1
|
Wang W, Liang X, Liu H, Zhang J, Zhang Y, Zhang B, Li J, Zhu Y, Du J. Cationic-anionic synchronous ring-opening polymerization. Nat Commun 2025; 16:1881. [PMID: 39987195 PMCID: PMC11846916 DOI: 10.1038/s41467-025-56953-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 02/06/2025] [Indexed: 02/24/2025] Open
Abstract
Chemical reactions with incompatible mechanisms (such as nucleophilic reactions and electrophilic reactions, cationic polymerization and anionic polymerization) are usually difficult to perform simultaneously in one-pot. In particular, synchronous cationic-anionic polymerization has been an important challenge in the field of polymer synthesis due to possible coupling termination of both chain ends. We recently found that such terminal couplings can be significantly inhibited by a bismuth salt with a strong nucleophilic anion (e.g., BiCl3) and disclosed the mechanism. Accordingly, we propose a cationic-anionic polymerization (CAP) method where cationic ring-opening polymerization (CROP) of 2-oxazolines (Ox) and anionic ring-opening polymerization (AROP) of cyclic esters (CE) can be initiated sequentially and propagated simultaneously in one-pot, using bismuth salts as the initial initiators, to afford a multifunctional copolymer polyoxazoline-block-polyester (POx-b-PCE). Furthermore, a block copolymer PAPOZ20-b-PCL5 synthesized by CAP can self-assemble into micellar aggregates, which exhibit excellent intrinsic antibacterial activities without loading any extra antibiotic components. Overall, such a CAP method opens new avenues for synthesizing multi-component copolymers and biomaterials.
Collapse
Affiliation(s)
- Wenli Wang
- Department of Gynecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China
| | - Xue Liang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China
| | - Hengxu Liu
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China
| | - Jiamin Zhang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China
| | - Yuanzu Zhang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China
| | - Beibei Zhang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China
| | - Jianhua Li
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China
| | - Yunqing Zhu
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China.
| | - Jianzhong Du
- Department of Gynecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China.
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China.
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
2
|
Liang X, Lv J, Qiang H, Li J, Wang W, Du J, Zhu Y. Easy access to amphiphilic nitrogenous block copolymers via switchable catalysis. Chem Sci 2024; 15:d4sc05047a. [PMID: 39464611 PMCID: PMC11499957 DOI: 10.1039/d4sc05047a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024] Open
Abstract
A key challenge in polymer synthesis is to develop new methods that enable block copolymers to be prepared from mixed monomer feedstock. The emerging switchable polymerization catalysis can generate block copolymers with well-defined structures and tunable properties from monomer mixtures. However, constrained by the reactivity of monomers and the incompatibility of different polymerization mechanisms, this method is usually confined to oxygenated monomers. In this work, the switchable polymerization was successfully applied to nitrogenous monomers for the first time, achieving the efficient copolymerization of N-substituted N-carboxyanhydrides (NNCAs) with epoxides and cyclic anhydrides. This leads to easy access towards amphiphilic nitrogenous copolymers, such as polyester-b-polypeptoids. Density functional theory calculations demonstrated that the reaction of cyclic anhydrides with the alkoxide terminal is thermodynamically more favorable than that of NNCAs. Characterization, using nuclear magnetic resonance spectroscopy, size exclusion chromatography and in situ infrared spectroscopy, has confirmed the well-defined block structure of the obtained copolymers. This switchable polymerization strategy is applicable to a range of monomer mixtures with different oxygenated monomers and NNCAs, providing a highly efficient synthetic route towards nitrogenous block copolymers. Most importantly, the easily accessed amphiphilic polyester-b-polypeptoids demonstrated excellent anti-protein adsorption capabilities and barely any cytotoxicity, showing great potential in the field of biomedicine.
