1
|
Hoang VT, Nguyen QT, Phan TTK, Pham TH, Dinh NTH, Anh LPH, Dao LTM, Bui VD, Dao H, Le DS, Ngo ATL, Le Q, Nguyen Thanh L. Tissue Engineering and Regenerative Medicine: Perspectives and Challenges. MedComm (Beijing) 2025; 6:e70192. [PMID: 40290901 PMCID: PMC12022429 DOI: 10.1002/mco2.70192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 12/30/2024] [Accepted: 03/04/2025] [Indexed: 04/30/2025] Open
Abstract
From the pioneering days of cell therapy to the achievement of bioprinting organs, tissue engineering, and regenerative medicine have seen tremendous technological advancements, offering solutions for restoring damaged tissues and organs. However, only a few products and technologies have received United States Food and Drug Administration approval. This review highlights significant progress in cell therapy, extracellular vesicle-based therapy, and tissue engineering. Hematopoietic stem cell transplantation is a powerful tool for treating many diseases, especially hematological malignancies. Mesenchymal stem cells have been extensively studied. The discovery of induced pluripotent stem cells has revolutionized disease modeling and regenerative applications, paving the way for personalized medicine. Gene therapy represents an innovative approach to the treatment of genetic disorders. Additionally, extracellular vesicle-based therapies have emerged as rising stars, offering promising solutions in diagnostics, cell-free therapeutics, drug delivery, and targeted therapy. Advances in tissue engineering enable complex tissue constructs, further transforming the field. Despite these advancements, many technical, ethical, and regulatory challenges remain. This review addresses the current bottlenecks, emphasizing novel technologies and interdisciplinary research to overcome these hurdles. Standardizing practices and conducting clinical trials will balance innovation and regulation, improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- Van T. Hoang
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Quyen Thi Nguyen
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Trang Thi Kieu Phan
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Trang H. Pham
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Nhung Thi Hong Dinh
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Le Phuong Hoang Anh
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Lan Thi Mai Dao
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Van Dat Bui
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- School of Chemical EngineeringCollege of EngineeringSungkyunkwan University (SKKU)SuwonRepublic of Korea
| | - Hong‐Nhung Dao
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Duc Son Le
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Anh Thi Lan Ngo
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Quang‐Duong Le
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Liem Nguyen Thanh
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| |
Collapse
|
2
|
Seesala VS, Vaidya PV, Rajasekaran R, Dogra N, Ganguly R, Dhara S. Ti 6Al 4V Implants with Dense-Trabecular Bilayer Morphology for Bone Ingrowth: Synergy of Green Net Shaping and Sacrificial Templating. ACS APPLIED BIO MATERIALS 2024; 7:7509-7521. [PMID: 39442076 DOI: 10.1021/acsabm.4c01100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Stress shielding in dental and orthopedic implants is a long-standing hurdle, and trabecular porous architecture to improve bone ingrowth is deemed to be a potential solution. Fabricating Ti6Al4V components with dense-porous bilayer structures is complicated with limited lab-scale and commercial success. Here, a green dough-forming technique with metal powders is successfully explored to develop heterogeneous structures with a monolith-like dense-porous interface. The porous region achieved 70% porosity with a 25 MPa compressive strength comparable to human cancellous bone. Due to its simplicity and versatility, this process is a promising solution for developing and mass-manufacturing customized designs for bone-related implants with improved bone ingrowth and osseointegration.
Collapse
Affiliation(s)
- Venkata Sundeep Seesala
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Pravin Vasudeo Vaidya
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Ragavi Rajasekaran
- Rajendra Mishra School of Engineering and Entrepreneurship, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Nantu Dogra
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Rajashree Ganguly
- Department of Oral and Dental Sciences, JIS University, Kolkata 700109, West Bengal, India
| | - Santanu Dhara
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| |
Collapse
|
3
|
Luo W, Wang Y, Wang Z, Jiao J, Yu T, Jiang W, Li M, Zhang H, Gong X, Chao B, Liu S, Wu X, Wang J, Wu M. Advanced topology of triply periodic minimal surface structure for osteogenic improvement within orthopedic metallic screw. Mater Today Bio 2024; 27:101118. [PMID: 38975238 PMCID: PMC11225863 DOI: 10.1016/j.mtbio.2024.101118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/02/2024] [Accepted: 06/08/2024] [Indexed: 07/09/2024] Open
Abstract
Metallic screws are one of the most common implants in orthopedics. However, the solid design of the screw has often resulted in stress shielding and postoperative loosening, substantially impacting its long-term fixation effect after surgery. Four additive manufacturing porous structures (Fischer-Koch S, Octet, Diamond, and Double Gyroid) are now introduced into the screw to fix those issues. Upon applying the four porous structures, elastic modulus in the screw decreased about 2∼15 times to reduce the occurrence of stress shielding, and bone regeneration effect on the screw surface increased about 1∼50 times to improve bone tissue regrowing. With more bone tissue regrowing on the inner surface of porous screw, a stiffer integration between screw and bone tissue will be achieved, which improves the long-term fixation of the screw tremendously. The biofunctions of the four topologies on osteogenesis have been fully explored, which provides an advanced topology optimization scheme for the screw utilized in orthopedic fixation.
