1
|
Zeng X, Yi X, Chen L, Zhang H, Zhou R, Wu J, Chen Y, Huang W, Zhang L, Zheng J, Xiao Y, Yang F. Characterization and bioassays of extracellular vesicles extracted by tangential flow filtration. Regen Med 2022; 17:141-154. [PMID: 35073731 DOI: 10.2217/rme-2021-0038] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Aim: To evaluate the efficiency of tangential flow filtration (TFF) in improving the yield of human umbilical cord mesenchymal stem cell (MSC)-derived extracellular vesicles (hucMSC-EVs) while promoting cell regeneration under oxidative stress. Methods: HucMSC-EVs were extracted from supernatants by ultracentrifugation (UC-EVs) and TFF (TFF-EVs), followed by feature characterization and bioactivity assays. Results: The yield of TFF-EVs increased 18-times compared with that of UC-EVs. TFF-EVs displayed proliferation-promoting ability similar to that of UC-EVs in the damaged HaCaT cell model with ultraviolet radiation B (UVB) and H2O2. Furthermore, the antiapoptotic effects of TFF-EVs were improved, whereby the apoptosis rate exhibited a 3.7-fold decrease. Conclusion: HucMSC-EVs extracted by TFF show a higher yield and rejuvenate the damaged HaCaT cells induced by oxidative stress.
Collapse
Affiliation(s)
- Xiaoli Zeng
- Translational Medicine Research Laboratory, PLA Air Force Hospital of Southern Theatre Command, Guangzhou, 510602, China.,Guangzhou Dude Biotechnology Co., Ltd., Guangzhou, 510320, China
| | - Xuerui Yi
- Central Research Laboratory, PLA Air Force Hospital of Southern Theatre Command, Guangzhou, 510602, China
| | - Lixuan Chen
- Guangzhou Dude Biotechnology Co., Ltd., Guangzhou, 510320, China
| | - Haisong Zhang
- Central Research Laboratory, PLA Air Force Hospital of Southern Theatre Command, Guangzhou, 510602, China
| | - Rongcheng Zhou
- Guangzhou Dude Biotechnology Co., Ltd., Guangzhou, 510320, China
| | - Jiwei Wu
- Guangzhou Dude Biotechnology Co., Ltd., Guangzhou, 510320, China
| | - Yuguang Chen
- Guangzhou Dude Biotechnology Co., Ltd., Guangzhou, 510320, China
| | - Wanyi Huang
- Guangzhou Dude Biotechnology Co., Ltd., Guangzhou, 510320, China
| | - Linyan Zhang
- Guangzhou Dude Biotechnology Co., Ltd., Guangzhou, 510320, China
| | - Jie Zheng
- Guangzhou Dude Biotechnology Co., Ltd., Guangzhou, 510320, China
| | - Yang Xiao
- Guangzhou Dude Biotechnology Co., Ltd., Guangzhou, 510320, China.,Stem Cell Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Fuqiang Yang
- Translational Medicine Research Laboratory, PLA Air Force Hospital of Southern Theatre Command, Guangzhou, 510602, China
| |
Collapse
|
2
|
Ana ID, Barlian A, Hidajah AC, Wijaya CH, Notobroto HB, Kencana Wungu TD. Challenges and strategy in treatment with exosomes for cell-free-based tissue engineering in dentistry. Future Sci OA 2021; 7:FSO751. [PMID: 34840808 PMCID: PMC8609983 DOI: 10.2144/fsoa-2021-0050] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022] Open
Abstract
In dentistry, problems of craniofacial, osteochondral, periodontal tissue, nerve, pulp or endodontics injuries, and osteoarthritis need regenerative therapy. The use of stem cells in dental tissue engineering pays a lot of increased attention, but there are challenges for its clinical applications. Therefore, cell-free-based tissue engineering using exosomes isolated from stem cells is regarded an alternative approach in regenerative dentistry. However, practical use of exosome is restricted by limited secretion capability of cells. For future regenerative treatment with exosomes, efficient strategies for large-scale clinical applications are being studied, including the use of ceramics-based scaffold to enhance exosome production and secretion which can resolve limited exosome secretory from the cells when compared with the existing methods available. Indeed, more research needs to be done on these strategies going forward.
