1
|
Wang T, Zhao AQ, Yan Y, Wang LN. Crevice corrosion behavior of a biodegradable Zn-Mn-Mg alloy in simulated body fluid. Biomater Sci 2024; 12:4957-4966. [PMID: 39158571 DOI: 10.1039/d4bm00965g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Crevice corrosion at the implantation sites cannot be neglected in clinical applications of biodegradable zinc alloys as implants. In this study, a crevice corrosion protocol was designed to investigate the crevice corrosion behavior of the Zn-0.45Mn-0.2Mg (ZMM42) alloy for the first time, by varying crevice thicknesses in simulated body fluid (SBF) through immersion and electrochemical analysis. The results indicated that the ZMM42 alloy was susceptible to crevice corrosion in the range from 0.03 mm to 0.2 mm. When the crevice thickness was 0.05 mm, the crevice corrosion of the specimen became more severe compared to other thicknesses.
Collapse
Affiliation(s)
- Ting Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China.
| | - An-Qi Zhao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China.
| | - Yu Yan
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, PR China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Lu-Ning Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China.
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
- Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang 110004, PR China
| |
Collapse
|
2
|
Schmidt M, Waselau AC, Feichtner F, Julmi S, Klose C, Maier HJ, Wriggers P, Meyer-Lindenberg A. In vivo investigation of open-pored magnesium scaffolds LAE442 with different coatings in an open wedge defect. J Appl Biomater Funct Mater 2022; 20:22808000221142679. [PMID: 36545893 DOI: 10.1177/22808000221142679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The magnesium alloy LAE442 showed promising results as a bone substitute in numerous studies in non-weight bearing bone defects. This study aimed to investigate the in vivo behavior of wedge-shaped open-pored LAE442 scaffolds modified with two different coatings (magnesium fluoride (MgF2, group 1)) or magnesium fluoride/calcium phosphate (MgF2/CaP, group 2)) in a partial weight-bearing rabbit tibia defect model. The implantation of the scaffolds was performed as an open wedge corrective osteotomy in the tibia of 40 rabbits and followed for observation periods of 6, 12, 24, and 36 weeks. Radiological and microcomputed tomographic examinations were performed in vivo. X-ray microscopic, histological, histomorphometric, and SEM/EDS analyses were performed at the end of each time period. µCT measurements and X-ray microscopy showed a slight decrease in volume and density of the scaffolds of both coatings. Histologically, endosteal and periosteal callus formation with good bridging and stabilization of the osteotomy gap and ingrowth of bone into the scaffold was seen. The MgF2 coating favored better bridging of the osteotomy gap and more bone-scaffold contacts, especially at later examination time points. Overall, the scaffolds of both coatings met the requirement to withstand the loads after an open wedge corrective osteotomy of the proximal rabbit tibia. However, in addition to the inhomogeneous degradation behavior of individual scaffolds, an accumulation of gas appeared, so the scaffold material should be revised again regarding size dimension and composition.
Collapse
Affiliation(s)
- Marlene Schmidt
- Clinic of Small Animal Surgery and Reproduction, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Anja-Christina Waselau
- Clinic of Small Animal Surgery and Reproduction, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Franziska Feichtner
- Clinic of Small Animal Surgery and Reproduction, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Stefan Julmi
- Institut für Werkstoffkunde (Materials Science), Leibniz Universität Hannover, Garbsen, Germany
| | - Christian Klose
- Institut für Werkstoffkunde (Materials Science), Leibniz Universität Hannover, Garbsen, Germany
| | - Hans Jürgen Maier
- Institut für Werkstoffkunde (Materials Science), Leibniz Universität Hannover, Garbsen, Germany
| | - Peter Wriggers
- Institute of Continuum Mechanics, Leibniz Universität Hannover, Garbsen, Germany
| | - Andrea Meyer-Lindenberg
- Clinic of Small Animal Surgery and Reproduction, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
3
|