Collapse
Affiliation(s)
- Xue Liang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University 4800 Caoan Road Shanghai 201804 China
| | - Jiachen Lv
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University 4800 Caoan Road Shanghai 201804 China
| | - Hongru Qiang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University 4800 Caoan Road Shanghai 201804 China
| | - Jiahui Li
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University 4800 Caoan Road Shanghai 201804 China
| | - Wenli Wang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University 4800 Caoan Road Shanghai 201804 China
| | - Jianzhong Du
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University Shanghai 200434 China
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University 4800 Caoan Road Shanghai 201804 China
- School of Materials Science and Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Yunqing Zhu
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University 4800 Caoan Road Shanghai 201804 China
| |
Collapse
|
3
|
Zhang X, Li Z, Wang L, Yu J, Liu Y, Song P. Selective Copolymerization from Mixed Monomers of Phthalic Anhydride, Propylene Oxide and Lactide Using Nano-Sized Zinc Glutarate. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1535. [PMID: 39330691 PMCID: PMC11434771 DOI: 10.3390/nano14181535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024]
Abstract
Selective polymerization with heterogeneous catalysts from mixed monomers remains a challenge in polymer synthesis. Herein, we describe that nano-sized zinc glutarate (ZnGA) can serve as a catalyst for the selective copolymerization of phthalic anhydride (PA), propylene oxide (PO) and lactide (LA). It was found that the ring-opening copolymerization (ROCOP) of PA with PO occurs firstly in the multicomponent polymerization. After the complete consumption of PA, the ring-opening polymerization (ROP) of LA turns into the formation of block polyester. In the process, the formation of zinc-alkoxide bonds on the surface of ZnGA accounts for the selective copolymerization from ROCOP to ROP. These results facilitate the understanding of the heterogeneous catalytic process and offer a new platform for selective polymerization from monomer mixtures.
Collapse
Affiliation(s)
- Xiaoting Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou 730070, China
| | - Zhidong Li
- College of Chemistry and Chemical Engineering, Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou 730070, China
| | - Liyan Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou 730070, China
| | - Jingjing Yu
- College of Chemistry and Chemical Engineering, Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou 730070, China
| | - Yefan Liu
- College of Chemistry and Chemical Engineering, Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou 730070, China
| | - Pengfei Song
- College of Chemistry and Chemical Engineering, Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
4
|
Kamigaki K, Aoshima S, Kanazawa A. Cationic Alternating Copolymerization of Vinyl Esters and 3-Alkoxyphthalides: Side Chain-Crosslinkable Polymers for Acid-Degradable Single-Chain Nanoparticles. ACS Macro Lett 2024; 13:754-760. [PMID: 38819236 DOI: 10.1021/acsmacrolett.4c00246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Cationic copolymerization of vinyl acetate and 3-alkoxyphthalides (ROPTs) was demonstrated to proceed using GaCl3 as a Lewis acid catalyst. Both monomers did not undergo homopolymerization, while copolymerization smoothly occurred via the crossover reactions, resulting in alternating copolymers with molecular weights of over 104. The obtained copolymers could be degraded by acid due to the cleavage of the diacyloxymethine moieties, which were derived from the crossover reactions from vinyl acetate to ROPT, in the main chain. An advantage of not radical but cationic copolymerization of vinyl esters was exerted by copolymerizations of radically reactive group-containing vinyl esters with ROPTs. For example, vinyl cinnamate was successfully copolymerized with an ROPT by the cationic mechanism, while keeping the cinnamoyl groups intact. The obtained alternating copolymer was subjected to a photodimerization reaction of the cinnamoyl groups in the side chains, resulting in an acid-degradable single-chain nanoparticle via the intramolecular crosslinking reactions.