Collapse
Affiliation(s)
- Wangwang Luo
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Yang Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Zhonghan Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Jianhang Jiao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Tong Yu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Weibo Jiang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Mufeng Li
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Han Zhang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Xuqiang Gong
- Department of Spine Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bo Chao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Shixian Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Xuhui Wu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Minfei Wu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Moghaddam A, Bahrami M, Mirzadeh M, Khatami M, Simorgh S, Chimehrad M, Kruppke B, Bagher Z, Mehrabani D, Khonakdar HA. Recent trends in bone tissue engineering: a review of materials, methods, and structures. Biomed Mater 2024; 19:042007. [PMID: 38636500 DOI: 10.1088/1748-605x/ad407d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 04/18/2024] [Indexed: 04/20/2024]
Abstract
Bone tissue engineering (BTE) provides the treatment possibility for segmental long bone defects that are currently an orthopedic dilemma. This review explains different strategies, from biological, material, and preparation points of view, such as using different stem cells, ceramics, and metals, and their corresponding properties for BTE applications. In addition, factors such as porosity, surface chemistry, hydrophilicity and degradation behavior that affect scaffold success are introduced. Besides, the most widely used production methods that result in porous materials are discussed. Gene delivery and secretome-based therapies are also introduced as a new generation of therapies. This review outlines the positive results and important limitations remaining in the clinical application of novel BTE materials and methods for segmental defects.
Collapse
Affiliation(s)
| | - Mehran Bahrami
- Department of Mechanical Engineering and Mechanics, Lehigh University, 27 Memorial Dr W, Bethlehem, PA 18015, United States of America
| | | | - Mehrdad Khatami
- Iran Polymer and Petrochemical Institute (IPPI), Tehran 14965-115, Iran
| | - Sara Simorgh
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Chimehrad
- Department of Mechanical & Aerospace Engineering, College of Engineering & Computer Science, University of Central Florida, Orlando, FL, United States of America
| | - Benjamin Kruppke
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, 01069 Dresden, Germany
| | - Zohreh Bagher
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Davood Mehrabani
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Fars 71348-14336, Iran
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Fars 71345-1744, Iran
| | - Hossein Ali Khonakdar
- Iran Polymer and Petrochemical Institute (IPPI), Tehran 14965-115, Iran
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, 01069 Dresden, Germany
| |
Collapse
|
5
|
Młynarek-Żak K, Żmudzki J. The effect of porous compliance bushings in a dental implant on the distribution of occlusal loads. Sci Rep 2024; 14:1607. [PMID: 38238380 PMCID: PMC10796672 DOI: 10.1038/s41598-024-51429-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 04/02/2023] [Indexed: 01/22/2024] Open
Abstract
Porous dental implants are clinically used, but the mechanism of load distribution for stepped implant shaft surrounded by compliance bushings is still not known, especially for different bone conditions. The aim of the study was to assess the impact of the design of a dental implant with compliance bushings (CBs) on the occlusal load distribution during primary and secondary stability using finite element simulation (FEA), with a distinction between low and high quality cervical support under primary stability. The FEA of the oblique occlusal load transfer (250 N; 45°) was carried out for implants under variable bone conditions. The stepped shaft in the intermediate part of the dental implant was surrounded by CBs with an increasing modulus of elasticity of 2, 10 and 50 GPa. With a smaller Young's modulus of the bushings the increase of stress in the trabecular bone indicated that more bone tissue can be protected against disuse. The beneficial effect for the trabecular bone derived from the reduction of the stiffness of the bushings in relation to the loss of the implant's load bearing ability can be assessed using the FEM method.