Amano H, Miyake K, Hinoki A, Yokota K, Kinoshita F, Nakazawa A, Tanaka Y, Seto Y, Uchida H. Novel zinc alloys for biodegradable surgical staples. World J Clin Cases 2020; 8:504-516. [PMID: 32110659 PMCID: PMC7031837 DOI: 10.12998/wjcc.v8.i3.504] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/14/2019] [Accepted: 12/21/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The development of biodegradable surgical staples is desirable as non-biodegradable Ti alloy staples reside in the human body long after wound healing, which can cause allergic/foreign-body reactions, adhesion, or other adverse effects. In order to develop a biodegradable alloy suitable for the fabrication of surgical staples, we hypothesized that Zn, a known biodegradable metal, could be alloyed with various elements to improve the mechanical properties while retaining biodegradability and biocompatibility. Considering their biocompatibility, Mg, Ca, Mn, and Cu were selected as candidate alloying elements, alongside Ti, the main material of clinically available surgical staples. AIM To investigate the in vitro mechanical properties and degradation behavior and in vivo safety and feasibility of biodegradable Zn alloy staples. METHODS Tensile and bending tests were conducted to evaluate the mechanical properties of binary Zn alloys with 0.1-6 wt.% Mg, Ca, Mn, Cu, or Ti. Based on the results, three promising Zn alloy compositions were devised for staple applications (wt.%): Zn-1.0Cu-0.2Mn-0.1Ti (Zn alloy 1), Zn-1.0Mn-0.1Ti (Zn alloy 2), and Zn-1.0Cu-0.1Ti (Zn alloy 3). Immersion tests were performed at 37 °C for 4 wk using fed-state simulated intestinal fluid (FeSSIF) and Hank's balanced salt solution (HBSS). The corrosion rate was estimated from the weight loss of staples during immersion. Nine rabbits were subjected to gastric resection using each Zn alloy staple, and a clinically available Ti staple was used for another group of nine rabbits. Three in each group were sacrificed at 1, 4, and 12 wk post-operation. RESULTS Additions of ≤1 wt.% Mn or Cu and 0.1 wt.% Ti improved the yield strength without excessive deterioration of elongation or bendability. Immersion tests revealed no gas evolution or staple fracture in any of the Zn alloy staples. The corrosion rates of Zn alloy staples 1, 2, and 3 were 0.02 mm/year in HBSS and 0.12, 0.11, and 0.13 mm/year, respectively, in FeSSIF. These degradation times are sufficient for wound healing. The degradation rate is notably increased under low pH conditions. Scanning electron microscopy and energy dispersive spectrometry surface analyses of the staples after immersion indicated that the component elements eluted as ions in FeSSIF, whereas corrosion products were produced in HBSS, inhibiting Zn dissolution. In the animal study, none of the Zn alloy staples caused technical failure, and all rabbits survived without complications. Histopathological analysis revealed no severe inflammatory reaction around the Zn alloy staples. CONCLUSION Staples made of Zn-1.0Cu-0.2Mn-0.1Ti, Zn-1.0Mn-0.1Ti, and Zn-1.0Cu-0.1Ti exhibit acceptable in vitro mechanical properties, proper degradation behavior, and in vivo safety and feasibility. They are promising candidates for biodegradable staples.
Collapse
Affiliation(s)
- Hizuru Amano
- Department of Pediatric Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Koichi Miyake
- Mitsui Mining and Smelting Co., Ltd., Tokyo 141-0032, Japan
| | - Akinari Hinoki
- Department of Pediatric Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Kazuki Yokota
- Department of Pediatric Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Fumie Kinoshita
- Department of Advanced Medicine, Nagoya University Hospital, Nagoya 466-8560, Japan
| | - Atsuko Nakazawa
- Department of Clinical Research, Saitama Children’s Medical Center, Saitama 330-8777, Japan
| | - Yujiro Tanaka
- Department of Pediatric Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yasuhiro Seto
- Mitsui Mining and Smelting Co., Ltd., Tokyo 141-0032, Japan
| | - Hiroo Uchida
- Department of Pediatric Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
4
|
Sun Y, Wu H, Wang W, Zan R, Peng H, Zhang S, Zhang X. Translational status of biomedical Mg devices in China. Bioact Mater 2019; 4:358-365. [PMID: 31909297 PMCID: PMC6939060 DOI: 10.1016/j.bioactmat.2019.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/29/2019] [Accepted: 11/06/2019] [Indexed: 12/14/2022] Open
Abstract
Magnesium (Mg) and its alloys as temporary medical implants with biodegradable and properly mechanical properties have been investigated for a long time. There are already three kinds of biodegradable Mg implants which are approved by Conformite Europeene (CE) or Korea Food and Drug Administration (KFDA), but not China Food and Drug Administration (CFDA, now it is National Medical Products Administration, NMPA). As we know, Chinese researchers, surgeons, and entrepreneurs have tried a lot to research and develop biodegradable Mg implants which might become other new approved implants for clinical applications. So in this review, we present the representative Mg implants of three categories, orthopedic implants, surgical implants, and intervention implants and provide an overview of current achievement in China from academic publications and Chinese patents. We would like to provide a systematic way to translate Mg and its alloy implants from experiment designs to clinical products.