Collapse
Affiliation(s)
- Kyonosuke Kamigaki
- Department of Macromolecular Science Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Sadahito Aoshima
- Department of Macromolecular Science Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Arihiro Kanazawa
- Department of Macromolecular Science Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
5
|
Jia Y, Sun Z, Hu C, Pang X. Switchable Polymerization: A Practicable Strategy to Produce Biodegradable Block Copolymers with Diverse Properties. Chempluschem 2022; 87:e202200220. [PMID: 36071346 DOI: 10.1002/cplu.202200220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/14/2022] [Indexed: 11/11/2022]
Abstract
With the global demand for sustainable development, there has been an increasing interest in using natural biomass as raw resources to produce sustainable polymers as an alternative to petroleum-based polymers. Because monocomponent biodegradable polymers are often insufficient in performance, copolymers with well-engineered block structures are synthesized to reach wide tunability. Switchable polymerization is such a practical strategy to produce biodegradable block copolymers with diverse performance. This review focus on the performance of block copolymers bearing biodegradable polymer segments produced by diverse switchable polymerization. We highlight two main segments that are critical for biodegradable block copolymers, i. e., polyester and polycarbonate, summarize the multiple characters of materials from switchable polymerization such as antibacterial, shape memory, adhesives, etc. The state-of-the-art research on biodegradable block copolymers, as well as an outlook on the preparation and application of novel materials, are presented.
Collapse
Affiliation(s)
- Yifan Jia
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Zhiqiang Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Chenyang Hu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Xuan Pang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
6
|
Zhao S, Nie Y, Zhang W, Hu R, Sheng L, He W, Zhu N, Li Y, Ji D, Guo K. Microfluidic field strategy for enhancement and scale up of liquid–liquid homogeneous chemical processes by optimization of 3D spiral baffle structure. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Hu C, Pang X, Chen X. Self-Switchable Polymerization: A Smart Approach to Sequence-Controlled Degradable Copolymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00085] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chenyang Hu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
| | - Xuan Pang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
| |
Collapse
|
8
|
Zhu X, Yang G, Xie R, Wu G. One‐Pot Construction of Sulfur‐Rich Thermoplastic Elastomers Enabled by Metal‐Free Self‐Switchable Catalysis and Air‐Assisted Coupling. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiao‐Feng Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Guan‐Wen Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Rui Xie
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Guang‐Peng Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| |
Collapse
|
9
|
Jin Z, Wang H, Hu X, Liu Y, Hu Y, Zhao S, Zhu N, Fang Z, Guo K. Anionic polymerizations in a microreactor. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00360g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anionic polymerizations in a microreactor enable fast mixing, high-level control, and scale-up synthesis of polymers.
Collapse
Affiliation(s)
- Zhao Jin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Huiyue Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Xin Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Yihuan Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Yujing Hu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Shuangfei Zhao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| |
Collapse
|
10
|
Lin L, Chen X, Xiang H, Chang M, Xu Y, Zhao H, Meng Y. Construction of triblock copolyesters via one-step switchable terpolymerization of epoxides, phthalic anhydride and ε-caprolactone using dual urea/organic base catalysts. Polym Chem 2022. [DOI: 10.1039/d1py01390d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A cost-effective and efficient system of ureas/organic bases toward the controlled self-switchable copolymerization of epoxide/PA/CL to obtain well-defined triblock polyesters.
