1
|
Yadav P, Mukherjee A, Hind Rajput J, Choudhari AP, Poundarik A, Das B. Gelatin Multiwalled Carbon Nanotube Composite 3D Printed Semi Biological Mesh for Abdominal Hernia Treatment. Chem Asian J 2025; 20:e202401136. [PMID: 39865776 DOI: 10.1002/asia.202401136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/05/2024] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
Hernia is characterized by the protrusion of organs or tissue through weakened areas in the abdominal cavity wall. A common treatment for hernia involves the implantation of a mesh which promotes the growth of new tissue around or within the implanted material in the damaged area. The mesh is typically made from synthetic materials like polypropylene. However, such meshes have safety concerns like biofilm and scar tissue formation, foreign body reactions, and chronic pain. These concerns gave rise to the development of biological meshes. Owing to mechanical weakness, biological meshes fail due to migration and rapid degradation. This study is aimed to develop a mechanically viable biopolymer-based composite degradable mesh. A gelatin-MWCNT composite 3D printed mesh has been developed with different pore sizes and filament sizes. Adding MWCNTs improved the composite's ductility, printability, hydrophilicity, and modulus, and reduced its degradation rate. The 3D-printed mesh also showed signs of cell attachment and proliferation representing non-toxicity of MWCNTs within the composite materials. The data showed improved cell adherence due to the incorporation of MWCNTs within the composite materials. Among the various material compositions tested, the composite material with gelatin with 0.01 g MWCNTs gave the optimum mechanical strength and biocompatibility results.
Collapse
Affiliation(s)
- Pramod Yadav
- Department of Biomedical Engineering, Indian Institute of Technology, Ropar
| | - Anwesha Mukherjee
- Department of Biomedical Engineering, Indian Institute of Technology, Ropar
| | - Jay Hind Rajput
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Ropar
| | - A Pratap Choudhari
- Department of Biomedical Engineering, Indian Institute of Technology, Ropar
| | - Atharva Poundarik
- Department of Biomedical Engineering, Indian Institute of Technology, Ropar
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Ropar
| | - Bodhisatwa Das
- Department of Biomedical Engineering, Indian Institute of Technology, Ropar
| |
Collapse
|
2
|
Feng Y, Wang J, Yang Z, Cheng Y, Tian B, Ou E. Carbon nanofibre frameworks based on a π-extended oligo(perylene) diimide for high-rate lithium-ion batteries. NANOSCALE 2025; 17:5232-5240. [PMID: 39873246 DOI: 10.1039/d4nr05320f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Anodes play an important role in lithium-ion batteries (LIBs) and have received much attention as ideal carbon anode materials for meeting the needs for high-rate capability, long-term stability, and high energy density. In this study, a π-extended oligo(perylene) diimide (PTN) is synthesized by using a solvothermal reaction with NH3·H2O as the decarboxylation reaction catalyst and perylene anhydride as the precursor. A nanocarbon fiber framework can be produced through self-assembly during the carbonization process of π-extended perylene diimide oligomers. The resulting nanocarbon fiber frameworks used as anode materials in LIBs exhibit stable long-term cycling and high-rate capability with a high specific capacity of 670 mA h g-1 at a current of 100 mA g-1 after 270 cycles, 380 mA h g-1 at 1000 mA g-1 after 550 cycles, and 258 mA h g-1 at 2000 mA g-1 after 1000 cycles. The study results indicate that nanocarbon fiber frameworks would be essential for developing promising high-rate electrode materials for lithium-ion batteries.
Collapse
Affiliation(s)
- Ying Feng
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Jiaxin Wang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Zehui Yang
- Xuanwei Redrying Factory of Yunnan Tobacco Leaf Redrying Co., Ltd, Xuanwei 655400, P. R. China
| | - Ye Cheng
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Binbin Tian
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Encai Ou
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| |
Collapse
|
3
|
Luo S, Zhang C, Xiong W, Song Y, Wang Q, Zhang H, Guo S, Yang S, Liu H. Advances in electroactive biomaterials: Through the lens of electrical stimulation promoting bone regeneration strategy. J Orthop Translat 2024; 47:191-206. [PMID: 39040489 PMCID: PMC11261049 DOI: 10.1016/j.jot.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/16/2024] [Accepted: 06/07/2024] [Indexed: 07/24/2024] Open
Abstract
The regenerative capacity of bone is indispensable for growth, given that accidental injury is almost inevitable. Bone regenerative capacity is relevant for the aging population globally and for the repair of large bone defects after osteotomy (e.g., following removal of malignant bone tumours). Among the many therapeutic modalities proposed to bone regeneration, electrical stimulation has attracted significant attention owing to its economic convenience and exceptional curative effects, and various electroactive biomaterials have emerged. This review summarizes the current knowledge and progress regarding electrical stimulation strategies for improving bone repair. Such strategies range from traditional methods of delivering electrical stimulation via electroconductive materials using external power sources to self-powered biomaterials, such as piezoelectric materials and nanogenerators. Electrical stimulation and osteogenesis are related via bone piezoelectricity. This review examines cell behaviour and the potential mechanisms of electrostimulation via electroactive biomaterials in bone healing, aiming to provide new insights regarding the mechanisms of bone regeneration using electroactive biomaterials. The translational potential of this article This review examines the roles of electroactive biomaterials in rehabilitating the electrical microenvironment to facilitate bone regeneration, addressing current progress in electrical biomaterials and the mechanisms whereby electrical cues mediate bone regeneration. Interactions between osteogenesis-related cells and electroactive biomaterials are summarized, leading to proposals regarding the use of electrical stimulation-based therapies to accelerate bone healing.
Collapse
Affiliation(s)
- Songyang Luo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, 110001, China
| | - Chengshuo Zhang
- Hepatobiliary Surgery Department, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Wei Xiong
- Department of Plastic Surgery, The First Hospital of Shihezi Medical University, Shihezi, 832000, China
| | - Yiping Song
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Qiang Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, 110001, China
| | - Hangzhou Zhang
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang Sports Medicine Clinical Medical Research Center, Shenyang, 110001, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, 110001, China
| | - Huanye Liu
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, 110001, China
| |
Collapse
|
4
|
Saberi A, Baltatu MS, Vizureanu P. The Effectiveness Mechanisms of Carbon Nanotubes (CNTs) as Reinforcements for Magnesium-Based Composites for Biomedical Applications: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:756. [PMID: 38727350 PMCID: PMC11085746 DOI: 10.3390/nano14090756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024]
Abstract
As a smart implant, magnesium (Mg) is highly biocompatible and non-toxic. In addition, the elastic modulus of Mg relative to other biodegradable metals (iron and zinc) is close to the elastic modulus of natural bone, making Mg an attractive alternative to hard tissues. However, high corrosion rates and low strength under load relative to bone are some challenges for the widespread use of Mg in orthopedics. Composite fabrication has proven to be an excellent way to improve the mechanical performance and corrosion control of Mg. As a result, their composites emerge as an innovative biodegradable material. Carbon nanotubes (CNTs) have superb properties like low density, high tensile strength, high strength-to-volume ratio, high thermal conductivity, and relatively good antibacterial properties. Therefore, using CNTs as reinforcements for the Mg matrix has been proposed as an essential option. However, the lack of understanding of the mechanisms of effectiveness in mechanical, corrosion, antibacterial, and cellular fields through the presence of CNTs as Mg matrix reinforcements is a challenge for their application. This review focuses on recent findings on Mg/CNT composites fabricated for biological applications. The literature mentions effective mechanisms for mechanical, corrosion, antimicrobial, and cellular domains with the presence of CNTs as reinforcements for Mg-based nanobiocomposites.