Collapse
Affiliation(s)
- Ika Dewi Ana
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Anggraini Barlian
- School of Life Sciences & Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| | - Atik Choirul Hidajah
- Department of Epidemiology, Biostatistics, Population Studies, & Health Promotion, Faculty of Public Health, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Christofora Hanny Wijaya
- Department of Food Science & Technology, Faculty of Agricultural Engineering & Technology, IPB University, Bogor, 16002, Indonesia
| | - Hari Basuki Notobroto
- Department of Epidemiology, Biostatistics, Population Studies, & Health Promotion, Faculty of Public Health, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Triati Dewi Kencana Wungu
- Department of Physics, Faculty of Mathematics & Natural Sciences, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| |
Collapse
|
3
|
Agarwal T, Kazemi S, Costantini M, Perfeito F, Correia CR, Gaspar V, Montazeri L, De Maria C, Mano JF, Vosough M, Makvandi P, Maiti TK. Oxygen releasing materials: Towards addressing the hypoxia-related issues in tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111896. [PMID: 33641899 DOI: 10.1016/j.msec.2021.111896] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/09/2021] [Accepted: 01/16/2021] [Indexed: 02/07/2023]
Abstract
Manufacturing macroscale cell-laden architectures is one of the biggest challenges faced nowadays in the domain of tissue engineering. Such living constructs, in fact, pose strict requirements for nutrients and oxygen supply that can hardly be addressed through simple diffusion in vitro or without a functional vasculature in vivo. In this context, in the last two decades, a substantial amount of work has been carried out to develop smart materials that could actively provide oxygen-release to contrast local hypoxia in large-size constructs. This review provides an overview of the currently available oxygen-releasing materials and their synthesis and mechanism of action, highlighting their capacities under in vitro tissue cultures and in vivo contexts. Additionally, we also showcase an emerging concept, herein termed as "living materials as releasing systems", which relies on the combination of biomaterials with photosynthetic microorganisms, namely algae, in an "unconventional" attempt to supply the damaged or re-growing tissue with the necessary supply of oxygen. We envision that future advances focusing on tissue microenvironment regulated oxygen-supplying materials would unlock an untapped potential for generating a repertoire of anatomic scale, living constructs with improved cell survival, guided differentiation, and tissue-specific biofunctionality.
Collapse
Affiliation(s)
- Tarun Agarwal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Sara Kazemi
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Marco Costantini
- Institute of Physical Chemistry - Polish Academy of Sciences, Warsaw, Poland
| | - Francisca Perfeito
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Clara R Correia
- Research Center "E. Piaggio", Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy
| | - Vítor Gaspar
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Leila Montazeri
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Carmelo De Maria
- Research Center "E. Piaggio", Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Massoud Vosough
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Regenerative Medicine, Cell Science Research Centre, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Pooyan Makvandi
- Center for MicroBioRobotics (CMBR), Istituto Italiano di Tecnologia, Pisa, Italy
| | - Tapas Kumar Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| |
Collapse
|
4
|
Tavanasefat H, Li F, Koyano K, Gourtani BK, Marty V, Mulpuri Y, Lee SH, Shin KH, Wong DTW, Xiao X, Spigelman I, Kim Y. Molecular consequences of fetal alcohol exposure on amniotic exosomal miRNAs with functional implications for stem cell potency and differentiation. PLoS One 2020; 15:e0242276. [PMID: 33196678 PMCID: PMC7668603 DOI: 10.1371/journal.pone.0242276] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/30/2020] [Indexed: 12/16/2022] Open
Abstract
Alcohol (ethanol, EtOH) consumption during pregnancy can result in fetal alcohol spectrum disorders (FASDs), which are characterized by prenatal and postnatal growth restriction and craniofacial dysmorphology. Recently, cell-derived extracellular vesicles, including exosomes and microvesicles containing several species of RNAs (exRNAs), have emerged as a mechanism of cell-to-cell communication. However, EtOH's effects on the biogenesis and function of non-coding exRNAs during fetal development have not been explored. Therefore, we studied the effects of maternal EtOH exposure on the composition of exosomal RNAs in the amniotic fluid (AF) using rat fetal alcohol exposure (FAE) model. Through RNA-Seq analysis we identified and verified AF exosomal miRNAs with differential expression levels specifically associated with maternal EtOH exposure. Uptake of purified FAE AF exosomes by rBMSCs resulted in significant alteration of molecular markers associated with osteogenic differentiation of rBMSCs. We also determined putative functional roles for AF exosomal miRNAs (miR-199a-3p, miR-214-3p and let-7g) that are dysregulated by FAE in osteogenic differentiation of rBMSCs. Our results demonstrate that FAE alters AF exosomal miRNAs and that exosomal transfer of dysregulated miRNAs has significant molecular effects on stem cell regulation and differentiation. Our results further suggest the usefulness of assessing molecular alterations in AF exRNAs to study the mechanisms of FAE teratogenesis that should be further investigated by using an in vivo model.