Collapse
Affiliation(s)
- Yu Sun
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongliu Wu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenhui Wang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Rui Zan
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongzhou Peng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shaoxiang Zhang
- Suzhou Origin Medical Technology Co. Ltd., Suzhou, 215513, China
| | - Xiaonong Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Suzhou Origin Medical Technology Co. Ltd., Suzhou, 215513, China
| |
Collapse
|
5
|
Crevice corrosion - A newly observed mechanism of degradation in biomedical magnesium. Acta Biomater 2019; 98:152-159. [PMID: 31201866 DOI: 10.1016/j.actbio.2019.06.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 02/06/2023]
Abstract
Crevice-induced corrosion is not desirable to occur in metallic magnesium (Mg) during many industrial applications. However, orthopedic implants made of Mg alloys have been demonstrated to degrade faster between the joining surface of bone plates and screws after implantation, suggesting the crevice corrosion may occur in the physiological environment. In this paper, a resin device is designed to parallel high purity magnesium (HP-Mg) plates with closely spaced slits. After a standard corrosion test in the phosphate-buffered saline (PBS) solution, the paralleled HP-Mg samples embedded in the custom-made resin device corrode faster than those without the resin device. The corrosion morphology of Mg with the resin device exhibits features of crevice corrosion with many deep holes and river-like texture. Moreover, implantation of the bone plate and screws in vivo demonstrates similar corrosion morphology as that of the in vitro test, suggesting the occurrence of crevice-enhanced corrosion in the bone-bone plate interface, as well as the contact area between the bone plate and the screws. STATEMENT OF SIGNIFICANCE: Understanding the corrosion behavior of Mg and Mg alloys after implantation is one of the main challenges for developing desirable biodegradable Mg alloys or effective methods to adjust the corrosion rate of Mg-based implants. In this paper, we attempted to understand the corrosion behaviors of HP-Mg at the joining surface between HP-Mg plates or HP-Mg screws and bone tissues after implantation. We designed an in vitro setup to mimic the crevice environment of the in vivo joining surface and found that the crevices existing on the HP-Mg would significantly accelerate the corrosion rate and change the corrosion morphology of HP-Mg plates. The in vivo implantation also showed similar corrosion morphology caused by crevice corrosion, which appeared at the joining surface between HP-Mg plates or HP-Mg screws and bone tissues. Then, we proposed a new corrosion mechanism of Mg-based alloys inside the crevice. The findings of this study can help us broaden our cognition on the corrosion behavior of Mg and Mg alloy-based orthopedic implants.
Collapse
|
6
|
Amano H, Hanada K, Hinoki A, Tainaka T, Shirota C, Sumida W, Yokota K, Murase N, Oshima K, Chiba K, Tanaka Y, Uchida H. Biodegradable Surgical Staple Composed of Magnesium Alloy. Sci Rep 2019; 9:14671. [PMID: 31604974 PMCID: PMC6789124 DOI: 10.1038/s41598-019-51123-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 09/25/2019] [Indexed: 11/09/2022] Open
Abstract
Currently, surgical staples are composed of non-biodegradable titanium (Ti) that can cause allergic reactions and interfere with imaging. This paper proposes a novel biodegradable magnesium (Mg) alloy staple and discusses analyses conducted to evaluate its safety and feasibility. Specifically, finite element analysis revealed that the proposed staple has a suitable stress distribution while stapling and maintaining closure. Further, an immersion test using artificial intestinal juice produced satisfactory biodegradable behavior, mechanical durability, and biocompatibility in vitro. Hydrogen resulting from rapid corrosion of Mg was observed in small quantities only in the first week of immersion, and most staples maintained their shapes until at least the fourth week. Further, the tensile force was maintained for more than a week and was reduced to approximately one-half by the fourth week. In addition, the Mg concentration of the intestinal artificial juice was at a low cytotoxic level. In porcine intestinal anastomoses, the Mg alloy staples caused neither technical failure nor such complications as anastomotic leakage, hematoma, or adhesion. No necrosis or serious inflammation reaction was histopathologically recognized. Thus, the proposed Mg alloy staple offers a promising alternative to Ti alloy staples.