Collapse
Affiliation(s)
- Abbas Saberi
- Department of Material Engineering, South Tehran Branch, Islamic Azad University, Tehran 1777613651, Iran
| | - Madalina Simona Baltatu
- Department of Technologies and Equipments for Materials Processing, Faculty of Materials Science and Engineering, Gheorghe Asachi Technical University of Iaşi, Blvd. Mangeron, No. 51, 700050 Iaşi, Romania;
| | - Petrica Vizureanu
- Department of Technologies and Equipments for Materials Processing, Faculty of Materials Science and Engineering, Gheorghe Asachi Technical University of Iaşi, Blvd. Mangeron, No. 51, 700050 Iaşi, Romania;
| |
Collapse
|
5
|
Ranjbar N, Bakhshandeh B, Pennisi CP. Electroconductive Nanofibrous Scaffolds Enable Neuronal Differentiation in Response to Electrical Stimulation without Exogenous Inducing Factors. Bioengineering (Basel) 2023; 10:1438. [PMID: 38136029 PMCID: PMC10740536 DOI: 10.3390/bioengineering10121438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Among the various biochemical and biophysical inducers for neural regeneration, electrical stimulation (ES) has recently attracted considerable attention as an efficient means to induce neuronal differentiation in tissue engineering approaches. The aim of this in vitro study was to develop a nanofibrous scaffold that enables ES-mediated neuronal differentiation in the absence of exogenous soluble inducers. A nanofibrous scaffold composed of polycaprolactone (PCL), poly-L-lactic acid (PLLA), and single-walled nanotubes (SWNTs) was fabricated via electrospinning and its physicochemical properties were investigated. The cytocompatibility of the electrospun composite with the PC12 cell line and bone marrow-derived mesenchymal stem cells (BMSCs) was investigated. The results showed that the PCL/PLLA/SWNT nanofibrous scaffold did not exhibit cytotoxicity and supported cell attachment, spreading, and proliferation. ES was applied to cells cultured on the nanofibrous scaffolds at different intensities and the expression of the three neural markers (Nestin, Microtubule-associated protein 2, and β tubulin-3) was evaluated using RT-qPCR analysis. The results showed that the highest expression of neural markers could be achieved at an electric field intensity of 200 mV/cm, suggesting that the scaffold in combination with ES can be an efficient tool to accelerate neural differentiation in the absence of exogenous soluble inducers. This has important implications for the regeneration of nerve injuries and may provide insights for further investigations of the mechanisms underlying ES-mediated neuronal commitment.
Collapse
Affiliation(s)
- Nika Ranjbar
- Department of Biotechnology, College of Science, University of Tehran, Tehran 14155-6455, Iran
| | - Behnaz Bakhshandeh
- Department of Biotechnology, College of Science, University of Tehran, Tehran 14155-6455, Iran
| | - Cristian Pablo Pennisi
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, DK-9260 Gistrup, Denmark
| |
Collapse
|
6
|
Wei L, Wang S, Shan M, Li Y, Wang Y, Wang F, Wang L, Mao J. Conductive fibers for biomedical applications. Bioact Mater 2023; 22:343-364. [PMID: 36311045 PMCID: PMC9588989 DOI: 10.1016/j.bioactmat.2022.10.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/12/2022] [Accepted: 10/07/2022] [Indexed: 11/26/2022] Open
Abstract
Bioelectricity has been stated as a key factor in regulating cell activity and tissue function in electroactive tissues. Thus, various biomedical electronic constructs have been developed to interfere with cell behaviors to promote tissue regeneration, or to interface with cells or tissue/organ surfaces to acquire physiological status via electrical signals. Benefiting from the outstanding advantages of flexibility, structural diversity, customizable mechanical properties, and tunable distribution of conductive components, conductive fibers are able to avoid the damage-inducing mechanical mismatch between the construct and the biological environment, in return to ensure stable functioning of such constructs during physiological deformation. Herein, this review starts by presenting current fabrication technologies of conductive fibers including wet spinning, microfluidic spinning, electrospinning and 3D printing as well as surface modification on fibers and fiber assemblies. To provide an update on the biomedical applications of conductive fibers and fiber assemblies, we further elaborate conductive fibrous constructs utilized in tissue engineering and regeneration, implantable healthcare bioelectronics, and wearable healthcare bioelectronics. To conclude, current challenges and future perspectives of biomedical electronic constructs built by conductive fibers are discussed.
Collapse
Affiliation(s)
- Leqian Wei
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Shasha Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Mengqi Shan
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Yimeng Li
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Yongliang Wang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao City, Shandong Province, 266071, China
| | - Fujun Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Lu Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Jifu Mao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| |
Collapse
|
7
|
Shahbaz A, Hussain N, Mahmood T, Iqbal HM, Bin Emran T, Show PL, Bilal M. Polymer nanocomposites for biomedical applications. SMART POLYMER NANOCOMPOSITES 2023:379-394. [DOI: 10.1016/b978-0-323-91611-0.00012-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
8
|
Khan S, Ul-Islam M, Ullah MW, Zhu Y, Narayanan KB, Han SS, Park JK. Fabrication strategies and biomedical applications of three-dimensional bacterial cellulose-based scaffolds: A review. Int J Biol Macromol 2022; 209:9-30. [PMID: 35381280 DOI: 10.1016/j.ijbiomac.2022.03.191] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 02/20/2022] [Accepted: 03/28/2022] [Indexed: 12/19/2022]
Abstract
Bacterial cellulose (BC), an extracellular polysaccharide, is a versatile biopolymer due to its intrinsic physicochemical properties, broad-spectrum applications, and remarkable achievements in different fields, especially in the biomedical field. Presently, the focus of BC-related research is on the development of scaffolds containing other materials for in-vitro and in-vivo biomedical applications. To this end, prime research objectives concern the biocompatibility of BC and the development of three-dimensional (3D) BC-based scaffolds. This review summarizes the techniques used to develop 3D BC scaffolds and discusses their potential merits and limitations. In addition, we discuss the various biomedical applications of BC-based scaffolds for which the 3D BC matrix confers desired structural and conformational features. Overall, this review provides comprehensive coverage of the idea, requirements, synthetic strategies, and current and prospective applications of 3D BC scaffolds, and thus, should be useful for researchers working with polysaccharides, biopolymers, or composite materials.