Collapse
Affiliation(s)
- Honey Tavanasefat
- Laboratory of Stem Cell & Cancer Epigenetic Research, School of Dentistry, UCLA, Los Angeles, California, United States of America
- CSUN-UCLA Stem Cell Research Bridge Program, Department of Biology, California State University at Northridge, Northridge, California, United States of America
| | - Feng Li
- Division of Oral Biology & Medicine, UCLA School of Dentistry, Los Angeles, California, United States of America
| | - Kikuye Koyano
- Department of Integrative Biology and Physiology, Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Bahar Khalilian Gourtani
- Laboratory of Stem Cell & Cancer Epigenetic Research, School of Dentistry, UCLA, Los Angeles, California, United States of America
| | - Vincent Marty
- Division of Oral Biology & Medicine, UCLA School of Dentistry, Los Angeles, California, United States of America
| | - Yatendra Mulpuri
- Division of Oral Biology & Medicine, UCLA School of Dentistry, Los Angeles, California, United States of America
| | - Sung Hee Lee
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, California, United States of America
| | - Ki-Hyuk Shin
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, California, United States of America
| | - David T. W. Wong
- Division of Oral Biology & Medicine, UCLA School of Dentistry, Los Angeles, California, United States of America
| | - Xinshu Xiao
- Department of Integrative Biology and Physiology, Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Igor Spigelman
- Division of Oral Biology & Medicine, UCLA School of Dentistry, Los Angeles, California, United States of America
| | - Yong Kim
- Laboratory of Stem Cell & Cancer Epigenetic Research, School of Dentistry, UCLA, Los Angeles, California, United States of America
- Division of Oral Biology & Medicine, UCLA School of Dentistry, Los Angeles, California, United States of America
- UCLA Broad Stem Cell Research Center, Los Angeles, California, United States of America
| |
Collapse
|
5
|
Maguire G, Paler L, Green L, Mella R, Valcarcel M, Villace P. Rescue of degenerating neurons and cells by stem cell released molecules: using a physiological renormalization strategy. Physiol Rep 2019; 7:e14072. [PMID: 31050222 PMCID: PMC6497969 DOI: 10.14814/phy2.14072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/26/2019] [Accepted: 03/31/2019] [Indexed: 12/13/2022] Open
Abstract
Evidence suggests that adult stem cell types and progenitor cells act collectively in a given tissue to maintain and heal organs, such as muscle, through a release of a multitude of molecules packaged into exosomes from the different cell types. Using this principle for the development of bioinspired therapeutics that induces homeostatic renormalization, here we show that the collection of molecules released from four cell types, including mesenchymal stem cells, fibroblast, neural stem cells, and astrocytes, rescues degenerating neurons and cells. Specifically, oxidative stress induced in a human recombinant TDP-43- or FUS-tGFP U2OS cell line by exposure to sodium arsenite was shown to be significantly reduced by our collection of molecules using in vitro imaging of FUS and TDP-43 stress granules. Furthermore, we also show that the collective secretome rescues cortical neurons from glutamate toxicity as evidenced by increased neurite outgrowth, reduced LDH release, and reduced caspase 3/7 activity. These data are the first in a series supporting the development of stem cell-based exosome systems therapeutics that uses a physiological renormalization strategy to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Greg Maguire
- BioRegenerative Sciences, Inc.San DiegoCalifornia
- Auditory Sound Waves, LLCSan DiegoCalifornia
| | - Lee Paler
- BioRegenerative Sciences, Inc.San DiegoCalifornia
- Auditory Sound Waves, LLCSan DiegoCalifornia
| | - Linda Green
- BioRegenerative Sciences, Inc.San DiegoCalifornia
| | | | | | | |
Collapse
|
6
|
Han C, Jeong D, Kim B, Jo W, Kang H, Cho S, Kim KH, Park J. Mesenchymal Stem Cell Engineered Nanovesicles for Accelerated Skin Wound Closure. ACS Biomater Sci Eng 2019; 5:1534-1543. [DOI: 10.1021/acsbiomaterials.8b01646] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Chungmin Han
- Department of Mechanical Engineering, POSTECH, 77 Cheongam-Ro,
Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Dayeong Jeong
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Bumju Kim
- Division of Integrative Biosciences and Biotechnology, POSTECH, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Wonju Jo
- Department of Mechanical Engineering, POSTECH, 77 Cheongam-Ro,
Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Hyejin Kang
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Siwoo Cho
- Department of Mechanical Engineering, POSTECH, 77 Cheongam-Ro,
Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Ki Hean Kim
- Department of Mechanical Engineering, POSTECH, 77 Cheongam-Ro,
Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
- Division of Integrative Biosciences and Biotechnology, POSTECH, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jaesung Park
- Department of Mechanical Engineering, POSTECH, 77 Cheongam-Ro,
Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| |
Collapse
|
7
|
Maguire G, Friedman P. Systems biology approach to developing S 2RM-based “systems therapeutics” and naturally induced pluripotent stem cells. World J Stem Cells 2015; 7:745-756. [PMID: 26029345 PMCID: PMC4444614 DOI: 10.4252/wjsc.v7.i4.745] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/25/2014] [Accepted: 03/18/2015] [Indexed: 02/06/2023] Open
Abstract
The degree to, and the mechanisms through, which stem cells are able to build, maintain, and heal the body have only recently begun to be understood. Much of the stem cell’s power resides in the release of a multitude of molecules, called stem cell released molecules (SRM). A fundamentally new type of therapeutic, namely “systems therapeutic”, can be realized by reverse engineering the mechanisms of the SRM processes. Recent data demonstrates that the composition of the SRM is different for each type of stem cell, as well as for different states of each cell type. Although systems biology has been successfully used to analyze multiple pathways, the approach is often used to develop a small molecule interacting at only one pathway in the system. A new model is emerging in biology where systems biology is used to develop a new technology acting at multiple pathways called “systems therapeutics”. A natural set of healing pathways in the human that uses SRM is instructive and of practical use in developing systems therapeutics. Endogenous SRM processes in the human body use a combination of SRM from two or more stem cell types, designated as S2RM, doing so under various state dependent conditions for each cell type. Here we describe our approach in using state-dependent SRM from two or more stem cell types, S2RM technology, to develop a new class of therapeutics called “systems therapeutics.” Given the ubiquitous and powerful nature of innate S2RM-based healing in the human body, this “systems therapeutic” approach using S2RM technology will be important for the development of anti-cancer therapeutics, antimicrobials, wound care products and procedures, and a number of other therapeutics for many indications.
Collapse
|
8
|
Crisostomo V, Casado JG, Baez-Diaz C, Blazquez R, Sanchez-Margallo FM. Allogeneic cardiac stem cell administration for acute myocardial infarction. Expert Rev Cardiovasc Ther 2015; 13:285-99. [DOI: 10.1586/14779072.2015.1011621] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Blazquez R, Sanchez-Margallo FM, de la Rosa O, Dalemans W, Alvarez V, Tarazona R, Casado JG. Immunomodulatory Potential of Human Adipose Mesenchymal Stem Cells Derived Exosomes on in vitro Stimulated T Cells. Front Immunol 2014; 5:556. [PMID: 25414703 PMCID: PMC4220146 DOI: 10.3389/fimmu.2014.00556] [Citation(s) in RCA: 288] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 10/20/2014] [Indexed: 12/15/2022] Open
Abstract
In the recent years, it has been demonstrated that the biological activity of mesenchymal stem cells (MSCs) is mediated through the release of paracrine factors. Many of these factors are released into exosomes, which are small membranous vesicles that participate in cell–cell communication. Exosomes from MSCs are thought to have similar functions to MSCs such as repairing and regeneration of damaged tissue, but little is known about the immunomodulatory effect of these vesicles. Based on an extensive bibliography where the immunomodulatory capacity of MSCs has been demonstrated, here we hypothesized that released exosomes from MSCs may have an immunomodulatory role on the differentiation, activation and function of different lymphocyte subsets. According to this hypothesis, in vitro experiments were performed to characterize the immunomodulatory effect of human adipose MSCs derived exosomes (exo-hASCs) on in vitro stimulated T cells. The phenotypic characterization of cytotoxic and helper T cells (activation and differentiation markers) together with functional assays (proliferation and IFN-γ production) demonstrated that exo-hASCs exerted an inhibitory effect in the differentiation and activation of T cells as well as a reduced T cell proliferation and IFN-γ release on in vitro stimulated cells. In summary, here we demonstrate that MSCs-derived exosomes are a cell-derived product that could be considered as a therapeutic agent for the treatment of inflammation-related diseases.