Collapse
Affiliation(s)
- Katarzyna Młynarek-Żak
- Department of Engineering Processes Automation and Integrated Manufacturing Systems, Silesian University of Technology, Konarskiego 18a St., 44-100, Gliwice, Poland
| | - Jarosław Żmudzki
- Department of Engineering Materials and Biomaterials, Silesian University of Technology, Konarskiego 18a St., 44-100, Gliwice, Poland.
| |
Collapse
|
6
|
Marin E. Forged to heal: The role of metallic cellular solids in bone tissue engineering. Mater Today Bio 2023; 23:100777. [PMID: 37727867 PMCID: PMC10506110 DOI: 10.1016/j.mtbio.2023.100777] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023] Open
Abstract
Metallic cellular solids, made of biocompatible alloys like titanium, stainless steel, or cobalt-chromium, have gained attention for their mechanical strength, reliability, and biocompatibility. These three-dimensional structures provide support and aid tissue regeneration in orthopedic implants, cardiovascular stents, and other tissue engineering cellular solids. The design and material chemistry of metallic cellular solids play crucial roles in their performance: factors such as porosity, pore size, and surface roughness influence nutrient transport, cell attachment, and mechanical stability, while their microstructure imparts strength, durability and flexibility. Various techniques, including additive manufacturing and conventional fabrication methods, are utilized for producing metallic biomedical cellular solids, each offering distinct advantages and drawbacks that must be considered for optimal design and manufacturing. The combination of mechanical properties and biocompatibility makes metallic cellular solids superior to their ceramic and polymeric counterparts in most load bearing applications, in particular under cyclic fatigue conditions, and more in general in application that require long term reliability. Although challenges remain, such as reducing the production times and the associated costs or increasing the array of available materials, metallic cellular solids showed excellent long-term reliability, with high survival rates even in long term follow-ups.
Collapse
Affiliation(s)
- Elia Marin
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, 606-8585, Kyoto, Japan
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, 602-8566, Japan
- Department Polytechnic of Engineering and Architecture, University of Udine, 33100, Udine, Italy
- Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto, 606-8585, Japan
| |
Collapse
|
7
|
Cai A, Yin H, Wang C, Chen Q, Song Y, Yin R, Yuan X, Kang H, Guo H. Bioactivity and antibacterial properties of zinc-doped Ta 2O 5nanorods on porous tantalum surface. Biomed Mater 2023; 18:065011. [PMID: 37729922 DOI: 10.1088/1748-605x/acfbd0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/20/2023] [Indexed: 09/22/2023]
Abstract
This paper focuses on the preparation of Zn2+-doped Ta2O5nanorods on porous tantalum using the hydrothermal method. Porous tantalum is widely used in biomedical materials due to its excellent elastic modulus and biological activity. Porous tantalum has an elastic modulus close to that of human bone, and its large specific surface area is conducive to promoting cell adhesion. Zinc is an important component of human bone, which not only has spectral bactericidal properties, but also has no cytotoxicity. The purpose of this study is to provide a theoretical basis for the surface modification of porous tantalum and to determine the best surface modification method. The surface structure of the sample was characterized by x-ray diffractometer, x-ray photoelectron spectroscopy, scanning electron microscope, transmission electron microscope, and the Zn-doped Ta2O5nanorods are characterized by antibacterial test, MTT test, ICP and other methods. The sample has good antibacterial properties and no cytotoxicity. The results of this study have potential implications for the development of new and improved biomedical materials.
Collapse
Affiliation(s)
- Anqi Cai
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Hairong Yin
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Cuicui Wang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Qian Chen
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Yingxuan Song
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Ruixue Yin
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Xin Yuan
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Haoran Kang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Hongwei Guo
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| |
Collapse
|
8
|
Wang X, Zhou K, Li Y, Xie H, Wang B. Preparation, modification, and clinical application of porous tantalum scaffolds. Front Bioeng Biotechnol 2023; 11:1127939. [PMID: 37082213 PMCID: PMC10110962 DOI: 10.3389/fbioe.2023.1127939] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/22/2023] [Indexed: 04/07/2023] Open
Abstract
Porous tantalum (Ta) implants have been developed and clinically applied as high-quality implant biomaterials in the orthopedics field because of their excellent corrosion resistance, biocompatibility, osteointegration, and bone conductivity. Porous Ta allows fine bone ingrowth and new bone formation through the inner space because of its high porosity and interconnected pore structure. It contributes to rapid bone integration and long-term stability of osseointegrated implants. Porous Ta has excellent wetting properties and high surface energy, which facilitate the adhesion, proliferation, and mineralization of osteoblasts. Moreover, porous Ta is superior to classical metallic materials in avoiding the stress shielding effect, minimizing the loss of marginal bone, and improving primary stability because of its low elastic modulus and high friction coefficient. Accordingly, the excellent biological and mechanical properties of porous Ta are primarily responsible for its rising clinical translation trend. Over the past 2 decades, advanced fabrication strategies such as emerging manufacturing technologies, surface modification techniques, and patient-oriented designs have remarkably influenced the microstructural characteristic, bioactive performance, and clinical indications of porous Ta scaffolds. The present review offers an overview of the fabrication methods, modification techniques, and orthopedic applications of porous Ta implants.