Collapse
Affiliation(s)
- Shaukat Khan
- Department of Chemical Engineering, College of Engineering, Dhofar University, 2509, Salalah, Sultanate of Oman
| | - Mazhar Ul-Islam
- Department of Chemical Engineering, College of Engineering, Dhofar University, 2509, Salalah, Sultanate of Oman
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Youlong Zhu
- Materials Science Institute, The PCFM and GDHPRC Laboratory, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, PR China
| | | | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Joong Kon Park
- Department of Chemical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
9
|
Shuai C, Dong Z, Yang W, He C, Yang Y, Peng S. Rivet-Inspired Modification of Carbon Nanotubes by In Situ-Reduced Ag Nanoparticles To Enhance the Strength and Ductility of Zn Implants. ACS Biomater Sci Eng 2021; 7:5484-5496. [PMID: 34817980 DOI: 10.1021/acsbiomaterials.1c00931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Zinc shows promise for bone repair applications, while its strength and ductility require to be improved. Carbon nanotubes (CNTs) are exceptional reinforcements due to their superior strength, ultrahigh Young's modulus, and large aspect ratio. However, their strong agglomeration and weak interfacial bonding with the matrix are key bottleneck problems restricting the reinforcing effect. In this study, Ag nanoparticles were in situ reduced on CNTs and then the CNT@Ag powders were used to prepare Zn-CNT@Ag implants by laser powder bed fusion. Results showed that Ag reacted with Zn to form a "knot"-like AgZn3 phase. It had the same lattice structure (HCP) with Zn, which indicated a good lattice matching with the matrix, thus improving the dispersion of CNTs. More significantly, the knot played a "rivet" role and enhanced the load transfer capacity, which advantaged the CNT strengthening effects by assisting in transferring the load. Moreover, it enhanced the heterogeneous nucleation effects during solidification, which weakened the texture strength of the matrix and thus increased the ductility by improving the sliding capacity. The compressive yield strength, ultimate tensile strength, and elongation of the Zn-CNT@Ag implant were increased by 22, 26, and 17% in comparison to Zn-CNTs. Moreover, the Zn-CNT@Ag implant exhibited favorable antibacterial activity with a bacterial inhibition rate of 87.79%. Additionally, it also exhibited a suitable degradation rate and acceptable biocompatibility.
Collapse
Affiliation(s)
- Cijun Shuai
- Institute of Bioadditive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China.,State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China.,Shenzhen Institute of Information Technology, Shenzhen 518172, China
| | - Zhi Dong
- Institute of Bioadditive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Wenjing Yang
- Institute of Bioadditive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Chongxian He
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China
| | - Youwen Yang
- Institute of Bioadditive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Shuping Peng
- NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410083, China.,Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
10
|
Recent Advances on Properties and Utility of Nanomaterials Generated from Industrial and Biological Activities. CRYSTALS 2021. [DOI: 10.3390/cryst11060634] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Today is the era of nanoscience and nanotechnology, which find applications in the field of medicine, electronics, and environmental remediation. Even though nanotechnology is in its emerging phase, it continues to provide solutions to numerous challenges. Nanotechnology and nanoparticles are found to be very effective because of their unique chemical and physical properties and high surface area, but their high cost is one of the major hurdles to its wider application. So, the synthesis of nanomaterials, especially 2D nanomaterials from industrial, agricultural, and other biological activities, could provide a cost-effective technique. The nanomaterials synthesized from such waste not only minimize pollution, but also provide an eco-friendly approach towards the utilization of the waste. In the present review work, emphasis has been given to the types of nanomaterials, different methods for the synthesis of 2D nanomaterials from the waste generated from industries, agriculture, and their application in electronics, medicine, and catalysis.
Collapse
|
11
|
Engineered Nanomaterials for Aviation Industry in COVID-19 Context: A Time-Sensitive Review. COATINGS 2021. [DOI: 10.3390/coatings11040382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Engineered nanomaterials (ENMs) are catalyzing the Industry 4.0 euphoria in a significant way. One prime beneficiary of ENMs is the transportation industry (automotive, aerospace, rail car), where nanostructured multi-materials have ushered the path toward high-strength, ultra-impact-resistant, lightweight, and functionally graded engineered surfaces/components creation. The present paper aims to extrapolate much-needed ENMs knowledge from literature and its usage in the aviation industry, highlighting ENMs contribution to aviation state-of-the-art. Topics such as ENMs classification, manufacturing/synthesis methods, properties, and characteristics derived from their utilization and uniqueness are addressed. The discussion will lead to novel materials’ evolving need to protect aerospace surfaces from unfolding SARS-COVID-19 and other airborne pathogens of a lifetime challenge.
Collapse
|
12
|
Preparation and characterization of polyurethane/chitosan/CNT nanofibrous scaffold for cardiac tissue engineering. Int J Biol Macromol 2021; 180:590-598. [PMID: 33711373 DOI: 10.1016/j.ijbiomac.2021.03.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/07/2021] [Accepted: 03/01/2021] [Indexed: 12/11/2022]
Abstract
Myocardial infarction of cardiomyocytes is a leading cause of heart failure (HF) worldwide. Since heart has very limited regeneration capacity, cardiac tissue engineering (TE) to produce a bioactive scaffold is considered. In this study, a series of polyurethane solutions (5-7%wt) in aqueous acetic acid were prepared using electrospinning. A variety of Polyurethane (PU)/Chitosan (Cs)/carbon nanotubes (CNT) composite nanofibrous scaffolds with random and aligned orientation were fabricated to structurally mimic the extracellular matrix (ECM). Electrospun nanofibers were then characterized using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), water contact angle, degradation studies, tensile tests, electrical resistance measurement and cell viability assay. The biocompatibility of electrospun random and aligned nanofibrous scaffolds with H9C2 Cells was confirmed. The results revealed that fabricated PU/Cs/CNT composite nanofibrous scaffolds were electro-conductive and aligned nanofibers could be considered as promising scaffolds with nano-scale features for regeneration of infarcted myocardium.
Collapse
|
13
|
Abstract
Abstract
Carbon nanotubes (CNTs), with unique graphitic structure, superior mechanical, electrical, optical and biological properties, has attracted more and more interests in biomedical applications, including gene/drug delivery, bioimaging, biosensor and tissue engineering. In this review, we focus on the role of CNTs and their polymeric composites in tissue engineering applications, with emphasis on their usages in the nerve, cardiac and bone tissue regenerations. The intrinsic natures of CNTs including their physical and chemical properties are first introduced, explaining the structure effects on CNTs electrical conductivity and various functionalization of CNTs to improve their hydrophobic characteristics. Biosafety issues of CNTs are also discussed in detail including the potential reasons to induce the toxicity and their potential strategies to minimise the toxicity effects. Several processing strategies including solution-based processing, polymerization, melt-based processing and grafting methods are presented to show the 2D/3D construct formations using the polymeric composite containing CNTs. For the sake of improving mechanical, electrical and biological properties and minimising the potential toxicity effects, recent advances using polymer/CNT composite the tissue engineering applications are displayed and they are mainly used in the neural tissue (to improve electrical conductivity and biological properties), cardiac tissue (to improve electrical, elastic properties and biological properties) and bone tissue (to improve mechanical properties and biological properties). Current limitations of CNTs in the tissue engineering are discussed and the corresponded future prospective are also provided. Overall, this review indicates that CNTs are promising “next-generation” materials for future biomedical applications.
Collapse
|
14
|
Zhao Z, Vizetto-Duarte C, Moay ZK, Setyawati MI, Rakshit M, Kathawala MH, Ng KW. Composite Hydrogels in Three-Dimensional in vitro Models. Front Bioeng Biotechnol 2020; 8:611. [PMID: 32656197 PMCID: PMC7325910 DOI: 10.3389/fbioe.2020.00611] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
3-dimensional (3D) in vitro models were developed in order to mimic the complexity of real organ/tissue in a dish. They offer new possibilities to model biological processes in more physiologically relevant ways which can be applied to a myriad of applications including drug development, toxicity screening and regenerative medicine. Hydrogels are the most relevant tissue-like matrices to support the development of 3D in vitro models since they are in many ways akin to the native extracellular matrix (ECM). For the purpose of further improving matrix relevance or to impart specific functionalities, composite hydrogels have attracted increasing attention. These could incorporate drugs to control cell fates, additional ECM elements to improve mechanical properties, biomolecules to improve biological activities or any combinations of the above. In this Review, recent developments in using composite hydrogels laden with cells as biomimetic tissue- or organ-like constructs, and as matrices for multi-cell type organoid cultures are highlighted. The latest composite hydrogel systems that contain nanomaterials, biological factors, and combinations of biopolymers (e.g., proteins and polysaccharide), such as Interpenetrating Networks (IPNs) and Soft Network Composites (SNCs) are also presented. While promising, challenges remain. These will be discussed in light of future perspectives toward encompassing diverse composite hydrogel platforms for an improved organ environment in vitro.