Collapse
Affiliation(s)
- Rebeca Blazquez
- Stem Cell Therapy Unit, Minimally Invasive Surgery Centre Jesus Uson , Cáceres , Spain
| | | | - Olga de la Rosa
- Research and Development Department, TiGenix SA, Parque Tecnológico de Madrid , Madrid , Spain
| | | | - Verónica Alvarez
- Stem Cell Therapy Unit, Minimally Invasive Surgery Centre Jesus Uson , Cáceres , Spain
| | - Raquel Tarazona
- Immunology Unit, Department of Physiology, University of Extremadura , Cáceres , Spain
| | - Javier G Casado
- Stem Cell Therapy Unit, Minimally Invasive Surgery Centre Jesus Uson , Cáceres , Spain
| |
Collapse
|
10
|
Maguire G. Using a systems-based approach to overcome reductionist strategies in the development of diagnostics. Expert Rev Mol Diagn 2013; 13:895-905. [PMID: 24138553 DOI: 10.1586/14737159.2013.846828] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Systems biology is a recent addition to the necessary but insufficient reductionist approach used in biological research. Systems biology is focused on understanding living things as a function of their various interactions at multiple levels: not simply as a sum of all their individual parts at any one level. This integrative approach yields predictive models of the normal state, the disease state and therapeutic actions. Although molecular biology has collected an enormous amount of information, including the sequencing of the entire human genome in the year 2000, few real-world applications have resulted from this molecular approach. The pharmaceutical industry's R&D expenditure has increased substantially since 2000, but the number of approved therapeutics has dropped simultaneously, due in part to over-reliance on reductionist genomic, and not systems, approaches. Instead of using reductionist genomics approaches alone, genomics should be incorporated into a multi-level systems biology approach to develop diagnostics and therapeutics.
Collapse
Affiliation(s)
- Greg Maguire
- BioRegenerative Sciences, Inc., San Diego, CA, USA +1 858 413 7372
| |
Collapse
|
11
|
Maguire G. Stem cell therapy without the cells. Commun Integr Biol 2013; 6:e26631. [PMID: 24567776 PMCID: PMC3925653 DOI: 10.4161/cib.26631] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 09/25/2013] [Indexed: 12/14/2022] Open
Abstract
As an example of the burgeoning importance of stem cell therapy, this past month the California Institute for Regenerative Medicine (CIRM) has approved $70 million to create a new network of stem cell clinical trial centers. Much work in the last decade has been devoted to developing the use of autologous and allogeneic adult stem cell transplants to treat a number of conditions, including heart attack, dementia, wounds, and immune system-related diseases. The standard model teaches us that adult stem cells exists throughout most of the body and provide a means to regenerate and repair most tissues through replication and differentiation. Although we have often witnessed the medical cart placed in front of the scientific horse in the development of stem cell therapies outside of academic circles, great strides have been made, such as the use of purified stem cells1 instead of whole bone marrow transplants in cancer patients, where physicians avoid re-injecting the patients with their own cancer cells.2 We most often think of stem cell therapy acting to regenerate tissue through replication and then differentiation, but recent studies point to the dramatic effects adult stem cells exert in the repair of various tissues through the release of paracrine and autocrine substances, and not simply through differentiation. Indeed, up to 80% of the therapeutic effect of adult stem cells has been shown to be through paracrine mediated actions.3 That is, the collected types of molecules released by the stem cells, called the secretome, or stem cell released molecules (SRM), number in the 100s, including proteins, microRNA, growth factors, antioxidants, proteasomes, and exosomes, and target a multitude of biological pathways through paracrine actions. The composition of the different molecule types in SRM is state dependent, and varies with cell type and conditions such as age and environment.
Collapse
Affiliation(s)
- Greg Maguire
- BioRegenerative Sciences, Inc; The SRM Molecular Foundry; San Diego, CA USA
| |
Collapse
|