Collapse
Affiliation(s)
| | | | | | - Hui Xie
- *Correspondence: Hui Xie, ; Benjie Wang,
| | | |
Collapse
|
9
|
Tantalum as Trabecular Metal for Endosseous Implantable Applications. Biomimetics (Basel) 2023; 8:biomimetics8010049. [PMID: 36810380 PMCID: PMC9944482 DOI: 10.3390/biomimetics8010049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
During the last 20 years, tantalum has known ever wider applications for the production of endosseous implantable devices in the orthopedic and dental fields. Its excellent performances are due to its capacity to stimulate new bone formation, thus improving implant integration and stable fixation. Tantalum's mechanical features can be mainly adjusted by controlling its porosity thanks to a number of versatile fabrication techniques, which allow obtaining an elastic modulus similar to that of bone tissue, thus limiting the stress-shielding effect. The present paper aims at reviewing the characteristics of tantalum as a solid and porous (trabecular) metal, with specific regard to biocompatibility and bioactivity. Principal fabrication methods and major applications are described. Moreover, the osteogenic features of porous tantalum are presented to testify its regenerative potential. It can be concluded that tantalum, especially as a porous metal, clearly possesses many advantageous characteristics for endosseous applications but it presently lacks the consolidated clinical experience of other metals such as titanium.
Collapse
|
10
|
Xue N, Ding X, Huang R, Jiang R, Huang H, Pan X, Min W, Chen J, Duan JA, Liu P, Wang Y. Bone Tissue Engineering in the Treatment of Bone Defects. Pharmaceuticals (Basel) 2022; 15:879. [PMID: 35890177 PMCID: PMC9324138 DOI: 10.3390/ph15070879] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 02/05/2023] Open
Abstract
Bones play an important role in maintaining exercise and protecting organs. Bone defect, as a common orthopedic disease in clinics, can cause tremendous damage with long treatment cycles. Therefore, the treatment of bone defect remains as one of the main challenges in clinical practice. Today, with increased incidence of bone disease in the aging population, demand for bone repair material is high. At present, the method of clinical treatment for bone defects including non-invasive therapy and invasive therapy. Surgical treatment is the most effective way to treat bone defects, such as using bone grafts, Masquelet technique, Ilizarov technique etc. In recent years, the rapid development of tissue engineering technology provides a new treatment strategy for bone repair. This review paper introduces the current situation and challenges of clinical treatment of bone defect repair in detail. The advantages and disadvantages of bone tissue engineering scaffolds are comprehensively discussed from the aspect of material, preparation technology, and function of bone tissue engineering scaffolds. This paper also summarizes the 3D printing technology based on computer technology, aiming at designing personalized artificial scaffolds that can accurately fit bone defects.
Collapse
Affiliation(s)
- Nannan Xue
- Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, China; (N.X.); (X.D.); (R.H.); (R.J.); (H.H.); (W.M.); (J.C.)
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China; (X.P.); (J.-A.D.)
| | - Xiaofeng Ding
- Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, China; (N.X.); (X.D.); (R.H.); (R.J.); (H.H.); (W.M.); (J.C.)
| | - Rizhong Huang
- Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, China; (N.X.); (X.D.); (R.H.); (R.J.); (H.H.); (W.M.); (J.C.)
| | - Ruihan Jiang
- Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, China; (N.X.); (X.D.); (R.H.); (R.J.); (H.H.); (W.M.); (J.C.)
| | - Heyan Huang
- Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, China; (N.X.); (X.D.); (R.H.); (R.J.); (H.H.); (W.M.); (J.C.)
| | - Xin Pan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China; (X.P.); (J.-A.D.)
| | - Wen Min
- Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, China; (N.X.); (X.D.); (R.H.); (R.J.); (H.H.); (W.M.); (J.C.)
| | - Jun Chen
- Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, China; (N.X.); (X.D.); (R.H.); (R.J.); (H.H.); (W.M.); (J.C.)