Collapse
Affiliation(s)
- Zhitong Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Catarina Vizetto-Duarte
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Zi Kuang Moay
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | | | - Moumita Rakshit
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | | | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
- Environmental Chemistry & Materials Centre, Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, Singapore, Singapore
- Skin Research Institute of Singapore, Singapore, Singapore
- Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, United States
| |
Collapse
|
15
|
Mombini S, Mohammadnejad J, Bakhshandeh B, Narmani A, Nourmohammadi J, Vahdat S, Zirak S. Chitosan-PVA-CNT nanofibers as electrically conductive scaffolds for cardiovascular tissue engineering. Int J Biol Macromol 2019; 140:278-287. [DOI: 10.1016/j.ijbiomac.2019.08.046] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/30/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023]
|
16
|
Saberi A, Jabbari F, Zarrintaj P, Saeb MR, Mozafari M. Electrically Conductive Materials: Opportunities and Challenges in Tissue Engineering. Biomolecules 2019; 9:448. [PMID: 31487913 PMCID: PMC6770812 DOI: 10.3390/biom9090448] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 01/09/2023] Open
Abstract
Tissue engineering endeavors to regenerate tissues and organs through appropriate cellular and molecular interactions at biological interfaces. To this aim, bio-mimicking scaffolds have been designed and practiced to regenerate and repair dysfunctional tissues by modifying cellular activity. Cellular activity and intracellular signaling are performances given to a tissue as a result of the function of elaborated electrically conductive materials. In some cases, conductive materials have exhibited antibacterial properties; moreover, such materials can be utilized for on-demand drug release. Various types of materials ranging from polymers to ceramics and metals have been utilized as parts of conductive tissue engineering scaffolds, having conductivity assortments from a range of semi-conductive to conductive. The cellular and molecular activity can also be affected by the microstructure; therefore, the fabrication methods should be evaluated along with an appropriate selection of conductive materials. This review aims to address the research progress toward the use of electrically conductive materials for the modulation of cellular response at the material-tissue interface for tissue engineering applications.
Collapse
Affiliation(s)
- Azadeh Saberi
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), P.O. Box: 31787-316 Tehran, Iran.
| | - Farzaneh Jabbari
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), P.O. Box: 31787-316 Tehran, Iran.
| | - Payam Zarrintaj
- Polymer Engineering Department, Faculty of Engineering, Urmia University, P.O. Box: 5756151818-165 Urmia, Iran.
| | - Mohammad Reza Saeb
- Department of Resin and Additives, Institute for Color Science and Technology, P.O. Box: 16765-654 Tehran, Iran.
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), P.O Box: 14665-354 Tehran, Iran.
| |
Collapse
|
17
|
Eivazzadeh-Keihan R, Maleki A, de la Guardia M, Bani MS, Chenab KK, Pashazadeh-Panahi P, Baradaran B, Mokhtarzadeh A, Hamblin MR. Carbon based nanomaterials for tissue engineering of bone: Building new bone on small black scaffolds: A review. J Adv Res 2019; 18:185-201. [PMID: 31032119 PMCID: PMC6479020 DOI: 10.1016/j.jare.2019.03.011] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/23/2019] [Accepted: 03/23/2019] [Indexed: 01/29/2023] Open
Abstract
Tissue engineering is a rapidly-growing approach to replace and repair damaged and defective tissues in the human body. Every year, a large number of people require bone replacements for skeletal defects caused by accident or disease that cannot heal on their own. In the last decades, tissue engineering of bone has attracted much attention from biomedical scientists in academic and commercial laboratories. A vast range of biocompatible advanced materials has been used to form scaffolds upon which new bone can form. Carbon nanomaterial-based scaffolds are a key example, with the advantages of being biologically compatible, mechanically stable, and commercially available. They show remarkable ability to affect bone tissue regeneration, efficient cell proliferation and osteogenic differentiation. Basically, scaffolds are templates for growth, proliferation, regeneration, adhesion, and differentiation processes of bone stem cells that play a truly critical role in bone tissue engineering. The appropriate scaffold should supply a microenvironment for bone cells that is most similar to natural bone in the human body. A variety of carbon nanomaterials, such as graphene oxide (GO), carbon nanotubes (CNTs), fullerenes, carbon dots (CDs), nanodiamonds and their derivatives that are able to act as scaffolds for bone tissue engineering, are covered in this review. Broadly, the ability of the family of carbon nanomaterial-based scaffolds and their critical role in bone tissue engineering research are discussed. The significant stimulating effects on cell growth, low cytotoxicity, efficient nutrient delivery in the scaffold microenvironment, suitable functionalized chemical structures to facilitate cell-cell communication, and improvement in cell spreading are the main advantages of carbon nanomaterial-based scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain
| | - Milad Salimi Bani
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Karim Khanmohammadi Chenab
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Paria Pashazadeh-Panahi
- Department of Biochemistry and Biophysics, Metabolic Disorders Research Center, Gorgan Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Golestan Province, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| |
Collapse
|
18
|
Van den Broeck L, Piluso S, Soultan AH, De Volder M, Patterson J. Cytocompatible carbon nanotube reinforced polyethylene glycol composite hydrogels for tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:1133-1144. [DOI: 10.1016/j.msec.2019.01.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 12/01/2018] [Accepted: 01/07/2019] [Indexed: 12/11/2022]
|
19
|
Affiliation(s)
- Ayesha Kausar
- School of natural sciences, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
20
|
CNT Incorporated Polyacrilonitrile/Polypyrrole Nanofibers as Keratinocytes Scaffold. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2019. [DOI: 10.4028/www.scientific.net/jbbbe.41.69] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polypyrrole (PPy) is an attractive scaffold material for tissue engineering with its non-toxic and electrically conductive properties. There has not been enough information about PPy usage in skin tissue engineering. The aim of this study is to investigate biocompatibility of polyacrilonitrile (PAN)/PPy nanofibrous scaffold for human keratinocytes. PAN/PPy bicomponent nanofibers were prepared by electrospinning, in various PPy concentrations and with carbon nanotube (CNT) incorporation. The average diameter of electrospun nanofibers decreased with increasing PPy concentration. Further, agglomerated CNTs caused beads and disordered parts on the surface of nanofibers. Biocompatibility of these PAN/PPy and PAN/PPy/CNT scaffolds were analyzed in vitro. Both scaffolds provided adhesion and proliferation of keratinocytes. Nanofiber diameter did not significantly influence the morphology of cells. However, with increasing number of cells, cells stayed among nanofibers and this affected their shape and size. In this study, we demonstrated that PAN/PPy and PAN/PPy/CNT scaffolds enabled the growth of keratinocytes, showing their biocompatibility.
