver nanowires/fullerene-Congo red (AgNWs/C60-CR) disc working electrode (WE) and a single-walled carbon nanotubes/platinum nanowires (SWCNTs/PtNWs) ring reference/counter electrode (RE/CE) in each microcell. Enzymes of different metabolites are immobilized on different separated microcells of a cover slide over the sensor, from which enzymatically produced H2O2 can react with p-hydroxyphenyl boric acid (4-HPBA) on the WE of the sensor to generate hydroquinone (HQ) for photocurrent responses. Based on this strategy, a disposable PEC sensor of saliva was developed, which allows the multiplexed detection of uric acid (UA), glucose (GLU) and lactate (LA) in diluted human saliva with high sensitivity and selectivity. Moreover, the detection throughput and application field of the sensor can be easily extended by connecting a series of sensors in parallel or varying the enzymes. The present work thus establishes a cost-effective approach to the scalable construction of versatile biosensing platforms with tunable throughput and varied analytes.
Collapse
Affiliation(s)
- Min Liu
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Danting He
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhihong Liu
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China.
| | - Chengguo Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
10
|
Au@Ag nanostructures for the sensitive detection of hydrogen peroxide. Sci Rep 2022; 12:19661. [PMID: 36385155 PMCID: PMC9668984 DOI: 10.1038/s41598-022-24344-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022] Open
Abstract
Hydrogen peroxide (H2O2) is an important molecule in biological and environmental systems. In living systems, H2O2 plays essential functions in physical signaling pathways, cell growth, differentiation, and proliferation. Plasmonic nanostructures have attracted significant research attention in the fields of catalysis, imaging, and sensing applications because of their unique properties. Owing to the difference in the reduction potential, silver nanostructures have been proposed for the detection of H2O2. In this work, we demonstrate the Au@Ag nanocubes for the label- and enzyme-free detection of H2O2. Seed-mediated synthesis method was employed to realize the Au@Ag nanocubes with high uniformity. The Au@Ag nanocubes were demonstrated to exhibit the ability to monitor the H2O2 at concentration levels lower than 200 µM with r2 = 0.904 of the calibration curve and the limit of detection (LOD) of 1.11 µM. In the relatively narrow range of the H2O2 at concentration levels lower than 40 µM, the LOD was calculated to be 0.60 µM with r2 = 0.941 of the calibration curve of the H2O2 sensor. This facile fabrication strategy of the Au@Ag nanocubes would provide inspiring insights for the label- and enzyme-free detection of H2O2.
Collapse
|
11
|
Zhang Z, Liu H, Zhai L, Wu J, Li L. Construction of BiOCl-TNTs Photoelectrochemical Sensor for Detection of Hydrogen Peroxide. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Vaneev AN, Timoshenko RV, Gorelkin PV, Klyachko NL, Korchev YE, Erofeev AS. Nano- and Microsensors for In Vivo Real-Time Electrochemical Analysis: Present and Future Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3736. [PMID: 36364512 PMCID: PMC9656311 DOI: 10.3390/nano12213736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/16/2022] [Accepted: 10/21/2022] [Indexed: 05/14/2023]
Abstract
Electrochemical nano- and microsensors have been a useful tool for measuring different analytes because of their small size, sensitivity, and favorable electrochemical properties. Using such sensors, it is possible to study physiological mechanisms at the cellular, tissue, and organ levels and determine the state of health and diseases. In this review, we highlight recent advances in the application of electrochemical sensors for measuring neurotransmitters, oxygen, ascorbate, drugs, pH values, and other analytes in vivo. The evolution of electrochemical sensors is discussed, with a particular focus on the development of significant fabrication schemes. Finally, we highlight the extensive applications of electrochemical sensors in medicine and biological science.
Collapse
Affiliation(s)
- Alexander N. Vaneev
- Research Laboratory of Biophysics, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Roman V. Timoshenko
- Research Laboratory of Biophysics, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | - Petr V. Gorelkin
- Research Laboratory of Biophysics, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | - Natalia L. Klyachko
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Yuri E. Korchev
- Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Alexander S. Erofeev
- Research Laboratory of Biophysics, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
13
|
Falkowski M, Leda A, Rebis T, Piskorz J, Popenda L, Hassani M, Mlynarczyk DT, Marszall MP, Milczarek G. A Synergistic Effect of Phthalimide-Substituted Sulfanyl Porphyrazines and Carbon Nanotubes to Improve the Electrocatalytic Detection of Hydrogen Peroxide. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144409. [PMID: 35889282 PMCID: PMC9322414 DOI: 10.3390/molecules27144409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 11/30/2022]
Abstract
A sulfanyl porphyrazine derivative with peripheral phthalimide moieties was metallated with cobalt(II) and iron(II) metal ions. The purity of the macrocycles was confirmed by HPLC, and subsequently, compounds were characterized using various analytical methods (ES-TOF, MALDI-TOF, UV–VIS, and NMR spectroscopy). To obtain hybrid electroactive electrode materials, novel porphyrazines were combined with multiwalled carbon nanotubes. The electrocatalytic effect derived from cobalt(II) and iron(II) cations was evaluated. As a result, a significant decrease in the overpotential was observed compared with that obtained with bare glassy carbon (GC) or glassy carbon electrode/carbon nanotubes (GC/MWCNTs), which allowed for sensitive determination of hydrogen peroxide in neutral conditions (pH 7.4). The prepared sensor enables a linear response to H2O2 concentrations of 1–90 µM. A low detection limit of 0.18 μM and a high sensitivity of 640 μA mM−1 cm−2 were obtained. These results indicate that the obtained sensors could potentially be applied in biomedical and environmental fields.