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China; (X.P.); (J.-A.D.)
| | - Pei Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China; (X.P.); (J.-A.D.)
| | - Yiwei Wang
- Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, China; (N.X.); (X.D.); (R.H.); (R.J.); (H.H.); (W.M.); (J.C.)
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China; (X.P.); (J.-A.D.)
- Burns Injury and Reconstructive Surgery Research, ANZAC Research Institute, University of Sydney, Concord Repatriation General Hospital, Concord 2137, Australia
| |
Collapse
|
11
|
Marian M, Berman D, Nečas D, Emani N, Ruggiero A, Rosenkranz A. Roadmap for 2D materials in biotribological/biomedical applications – A review. Adv Colloid Interface Sci 2022; 307:102747. [DOI: 10.1016/j.cis.2022.102747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 01/01/2023]
|
12
|
Contemporary Concepts in Osseointegration of Dental Implants: A Review. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6170452. [PMID: 35747499 PMCID: PMC9213185 DOI: 10.1155/2022/6170452] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/26/2022] [Indexed: 11/18/2022]
Abstract
In a society highly conscious of esthetics, prosthetic rehabilitation of lost teeth with tissue-integrated implants has gained wide acceptance and demand by patients and clinicians. The backbone of these tissue-integrated implants is the biotechnical process of osseointegration. Although the concept has been introduced and discussed for ages, the deepening knowledge about its cellular and molecular mechanisms has led the researchers to borrow further into the factors influencing the process of osseointegration. This has aided in the hastening and improving the process of osseointegration by exploiting several, even the minutest, details and events taking place in this natural process. Recently, due to the high esthetic expectations of the patients, the implants are being loaded immediately, which demands a high degree of implant stability. Implant stability, especially secondary stability, largely depends on bone formation and integration of implants to the osseous tissues. Various factors that influence the rate and success of osseointegration can either be categorized as those related to implant characteristics like the physical and chemical macro- and microdesign of implants or the bone characteristics like the amount and quality of bone and the local and systemic host conditions, or the time or protocol followed for the functional loading of the dental implant. To address the shortcomings in osseointegration due to any of the factors, it is mandatory that continuous and reliable monitoring of the status of osseointegration is done. This review attempts to encompass the mechanisms, factors affecting, and methods to assess osseointegration, followed by a discussion on the recent advances and future perspectives in dental implantology to enhance the process of osseointegration. The review was aimed at igniting the inquisitive minds to usher further the development of technology that enhances osseointegration.
Collapse
|
13
|
Prospective Pilot Study of Immediately Provisionalized Restorations of Trabecular Metal-Enhanced Titanium Dental Implants: A 5-Year Follow-Up Report. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12030942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Porous tantalum trabecular metal biomaterial has a similar structure to trabecular bone, and was recently added to titanium dental implants as a surface enhancement. The purpose of this prospective pilot study was to describe 5-year survival results and crestal bone level changes around immediately-provisionalized Trabecular Metal Dental Implants. Eligible patients were adults in need of ≥1 implants in the posterior jaw. A non-occluding single acrylic provisional crown was in place for up to 14 days before final restoration. Clinical evaluations with radiographs were conducted at each follow-up visit (1 month, 3 months, 6 months, and 1 to 5 years). The primary endpoint was implant survival, characterized using the Kaplan-Meier method. The secondary endpoint was changes in crestal bone level, evaluated using a paired t-test to compare mean crestal bone levels between the baseline, 6-month, and annual follow-up values. In total, 30 patients (37 implants) were treated. Mean patient age was 45.5 years, and 63% were female. There was one implant failure; cumulative survival at 5 years was 97.2%. After the initial bone loss of 0.40 mm in the first 6 months, there were no statistically significant changes in crestal bone level over time up to 5 years of follow-up.