Collapse
|
21
|
Xu Z, Shi L, Yang M, Zhu L. Preparation and biomedical applications of silk fibroin-nanoparticles composites with enhanced properties - A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 95:302-311. [DOI: 10.1016/j.msec.2018.11.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/25/2018] [Accepted: 11/05/2018] [Indexed: 12/26/2022]
|
22
|
A Review of the Synthesis and Applications of Polymer–Nanoclay Composites. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8091696] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent advancements in material technologies have promoted the development of various preparation strategies and applications of novel polymer–nanoclay composites. Innovative synthesis pathways have resulted in novel polymer–nanoclay composites with improved properties, which have been successfully incorporated in diverse fields such as aerospace, automobile, construction, petroleum, biomedical and wastewater treatment. These composites are recognized as promising advanced materials due to their superior properties, such as enhanced density, strength, relatively large surface areas, high elastic modulus, flame retardancy, and thermomechanical/optoelectronic/magnetic properties. The primary focus of this review is to deliver an up-to-date overview of polymer–nanoclay composites along with their synthesis routes and applications. The discussion highlights potential future directions for this emerging field of research.
Collapse
|
23
|
Mihajlovic M, Mihajlovic M, Dankers PYW, Masereeuw R, Sijbesma RP. Carbon Nanotube Reinforced Supramolecular Hydrogels for Bioapplications. Macromol Biosci 2018; 19:e1800173. [PMID: 30085403 DOI: 10.1002/mabi.201800173] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/09/2018] [Indexed: 01/08/2023]
Abstract
Nanocomposite hydrogels based on carbon nanotubes (CNTs) are known to possess remarkable stiffness, electrical, and thermal conductivity. However, they often make use of CNTs as fillers in covalently cross-linked hydrogel networks or involve direct cross-linking between CNTs and polymer chains, limiting processability properties. Herein, nanocomposite hydrogels are developed, in which CNTs are fillers in a physically cross-linked hydrogel. Supramolecular nanocomposites are prepared at various CNT concentrations, ranging from 0.5 to 6 wt%. Incorporation of 3 wt% of CNTs leads to an increase of the material's toughness by over 80%, and it enhances electrical conductivity by 358%, compared to CNT-free hydrogel. Meanwhile, the nanocomposite hydrogels maintain thixotropy and processability, typical of the parent hydrogel. The study also demonstrates that these materials display remarkable cytocompatibility and support cell growth and proliferation, while preserving their functional activities. These supramolecular nanocomposite hydrogels are therefore promising candidates for biomedical applications, in which both toughness and electrical conductivity are important parameters.
Collapse
Affiliation(s)
- Marko Mihajlovic
- Laboratory of Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513,, 5600, MB, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513,, 5600, MB, Eindhoven, The Netherlands
| | - Milos Mihajlovic
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584, CG, Utrecht, The Netherlands
| | - Patricia Y W Dankers
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513,, 5600, MB, Eindhoven, The Netherlands.,Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, P.O. Box 513,, 5600, MB, Eindhoven, The Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584, CG, Utrecht, The Netherlands
| | - Rint P Sijbesma
- Laboratory of Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513,, 5600, MB, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513,, 5600, MB, Eindhoven, The Netherlands
| |
Collapse
|
24
|
Lichtenstein MP, Carretero NM, Pérez E, Pulido-Salgado M, Moral-Vico J, Solà C, Casañ-Pastor N, Suñol C. Biosafety assessment of conducting nanostructured materials by using co-cultures of neurons and astrocytes. Neurotoxicology 2018; 68:115-125. [PMID: 30031109 DOI: 10.1016/j.neuro.2018.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 07/05/2018] [Accepted: 07/16/2018] [Indexed: 12/16/2022]
Abstract
Neural electrode implants are made mostly of noble materials. We have synthesized a nanostructured material combining the good electrochemical properties of iridium oxide (IrOx) and carbon-nanotubes (CNT) and the properties of poly(3,4-ethylenedioxythiophene) (PEDOT). IrOx-CNT-PEDOT charge storage capacity was lower than that of IrOx and IrOx-CNT, but higher than that of other PEDOT-containing hybrids and Pt. Cyclic voltammetry, SEM, XPS and micro-Raman spectroscopy suggest that PEDOT encapsulates IrOx and CNT. In our search for a cell culture platform that could optimize modelling the in vivo environment, we determined cell viability, neuron and astrocyte functionality and the response of astrocytes to an inflammatory insult by using primary cultures of neurons, of astrocytes and co-cultures of both. The materials tested (based on IrOx, CNT and PEDOT, as well as Pt as a reference) allowed adhesion and proliferation of astrocytes and full compatibility for neurons grown in co-cultures. Functionality assays show that uptake of glutamate in neuron-astrocyte co-culture was significantly higher than the sum of the uptake in astrocytes and neurons. In co-cultures on IrOx, IrOx-CNT and IrOx-CNT-PEDOT, glutamate was released by a depolarizing stimulus and induced a significant increase in intracellular calcium, supporting the expression of functional NMDA/glutamate receptors. LPS-induced inflammatory response in astrocytes showed a decreased response in NOS2 and COX2 mRNA expression for IrOx-CNT-PEDOT. Results indicate that neuron-astrocyte co-cultures are a reliable model for assessing the biocompatibility and safety of nanostructured materials, evidencing also that hybrid IrOx-CNT-PEDOT nanocomposite materials may offer larger resistance to inflammatory insults.
Collapse
Affiliation(s)
- Mathieu P Lichtenstein
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB, CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), c/Rosselló 161, 08036 Barcelona, Spain
| | - Nina M Carretero
- Institut de Ciències de Materials de Barcelona (ICMAB, CSIC), Campus UAB, E-08193 Bellaterra, Barcelona, Spain
| | - Estela Pérez
- Institut de Ciències de Materials de Barcelona (ICMAB, CSIC), Campus UAB, E-08193 Bellaterra, Barcelona, Spain
| | - Marta Pulido-Salgado
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB, CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), c/Rosselló 161, 08036 Barcelona, Spain
| | - Javier Moral-Vico
- Institut de Ciències de Materials de Barcelona (ICMAB, CSIC), Campus UAB, E-08193 Bellaterra, Barcelona, Spain
| | - Carme Solà
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB, CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), c/Rosselló 161, 08036 Barcelona, Spain
| | - Nieves Casañ-Pastor
- Institut de Ciències de Materials de Barcelona (ICMAB, CSIC), Campus UAB, E-08193 Bellaterra, Barcelona, Spain.
| | - Cristina Suñol
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB, CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), c/Rosselló 161, 08036 Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain.
| |
Collapse
|
25
|
Yi T, Huang S, Liu G, Li T, Kang Y, Luo Y, Wu J. Bioreactor Synergy with 3D Scaffolds: New Era for Stem Cells Culture. ACS APPLIED BIO MATERIALS 2018; 1:193-209. [DOI: 10.1021/acsabm.8b00057] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Tianqi Yi
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, , Sun Yat-sen University, Guangzhou 510006, China
| | - Shaoxiong Huang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, , Sun Yat-sen University, Guangzhou 510006, China
| | - Guiting Liu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, , Sun Yat-sen University, Guangzhou 510006, China
| | - Tiancheng Li
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, , Sun Yat-sen University, Guangzhou 510006, China
| | - Yang Kang
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yuxi Luo
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, , Sun Yat-sen University, Guangzhou 510006, China
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, , Sun Yat-sen University, Guangzhou 510006, China
- Key Laboratory of Polymer Composites and Functional Materials of Ministry of Education, , Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
26
|
Kumar S, Sarita, Nehra M, Dilbaghi N, Tankeshwar K, Kim KH. Recent advances and remaining challenges for polymeric nanocomposites in healthcare applications. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.03.001] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Vashist A, Kaushik A, Vashist A, Sagar V, Ghosal A, Gupta YK, Ahmad S, Nair M. Advances in Carbon Nanotubes-Hydrogel Hybrids in Nanomedicine for Therapeutics. Adv Healthc Mater 2018; 7:e1701213. [PMID: 29388356 PMCID: PMC6248342 DOI: 10.1002/adhm.201701213] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/21/2017] [Indexed: 12/21/2022]
Abstract
In spite of significant advancement in hydrogel technology, low mechanical strength and lack of electrical conductivity have limited their next-level biomedical applications for skeletal muscles, cardiac and neural cells. Host-guest chemistry based hybrid nanocomposites systems have gained attention as they completely overcome these pitfalls and generate bioscaffolds with tunable electrical and mechanical characteristics. In recent years, carbon nanotube (CNT)-based hybrid hydrogels have emerged as innovative candidates with diverse applications in regenerative medicines, tissue engineering, drug delivery devices, implantable devices, biosensing, and biorobotics. This article is an attempt to recapitulate the advancement in synthesis and characterization of hybrid hydrogels and provide deep insights toward their functioning and success as biomedical devices. The improved comparative performance and biocompatibility of CNT-hydrogels hybrids systems developed for targeted biomedical applications are addressed here. Recent updates toward diverse applications and limitations of CNT hybrid hydrogels is the strength of the review. This will provide a holistic approach toward understanding of CNT-based hydrogels and their applications in nanotheranostics.