Collapse
Affiliation(s)
- Limiao Lin
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Xin Chen
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Huanxin Xiang
- School of Materials Science & Hydrogen Energy, Foshan University, Foshan 528000, China
| | - Min Chang
- School of Materials Science & Hydrogen Energy, Foshan University, Foshan 528000, China
| | - Yonghang Xu
- School of Materials Science & Hydrogen Energy, Foshan University, Foshan 528000, China
| | - Hongting Zhao
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Yuezhong Meng
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province/School of Materials Science and Engineering, Sun Yat-Sen University, 135 Xingang West, Guangzhou, 510275, China
| |
Collapse
|
11
|
Zhu XF, Yang GW, Xie R, Wu GP. One-Pot Construction of Sulfur-Rich Thermoplastic Elastomers Enabled by Metal-Free Self-Switchable Catalysis and Air-Assisted Coupling. Angew Chem Int Ed Engl 2021; 61:e202115189. [PMID: 34866295 DOI: 10.1002/anie.202115189] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Indexed: 11/09/2022]
Abstract
Construction of well-defined sulfur-rich macromolecules in a facile manner is an interesting but challenging topic. Herein, we disclose how to readily construct well-defined triblock sulfur-rich thermoplastic elastomers via a self-switchable isothiocyanate/episulfide copolymerization and air-assisted oxidative coupling strategy. During self-switchable polymerization, alternating copolymerization of isothiocyanate and episulfide occurs initially due to the lower energy barrier for isothiocyanate insertion with respect to successive episulfide ring-opening. After exhaustion of isothiocyanate, ring-opening polymerization of episulfide begins, providing diblock polymers. Subsequent exposure of the reaction to air leads to a transformation of diblock copolymers into triblock thermoplastic elastomers. This protocol can be extended to diverse isothiocyanates and episulfides, allowing fine-tuning of the performance of the produced sulfur-rich thermoplastic elastomers.
Collapse
Affiliation(s)
- Xiao-Feng Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Guan-Wen Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Rui Xie
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Guang-Peng Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
12
|
Rosetto G, Deacy AC, Williams CK. Mg(ii) heterodinuclear catalysts delivering carbon dioxide derived multi-block polymers. Chem Sci 2021; 12:12315-12325. [PMID: 34603661 PMCID: PMC8480424 DOI: 10.1039/d1sc03856g] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 07/29/2021] [Indexed: 11/21/2022] Open
Abstract
Carbon dioxide derived polymers are emerging as useful materials for applications spanning packaging, construction, house-hold goods and automotive components. To accelerate and broaden their uptake requires both more active and selective catalysts and greater structural diversity for the carbon dioxide derived polymers. Here, highly active catalysts show controllable selectivity for the enchainment of mixtures of epoxide, anhydride, carbon dioxide and lactone. Firstly, metal dependent selectivity differences are uncovered using a series of dinuclear catalysts, Mg(ii)Mg(ii), Zn(ii)Zn(ii), Mg(ii)Zn(ii), and Mg(ii)Co(ii), each exposed to mixtures of bio-derived tricyclic anhydride, cyclohexene oxide and carbon dioxide (1 bar). Depending upon the metal combinations, different block structures are possible with Zn(ii)Zn(ii) yielding poly(ester-b-carbonate); Mg(ii)Mg(ii) or Mg(ii)Co(ii) catalysts delivering poly(carbonate-b-ester); and Mg(ii)Zn(ii) furnishing a random copolymer. These results indicate that carbon dioxide insertion reactions follow the order Co(ii) > Mg(ii) > Zn(ii). Using the most active and selective catalyst, Mg(ii)Co(ii), and exploiting reversible on/off switches between carbon dioxide/nitrogen at 1 bar delivers precision triblock (ABA), pentablock (BABAB) and heptablock (ABABABA) polymers (where A = poly(cyclohexylene oxide-alt-tricyclic anhydride), PE; B = poly(cyclohexene carbonate), PCHC). The Mg(ii)Co(ii) catalyst also selectively polymerizes a mixture of anhydride, carbon dioxide, cyclohexene oxide and ε-caprolactone to deliver a CBABC pentablock copolymer (A = PE, B = PCHC C = poly(caprolactone), PCL). The catalysts combine high activity and selectivity to deliver new polymers featuring regularly placed carbon dioxide and biomass derived linkages.
Collapse
Affiliation(s)
- Gloria Rosetto
- Department of Chemistry, Chemistry Research Laboratory 12 Mansfield Rd Oxford OX1 3TA UK
| | - Arron C Deacy
- Department of Chemistry, Chemistry Research Laboratory 12 Mansfield Rd Oxford OX1 3TA UK
| | - Charlotte K Williams
- Department of Chemistry, Chemistry Research Laboratory 12 Mansfield Rd Oxford OX1 3TA UK
| |
Collapse
|