Collapse
Affiliation(s)
- Hizuru Amano
- Department of Pediatric Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Kotaro Hanada
- Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, 305-8564, Japan
| | - Akinari Hinoki
- Department of Pediatric Surgery, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Takahisa Tainaka
- Department of Pediatric Surgery, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Chiyoe Shirota
- Department of Pediatric Surgery, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Wataru Sumida
- Department of Pediatric Surgery, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Kazuki Yokota
- Department of Pediatric Surgery, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Naruhiko Murase
- Department of Pediatric Surgery, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Kazuo Oshima
- Department of Pediatric Surgery, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Kosuke Chiba
- Department of Pediatric Surgery, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Yujiro Tanaka
- Department of Pediatric Surgery, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Hiroo Uchida
- Department of Pediatric Surgery, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.
| |
Collapse
|
7
|
Magnesium matrix nanocomposites for orthopedic applications: A review from mechanical, corrosion, and biological perspectives. Acta Biomater 2019; 96:1-19. [PMID: 31181263 DOI: 10.1016/j.actbio.2019.06.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/28/2019] [Accepted: 06/05/2019] [Indexed: 02/06/2023]
Abstract
Magnesium (Mg) and some of its alloys have attracted extensive interests for biomedical applications as they exhibit biodegradability and low elastic modulus that is closer to natural bones than the currently used metallic implant materials such as titanium (Ti) and its alloys, stainless steels, and cobalt-chromium (Co-Cr) alloys. However, the rapid degradation of Mg alloys and loss of their mechanical integrity before sufficient bone healing impede their clinical application. Our literature review shows that magnesium matrix nanocomposites (MMNCs) reinforced with nanoparticles possess enhanced strength, high corrosion resistance, and good biocompatibility. This article provides a detailed analysis of the effects of nanoparticle reinforcements on the mechanical properties, corrosion behavior, and biocompatibility of MMNCs as promising biodegradable implant materials. The governing equations to quantitatively predict the mechanical properties and underlying synergistic strengthening mechanisms in MMNCs are elucidated. The potential, recent advances, challenges and future research directions in relation to nanoparticles reinforced MMNCs are highlighted. STATEMENT OF SIGNIFICANCE: Critically reviewing magnesium metal matrix nanocomposites (MMNCs) for the biomedical application. Clear definitions of strengthening mechanisms using reinforcement particle in the magnesium matrix, as there were controversial in governing equations of strengthening parameters. Providing better understanding of the effect of particle size, volume fraction, interfacial bonding, and uniform dispersion of reinforcement particles on MMNCs.
Collapse
|
8
|
Gu XN, Lu Y, Wang F, Lin W, Li P, Fan Y. The effect of tensile and fluid shear stress on the in vitro degradation of magnesium alloy for stent applications. Bioact Mater 2018; 3:448-454. [PMID: 30182072 PMCID: PMC6120427 DOI: 10.1016/j.bioactmat.2018.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/27/2018] [Accepted: 08/27/2018] [Indexed: 12/27/2022] Open
Abstract
Magnesium alloys have gained great attention as biodegradable materials for stent applications. Cardiovascular stents are continuously exposed to different types of mechanical loadings simultaneously during service, including tensile, compressive and fluid shear stress. In this study, the in vitro degradation of WE43 wires was investigated under combined effect of tensile loading and fluid shear stress and compared with that experienced an individual loading condition. For the individual mechanical loading treatment, the degradation of magnesium wires was more severely affected by tensile loading than fluid shear stress. Under tensile loading, magnesium wires showed faster increment of corrosion rates, loss of mechanical properties and localized corrosion morphology with the increasing tensile loadings. With the combined stress, smaller variation of the corrosion rates as well as the slower strength degeneration was shown with increasing stress levels, in comparison with the individual treatment of tensile loading. This study could help to understand the effect of complex stress condition on the corrosion of magnesium for the optimization of biodegradable magnesium stents. Tensile loading induced the localized corrosion and fast degeneration of mechanical properties of magnesium wires. Relatively homogeneous corrosion of magnesium wires was observed under fluid shear stress. Under combined stresses, smaller variation of the corrosion rates and the slower strength decay was shown with increasing stresses.