Collapse
Affiliation(s)
- Arti Vashist
- Center for Personalized Nanomedicine, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Ajeet Kaushik
- Center for Personalized Nanomedicine, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Atul Vashist
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India, 110029
| | - Vidya Sagar
- Center for Personalized Nanomedicine, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Anujit Ghosal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India, 110067
| | - Y. K. Gupta
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India, 110029
| | - Sharif Ahmad
- Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, India, 110025
| | - Madhavan Nair
- Center for Personalized Nanomedicine, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
28
|
Tong Y, Zhang Y, Liu Y, Cai H, Zhang W, Tan WS. POSS-enhanced thermosensitive hybrid hydrogels for cell adhesion and detachment. RSC Adv 2018; 8:13813-13819. [PMID: 35539329 PMCID: PMC9079822 DOI: 10.1039/c8ra01584h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/05/2018] [Indexed: 11/21/2022] Open
Abstract
Thermosensitive poly(N-isopropylacrylamide) (PNIPAM)-based substrates have presented great promise in cell sheet engineering. However, non-functionalized PNIPAM cannot be well applied for cell cultivation, due to the low cell adhesion. Herein, to enhance PNIPAM-based substrates and to promote cell proliferation and detachment, a polyhedral oligomeric silsesquioxane (POSS) nanoscale inorganic enhanced agent has been introduced into PNIPAM matrices to construct POSS-containing hybrid hydrogels. The hydrogels were facilely prepared using POSS as a cross-linker via one-pot crosslinking reaction under UV irradiation. The swelling behavior, thermal stability and the mechanical properties of POSS–PNIPAM hybrid hydrogels have been evaluated and they are all dependent on the content of POSS. The in vitro experiment confirms that human amniotic mesenchymal stem cells (hAMSCs) exhibit clearly enhanced adhesion and proliferation on the substrates of POSS–PNIPAM hybrid hydrogels in comparison to the pure PNIPAM hydrogel without POSS. Based on the thermal-responsiveness of PNIPAM, the proliferated cells are easily released without damage from the surface of hybrid hydrogels. Therefore, POSS-enhanced PNIPAM hybrid hydrogels provide a unique approach for harvesting anchorage dependent stem cells. Thermosensitive poly(N-isopropylacrylamide) (PNIPAM)-based substrates have presented great promise in cell sheet engineering.![]()
Collapse
Affiliation(s)
- Yudong Tong
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Yuanhao Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Yangyang Liu
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Haibo Cai
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| |
Collapse
|
29
|
Barbera V, Guerra S, Brambilla L, Maggio M, Serafini A, Conzatti L, Vitale A, Galimberti M. Carbon Papers and Aerogels Based on Graphene Layers and Chitosan: Direct Preparation from High Surface Area Graphite. Biomacromolecules 2017; 18:3978-3991. [DOI: 10.1021/acs.biomac.7b01026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vincenzina Barbera
- Politecnico
di Milano, Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Via Mancinelli 7, 20131 Milano, Italy
| | - Silvia Guerra
- Politecnico
di Milano, Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Via Mancinelli 7, 20131 Milano, Italy
| | - Luigi Brambilla
- Politecnico
di Milano, Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Via Mancinelli 7, 20131 Milano, Italy
| | - Mario Maggio
- Department
of Chemistry and Biology, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Andrea Serafini
- Politecnico
di Milano, Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Via Mancinelli 7, 20131 Milano, Italy
| | - Lucia Conzatti
- Institute
for Macromolecular Studies, Italian National Research Council, Via
De Marini 6, 16149 Genova, Italy
| | - Alessandra Vitale
- Department
of Applied Science and Technology, Politecnico di Torino, Corso Duca
degli Abruzzi 24, 10129 Torino, Italy
| | - Maurizio Galimberti
- Politecnico
di Milano, Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Via Mancinelli 7, 20131 Milano, Italy
| |
Collapse
|
30
|
Diban N, Sánchez-González S, Lázaro-Díez M, Ramos-Vivas J, Urtiaga A. Facile fabrication of poly(ε-caprolactone)/graphene oxide membranes for bioreactors in tissue engineering. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.06.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Ran F, Lei W, Cui Y, Jiao J, Mao Y, Wang S, Wang S. Size effect on oral absorption in polymer-functionalized mesoporous carbon nanoparticles. J Colloid Interface Sci 2017; 511:57-66. [PMID: 28972896 DOI: 10.1016/j.jcis.2017.09.088] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 09/22/2017] [Accepted: 09/22/2017] [Indexed: 02/01/2023]
Abstract
In this manuscript, the effect of the particle size of polymer-functionalized mesoporous carbon (MPP) nanoparticles on enhancing oral absorption of a water-insoluble drug is first investigated. The insoluble drug, fenofibrate (Fen), was selected as the model drug loaded in the MPP nanoparticles. MPP nanoparticles with different particle sizes were designed for improving the oral bioavailability of drugs, in which the branched polyethyleneimine (PEI) and polyacrylic acid (PAA) were modified on the surfaces of mesoporous carbon nanoparticles (MCNs) with amide bonds. In addition, PEI-functionalized carbon quantum dots (PCA) and radioisotope 125I were applied to label the MPP nanoparticles to trace in the vivo process. According to the data, the MPP nanoparticles could markedly improve the dissolution rate and oral bioavailability of Fen. Interestingly, the MPP nanoparticle size had a notable effect on Fen oral absorption, and intermediate sized MPP nanoparticles were expected to be more ideal oral drug carriers. The nanoparticles were safe and easily excreted. These findings present the prospect of MPP nanoparticles for oral application, and guides the rational design of an oral delivery system with respect to particle size.