Collapse
Affiliation(s)
- Michal Falkowski
- Department of Medicinal Chemistry, Collegium Medicum in Bydgoszcz, Faculty of Pharmacy, Nicolaus Copernicus University in Torun, Dr. A. Jurasza 2, 85-089 Bydgoszcz, Poland; (M.H.); (M.P.M.)
- Correspondence: (M.F.); (T.R.); Tel.: +48-52-585-35-32 (M.F.)
| | - Amanda Leda
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland; (A.L.); (G.M.)
| | - Tomasz Rebis
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland; (A.L.); (G.M.)
- Correspondence: (M.F.); (T.R.); Tel.: +48-52-585-35-32 (M.F.)
| | - Jaroslaw Piskorz
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Lukasz Popenda
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland;
| | - Mina Hassani
- Department of Medicinal Chemistry, Collegium Medicum in Bydgoszcz, Faculty of Pharmacy, Nicolaus Copernicus University in Torun, Dr. A. Jurasza 2, 85-089 Bydgoszcz, Poland; (M.H.); (M.P.M.)
| | - Dariusz T. Mlynarczyk
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland;
| | - Michal P. Marszall
- Department of Medicinal Chemistry, Collegium Medicum in Bydgoszcz, Faculty of Pharmacy, Nicolaus Copernicus University in Torun, Dr. A. Jurasza 2, 85-089 Bydgoszcz, Poland; (M.H.); (M.P.M.)
| | - Grzegorz Milczarek
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland; (A.L.); (G.M.)
| |
Collapse
|
14
|
Luo Y, Lin R, Zuo Y, Zhang Z, Zhuo Y, Lu M, Chen S, Gu H. Efficient Electrochemical Microsensor for In Vivo Monitoring of H 2O 2 in PD Mouse Brain: Rational Design and Synthesis of Recognition Molecules. Anal Chem 2022; 94:9130-9139. [PMID: 35694821 DOI: 10.1021/acs.analchem.2c01570] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydrogen peroxide (H2O2), one of the most stable and abundant reactive oxygen species (ROS), acting as a modulator of dopaminergic signaling, has been intimately implicated in Parkinson's disease, creating a critical need for the selective quantification of H2O2 in the living brain. Current natural or nanomimic enzyme-based electrochemical methods employed for the determination of H2O2 suffer from inadequate selectivity and stability, due to which the in vivo measurement of H2O2 in the living brain remains a challenge. Herein, a series of 5-(1,2-dithiolan-3-yl)-N-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)pentanamide (DBP) derivatives were designed by tuning the substitute groups and sites of a boric acid ester, which served as probes to specifically react with H2O2. Consequently, the reaction products, 5-(1,2-dithiolan-3-yl)-N-(4-hydroxyphen-yl)pentanamide (DHP) derivatives, converted the electrochemical signal from inactive into active. After systematically evaluating their performances, 5-(1,2-dithiolan-3-yl)-N-(3-chloro-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)pentanamide (o-Cl-DBP) was finally identified as the optimized probe for H2O2 detection as it revealed the fastest reaction time, the largest current density, and the most negative potential. In addition, electrochemically oxidized graphene oxide (EOGO) was utilized to produce a stable inner reference. The designed electrochemical microsensor provided a ratiometric strategy for real-time tracking of H2O2 in a linear range of 0.5-600 μM with high selectivity and accuracy. Eventually, the efficient electrochemical microsensor was successfully applied to the measurement of H2O2 in Parkinson's disease (PD) mouse brain. The average levels of H2O2 in the cortex, striatum, and hippocampus in the normal mouse and PD mouse were systematically compared for the first time.
Collapse
Affiliation(s)
- Yu Luo
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Ruizhi Lin
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Yimei Zuo
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Ziyi Zhang
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Yi Zhuo
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, Hunan Provincial Key Laboratory of Neurorestoratology, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, P. R. China
| | - Ming Lu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, Hunan Provincial Key Laboratory of Neurorestoratology, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, P. R. China
| | - Shu Chen
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Hui Gu
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| |
Collapse
|