Collapse
Affiliation(s)
- Xue-Nan Gu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 10083, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 102402, China
| | - Yun Lu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 10083, China
| | - Fan Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 10083, China
| | - Wenting Lin
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 10083, China
| | - Ping Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 10083, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 102402, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 10083, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 102402, China.,National Research Center for Rehabilitation Technical Aids, Beijing, 100176, China
| |
Collapse
|
9
|
Wu H, Zhao C, Ni J, Zhang S, Liu J, Yan J, Chen Y, Zhang X. Research of a novel biodegradable surgical staple made of high purity magnesium. Bioact Mater 2016; 1:122-126. [PMID: 29744400 PMCID: PMC5883960 DOI: 10.1016/j.bioactmat.2016.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 09/08/2016] [Accepted: 09/09/2016] [Indexed: 12/13/2022] Open
Abstract
Surgical staples made of pure titanium and titanium alloys are widely used in gastrointestinal anastomosis. However the Ti staple cannot be absorbed in human body and produce artifacts on computed tomography (CT) and other imaging examination, and cause the risk of incorrect diagnosis. The bioabsorbable staple made from polymers that can degrade in human body environment, is an alternative. In the present study, biodegradable high purity magnesium staples were developed for gastric anastomosis. U-shape staples with two different interior angles, namely original 90° and modified 100°, were designed. Finite element analysis (FEA) showed that the residual stress concentrated on the arc part when the original staple was closed to B-shape, while it concentrated on the feet for the modified staple after closure. The in vitro tests indicated that the arc part of the original staple ruptured firstly after 7 days immersion, whereas the modified one kept intact, demonstrating residual stress greatly affected the corrosion behavior of the HP-Mg staples. The in vivo implantation showed good biocompatibility of the modified Mg staples, without inflammatory reaction 9 weeks post-operation. The Mg staples kept good closure to the Anastomosis, no leaking and bleeding were found, and the staples exhibited no fracture or severe corrosion cracks during the degradation. A modified structure with about 100° interior angle of U-shape was selected by using FEA. In vitro immersion experiment showed homogeneous corrosion behavior of the modified HP-Mg surgical staple. In vivo implantation suggested that the modified HP-Mg surgical staple had enough closure strength and good biocompatibility.
Collapse
Affiliation(s)
- Hongliu Wu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Changli Zhao
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiahua Ni
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shaoxiang Zhang
- Suzhou Origin Medical Technology Co. Ltd., Jiangsu 215513, China
| | - Jingyi Liu
- Suzhou Origin Medical Technology Co. Ltd., Jiangsu 215513, China
| | - Jun Yan
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yigang Chen
- Department of General Surgery, Wuxi No. 2 People's Hospital, Nanjing Medical University, Wuxi, 214002, China
| | - Xiaonong Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.,Suzhou Origin Medical Technology Co. Ltd., Jiangsu 215513, China
| |
Collapse
|
10
|
Chaya A, Yoshizawa S, Verdelis K, Myers N, Costello BJ, Chou DT, Pal S, Maiti S, Kumta PN, Sfeir C. In vivo study of magnesium plate and screw degradation and bone fracture healing. Acta Biomater 2015; 18:262-9. [PMID: 25712384 DOI: 10.1016/j.actbio.2015.02.010] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 02/10/2015] [Accepted: 02/13/2015] [Indexed: 11/18/2022]
Abstract
Each year, millions of Americans suffer bone fractures, often requiring internal fixation. Current devices, like plates and screws, are made with permanent metals or resorbable polymers. Permanent metals provide strength and biocompatibility, but cause long-term complications and may require removal. Resorbable polymers reduce long-term complications, but are unsuitable for many load-bearing applications. To mitigate complications, degradable magnesium (Mg) alloys are being developed for craniofacial and orthopedic applications. Their combination of strength and degradation make them ideal for bone fixation. Previously, we conducted a pilot study comparing Mg and titanium devices with a rabbit ulna fracture model. We observed Mg device degradation, with uninhibited healing. Interestingly, we observed bone formation around degrading Mg, but not titanium, devices. These results highlighted the potential for these fixation devices. To better assess their efficacy, we conducted a more thorough study assessing 99.9% Mg devices in a similar rabbit ulna fracture model. Device degradation, fracture healing, and bone formation were evaluated using microcomputed tomography, histology and biomechanical tests. We observed device degradation throughout, and calculated a corrosion rate of 0.40±0.04mm/year after 8 weeks. In addition, we observed fracture healing by 8 weeks, and maturation after 16 weeks. In accordance with our pilot study, we observed bone formation surrounding Mg devices, with complete overgrowth by 16 weeks. Bend tests revealed no difference in flexural load of healed ulnae with Mg devices compared to intact ulnae. These data suggest that Mg devices provide stabilization to facilitate healing, while degrading and stimulating new bone formation.
Collapse
Affiliation(s)
- Amy Chaya
- The Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sayuri Yoshizawa
- The Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, USA; Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kostas Verdelis
- The Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, USA; Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA, USA; The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nicole Myers
- The Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, USA; Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bernard J Costello
- The Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, USA; The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Oral and Maxillofacial Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Da-Tren Chou
- The Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Siladitya Pal
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Spandan Maiti
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Prashant N Kumta
- The Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA, USA; The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Charles Sfeir
- The Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA, USA; The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|