Collapse
Affiliation(s)
- Fu Ran
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, Shenyang 110016, PR China
| | - Wei Lei
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, Shenyang 110016, PR China
| | - Yu Cui
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, Shenyang 110016, PR China
| | - Jian Jiao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, Shenyang 110016, PR China
| | - Yuling Mao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, Shenyang 110016, PR China
| | - Shengyu Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, Shenyang 110016, PR China
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, Shenyang 110016, PR China.
| |
Collapse
|
32
|
Mesgar AS, Mohammadi Z, Khosrovan S. Improvement of mechanical properties and in vitro bioactivity of freeze-dried gelatin/chitosan scaffolds by functionalized carbon nanotubes. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2017.1320663] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Abdorreza S. Mesgar
- Bioceramics and Implants Laboratory, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Islamic Republic of Iran
| | - Zahra Mohammadi
- Bioceramics and Implants Laboratory, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Islamic Republic of Iran
| | - Setareh Khosrovan
- Bioceramics and Implants Laboratory, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Islamic Republic of Iran
| |
Collapse
|
33
|
Gajendiran M, Choi J, Kim SJ, Kim K, Shin H, Koo HJ, Kim K. Conductive biomaterials for tissue engineering applications. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2017.02.031] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
34
|
Nardecchia S, Serrano MC, García-Argüelles S, Maia Da Costa MEH, Ferrer ML, Gutiérrez MC. Ice as a Green-Structure-Directing Agent in the Synthesis of Macroporous MWCNTs and Chondroitin Sulphate Composites. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E355. [PMID: 28772715 PMCID: PMC5506963 DOI: 10.3390/ma10040355] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 11/16/2022]
Abstract
The incorporation of multi-walled carbon nanotubes (MWCNTs) into chondroitin sulphate-based scaffolds and the effect on the structural, mechanical, conductive, and thermal properties of the resulting scaffolds is investigated. Three-dimensional hierarchical materials are prepared upon the application of the ice segregation-induced self-assembly (ISISA) process. The use of ice as structure-directing agents avoids chemicals typically used for this purpose (e.g., surfactants, block copolymers, etc.), hence, emphasising the green features of this soft-templating approach. We determine the critical parameters that control the morphology of the scaffolds formed upon ice-templating (i.e., MWCNTs type, freezing conditions, polymer and MWCNT concentration). MWCNTs are surface functionalized by acidic treatment. MWCNT functionalization is characterized by Raman, Fourier transfer infrared (FTIR) and X-ray Photoelectron (XPS) spectroscopies. Scanning electron microscopy (SEM) analysis and porosity studies reveal that MWCNT content modifies the morphology of the macroporous structure, which decreases by increasing MWCNT concentration. Differences in scaffold morphology should be translated into their conductivity and mechanical properties. As a general trend, the Young's modulus and the electrical conductivity of the scaffolds increase with the MWCNT content. Preliminary biocompatibility tests with human osteoblast-like cells also reveal the capability of these structures to support cell growth.
Collapse
Affiliation(s)
- Stefania Nardecchia
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, C/Sor Juana Inés de la Cruz 3, 28049-Madrid, Spain.
- Departamento de Física, Pontificia Universidade Católica do Rio de Janeiro (PUC-Rio), Rua Marquês de São Vicente 225, Gavea 22451-900, Rio de Janeiro, Brazil.
| | - María Concepción Serrano
- Laboratory of Interfaces for Neural Repair, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla-La Mancha, Finca de la Peraleda s/n, 45071-Toledo, Spain.
| | - Sara García-Argüelles
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, C/Sor Juana Inés de la Cruz 3, 28049-Madrid, Spain.
- Departamento de Tecnología Química y Energética, Tecnologia Química y Ambiental y Tecnología Mecánica y Química Analítica, Universidad Rey Juan Carlos, 28933-Madrid, Spain.
| | - Marcelo E H Maia Da Costa
- Departamento de Física, Pontificia Universidade Católica do Rio de Janeiro (PUC-Rio), Rua Marquês de São Vicente 225, Gavea 22451-900, Rio de Janeiro, Brazil.
| | - María Luisa Ferrer
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, C/Sor Juana Inés de la Cruz 3, 28049-Madrid, Spain.
| | - María C Gutiérrez
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, C/Sor Juana Inés de la Cruz 3, 28049-Madrid, Spain.
| |
Collapse
|
35
|
Badia J, Gil-Castell O, Ribes-Greus A. Long-term properties and end-of-life of polymers from renewable resources. Polym Degrad Stab 2017. [DOI: 10.1016/j.polymdegradstab.2017.01.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
36
|
Tripathy J. Polymer Nanocomposites for Biomedical and Biotechnology Applications. PROPERTIES AND APPLICATIONS OF POLYMER NANOCOMPOSITES 2017:57-76. [DOI: 10.1007/978-3-662-53517-2_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
37
|
Wang M, Gao B, Tang D. Review of key factors controlling engineered nanoparticle transport in porous media. JOURNAL OF HAZARDOUS MATERIALS 2016; 318:233-246. [PMID: 27427890 DOI: 10.1016/j.jhazmat.2016.06.065] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 05/13/2023]
Abstract
Nanotechnology, an emerging technology, has witnessed rapid development in production and application. Engineered nanomaterials revolutionize the industry due to their unique structure and superior performance. The release of engineered nanoparticles (ENPs) into the environment, however, may pose risks to the environment and public health. To advance current understanding of environmental behaviors of ENPs, this work provides an introductory overview of ENP fate and transport in porous media. It systematically reviews the key factors controlling their fate and transport in porous media. It first provides a brief overview of common ENPs in the environment and their sources. The key factors that govern ENP transport in porous media are then categorized into three groups: (1) nature of ENPs affecting their transport in porous media, (2) nature of porous media affecting ENP transport, and (3) nature of flow affecting ENP transport in porous media. In each group, findings in recent literature on the specific governing factors of ENP transport in porous media are discussed in details. Finally, this work concludes with remarks on the importance of ENP transport in porous media and directions for future research.
Collapse
Affiliation(s)
- Mei Wang
- College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, PR China; Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA.
| | - Deshan Tang
- College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
38
|
|
39
|
Allaf RM, Rivero IV, Ivanov IN. Fabrication and characterization of multiwalled carbon nanotube–loaded interconnected porous nanocomposite scaffolds. INT J POLYM MATER PO 2016. [DOI: 10.1080/00914037.2016.1201761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
40
|
Kim HS, Shin US. Core-Shell Structured Chitosan-Carbon Nanotube Membrane as a Positively Charged Drug Delivery System: Selective Loading and Releasing Profiles for Bovine Serum Albumin. B KOREAN CHEM SOC 2016. [DOI: 10.1002/bkcs.10712] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Han-Sem Kim
- Department of Nanobiomedical Science & BK21 PlUS NBM Global Research Center for Regenerative Medicine; Dankook University; Chungnam Cheonan 330-714 Republic of Korea
- Institute of Tissue Regeneration Engineering (ITREN); Dankook University; Chungnam Cheonan 330-714 Republic of Korea
| | - Ueon Sang Shin
- Department of Nanobiomedical Science & BK21 PlUS NBM Global Research Center for Regenerative Medicine; Dankook University; Chungnam Cheonan 330-714 Republic of Korea
- Institute of Tissue Regeneration Engineering (ITREN); Dankook University; Chungnam Cheonan 330-714 Republic of Korea
| |
Collapse
|
41
|
Gatti T, Vicentini N, Mba M, Menna E. Organic Functionalized Carbon Nanostructures for Functional Polymer-Based Nanocomposites. European J Org Chem 2016. [DOI: 10.1002/ejoc.201501411] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Jia H, Li J, Liu Z, Gao R, Abbas S, Fang Y, Yu C, Tang C. Three-dimensional carbon boron nitrides with a broken, hollow, spherical shell for water treatment. RSC Adv 2016. [DOI: 10.1039/c6ra10689g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Broken hollow spherical shell like 3D C-BNs with a very fast dye adsorption rate for water purification.
Collapse
Affiliation(s)
- Huichao Jia
- School of Materials Science and Engineering
- Hebei University of Technology
- Tianjin 300130
- P. R. China
| | - Jie Li
- School of Materials Science and Engineering
- Hebei University of Technology
- Tianjin 300130
- P. R. China
| | - Zhenya Liu
- School of Materials Science and Engineering
- Hebei University of Technology
- Tianjin 300130
- P. R. China
| | - Ruoyuan Gao
- School of Materials Science and Engineering
- Hebei University of Technology
- Tianjin 300130
- P. R. China
| | - Saleem Abbas
- School of Materials Science and Engineering
- Hebei University of Technology
- Tianjin 300130
- P. R. China
| | - Yi Fang
- School of Materials Science and Engineering
- Hebei University of Technology
- Tianjin 300130
- P. R. China
| | - Chao Yu
- School of Materials Science and Engineering
- Hebei University of Technology
- Tianjin 300130
- P. R. China
| | - Chengchun Tang
- School of Materials Science and Engineering
- Hebei University of Technology
- Tianjin 300130
- P. R. China
| |
Collapse
|
43
|
Mounesi Rad S, Khorasani MT, Daliri Joupari M. Preparation of HMWCNT/PLLA nanocomposite scaffolds for application in nerve tissue engineering and evaluation of their physical, mechanical and cellular activity properties. POLYM ADVAN TECHNOL 2015. [DOI: 10.1002/pat.3644] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shokoufeh Mounesi Rad
- Department of Biomaterial, Sciences and Researches Branch; Islamic Azad University; Tehran Iran
| | | | | |
Collapse
|
44
|
Park S, Park J, Jo I, Cho SP, Sung D, Ryu S, Park M, Min KA, Kim J, Hong S, Hong BH, Kim BS. In situ hybridization of carbon nanotubes with bacterial cellulose for three-dimensional hybrid bioscaffolds. Biomaterials 2015; 58:93-102. [DOI: 10.1016/j.biomaterials.2015.04.027] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 04/10/2015] [Indexed: 12/13/2022]
|
45
|
Fujigaya T, Nakashima N. Non-covalent polymer wrapping of carbon nanotubes and the role of wrapped polymers as functional dispersants. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2015; 16:024802. [PMID: 27877763 PMCID: PMC5036478 DOI: 10.1088/1468-6996/16/2/024802] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 01/22/2015] [Accepted: 01/23/2015] [Indexed: 05/20/2023]
Abstract
Carbon nanotubes (CNTs) have been recognized as a promising material in a wide range of applications from biotechnology to energy-related devices. However, the poor solubility in aqueous and organic solvents hindered the applications of CNTs. As studies have progressed, the methodology for CNT dispersion was established. In this methodology, the key issue is to covalently or non-covalently functionalize the surfaces of the CNTs with a dispersant. Among the various types of dispersions, polymer wrapping through non-covalent interactions is attractive in terms of the stability and homogeneity of the functionalization. Recently, by taking advantage of their stability, the wrapped-polymers have been utilized to support and/or reinforce the unique functionality of the CNTs, leading to the development of high-performance devices. In this review, various polymer wrapping approaches, together with the applications of the polymer-wrapped CNTs, are summarized.
Collapse
|
46
|
Chu Y, Lu Z, Li J, Zhu Y, Zhang S, Chen J. Preparation of poly (L-lactic acid) with aligned structures by unidirectional freezing. POLYM ADVAN TECHNOL 2015. [DOI: 10.1002/pat.3493] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yeqian Chu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultra-fine Materials of Ministry of Education, School of Materials Science and Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Zhen Lu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultra-fine Materials of Ministry of Education, School of Materials Science and Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Junjie Li
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultra-fine Materials of Ministry of Education, School of Materials Science and Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Yun Zhu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultra-fine Materials of Ministry of Education, School of Materials Science and Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Shengmiao Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultra-fine Materials of Ministry of Education, School of Materials Science and Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Jianding Chen
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultra-fine Materials of Ministry of Education, School of Materials Science and Engineering; East China University of Science and Technology; Shanghai 200237 China
| |
Collapse
|
47
|
Girek B, Sliwa W. Hybrids of cationic porphyrins with nanocarbons. J INCL PHENOM MACRO 2015; 82:283-300. [PMID: 26167127 PMCID: PMC4491362 DOI: 10.1007/s10847-015-0485-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 02/13/2015] [Indexed: 01/09/2023]
Abstract
In the review hybrids of cationic porphyrins (i.e. porphyrins functionalized by quaternary pyridinium groups) with nanocarbons such as fullerenes, carbon nanotubes and graphene are described. Selected examples of these species are characterized in regard of their properties and possible applications.
Collapse
Affiliation(s)
- Beata Girek
- Institute of Chemistry, Environmental Protection and Biotechnology, Jan Długosz University in Czestochowa, Armii Krajowej 13/15, 42-200 Czestochowa, Poland
| | - Wanda Sliwa
- Institute of Chemistry, Environmental Protection and Biotechnology, Jan Długosz University in Czestochowa, Armii Krajowej 13/15, 42-200 Czestochowa, Poland
| |
Collapse
|
48
|
Ali S, Tian W, Ali N, Shi L, Kong J, Ali N. Polymer melt flow through nanochannels: from theory and fabrication to application. RSC Adv 2015. [DOI: 10.1039/c4ra14787a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
This short review presents the theory, fabrication, and application of polymer melts through nanochannels.
Collapse
Affiliation(s)
- Sarmad Ali
- MOE Key Laboratory of Space Applied Physics and Chemistry
- Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Wei Tian
- MOE Key Laboratory of Space Applied Physics and Chemistry
- Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Nisar Ali
- MOE Key Laboratory of Space Applied Physics and Chemistry
- Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Lingxiao Shi
- MOE Key Laboratory of Space Applied Physics and Chemistry
- Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Jie Kong
- MOE Key Laboratory of Space Applied Physics and Chemistry
- Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Nazakat Ali
- MOE Key Laboratory of Space Applied Physics and Chemistry
- Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| |
Collapse
|
49
|
Shah K, Vasileva D, Karadaghy A, Zustiak SP. Development and characterization of polyethylene glycol–carbon nanotube hydrogel composite. J Mater Chem B 2015; 3:7950-7962. [DOI: 10.1039/c5tb01047k] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polyethylene–glycol–carbon nanotube composite was developed where carbon nanotubes altered the hydrogel mechanical and physical properties and aided neuronal cell viability.
Collapse
Affiliation(s)
- K. Shah
- Department of Biomedical Engineering
- Saint Louis University
- St Louis
- USA
| | - D. Vasileva
- Department of Biomedical Engineering
- Saint Louis University
- St Louis
- USA
| | - A. Karadaghy
- Department of Biomedical Engineering
- Saint Louis University
- St Louis
- USA
| | - S. P. Zustiak
- Department of Biomedical Engineering
- Saint Louis University
- St Louis
- USA
| |
Collapse
|
50
|
Kaur G, Adhikari R, Cass P, Bown M, Gunatillake P. Electrically conductive polymers and composites for biomedical applications. RSC Adv 2015. [DOI: 10.1039/c5ra01851j] [Citation(s) in RCA: 510] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This paper provides a review of the recent advances made in the field of electroactive polymers and composites for biomedical applications.
Collapse
Affiliation(s)
- Gagan Kaur
- CSIRO Manufacturing Flagship
- Clayton
- Australia
| | | | - Peter Cass
- CSIRO Manufacturing Flagship
- Clayton
- Australia
| | - Mark Bown
- CSIRO Manufacturing Flagship
- Clayton
- Australia
| | | |
Collapse
|