Collapse
|
14
|
Novel Design and Finite Element Analysis of Diamond-like Porous Implants with Low Stiffness. MATERIALS 2021; 14:ma14226918. [PMID: 34832321 PMCID: PMC8625789 DOI: 10.3390/ma14226918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/16/2022]
Abstract
The purpose of this study was to design porous implants with low stiffness and evaluate their biomechanical behavior. Thus, two types of porous implants were designed (Type I: a combined structure of diamond-like porous scaffold and traditional tapered thread. Type II: a cylindrical porous scaffold filled by arrayed basic diamond-like pore units). Three implant-supported prosthesis models were constructed from Type I, Type II and commercial implants (control group) and were evaluated by finite element analysis (FEA). The stress distribution pattern of the porous implants were assessed and compared with the control group. In addition, the stiffness of the cylindrical specimens simplified from three types of implants was calculated. The Type I implant exhibited better stress distribution than the Type II implant. The maximum stress between the cortical bone–Type I implant interface was 12.9 and 19.0% lower than the other two groups. The peak stress at the cancellous bone–Type I implant interface was also reduced by 16.8 and 38.7%. Compared with the solid cylinder, the stiffness of diamond-like pore cylinders simplified from the two porous implants geometry was reduced by 61.5 to 76.1%. This construction method of porous implant can effectively lower its stiffness and optimize the stress distribution at the implant–bone interface.
Collapse
|
15
|
Huang G, Pan ST, Qiu JX. The Clinical Application of Porous Tantalum and Its New Development for Bone Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2647. [PMID: 34070153 PMCID: PMC8158527 DOI: 10.3390/ma14102647] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/06/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022]
Abstract
Porous tantalum (Ta) is a promising biomaterial and has been applied in orthopedics and dentistry for nearly two decades. The high porosity and interconnected pore structure of porous Ta promise fine bone ingrowth and new bone formation within the inner space, which further guarantee rapid osteointegration and bone-implant stability in the long term. Porous Ta has high wettability and surface energy that can facilitate adherence, proliferation and mineralization of osteoblasts. Meanwhile, the low elastic modulus and high friction coefficient of porous Ta allow it to effectively avoid the stress shield effect, minimize marginal bone loss and ensure primary stability. Accordingly, the satisfactory clinical application of porous Ta-based implants or prostheses is mainly derived from its excellent biological and mechanical properties. With the advent of additive manufacturing, personalized porous Ta-based implants or prostheses have shown their clinical value in the treatment of individual patients who need specially designed implants or prosthesis. In addition, many modification methods have been introduced to enhance the bioactivity and antibacterial property of porous Ta with promising in vitro and in vivo research results. In any case, choosing suitable patients is of great importance to guarantee surgical success after porous Ta insertion.
Collapse
Affiliation(s)
| | | | - Jia-Xuan Qiu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; (G.H.); (S.-T.P.)
| |
Collapse
|
16
|
Tantalum Particles Induced Cytotoxic and Inflammatory Effects in Human Monocytes. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6658498. [PMID: 33564679 PMCID: PMC7867444 DOI: 10.1155/2021/6658498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/26/2020] [Accepted: 01/09/2021] [Indexed: 12/30/2022]
Abstract
The aim of this study is to evaluate the biological safety of tantalum (Ta) particles and to further explore the effects of Ta particles on human monocyte toxicity and inflammatory cytokine expression. Human monocyte leukemia (THP-1) cells were cultured with Ta and hydroxyapatite (HA) particles. Cell counting kit-8 method was used to evaluate the cytotoxicity of Ta and HA particles. The apoptosis effects were evaluated by flow cytometry, and the protein expression levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were evaluated by ELISA. The protein levels of inflammation-related signaling pathways including nuclear factor-kappa B (NF-κB) and extracellular regulated kinase (ERK) were detected by western blotting. The cytotoxicity test showed that the toxicity level of Ta in vitro was grade l, which is within the clinically acceptable range. Compared with the HA control, Ta had no significant effect on THP-1 cell apoptosis, IL-6, and TNF-α release. The phosphorylated levels of NF-κB and ERK at 3 h in the Ta group were lower than those in the HA and control groups (P < 0.001 both). These results reveal Ta particles behave good biosafety properties and provide some new insights for the future clinical use of Ta.
Collapse
|
17
|
Brodie EG, Robinson KJ, Sigston E, Molotnikov A, Frith JE. Osteogenic Potential of Additively Manufactured TiTa Alloys. ACS APPLIED BIO MATERIALS 2021. [DOI: 10.1021/acsabm.0c01450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Erin G. Brodie
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- Monash Centre for Additive Manufacturing (MCAM), 11 Normanby Road, Nottinghill, Victoria 3168, Australia
| | - Kye J. Robinson
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland
| | - Elizabeth Sigston
- Department of Surgery, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria 3800, Australia
- Department of Otolaryngology, Head and Neck Surgery, Monash Health, Clayton, Victoria 3168, Australia
| | - Andrey Molotnikov
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- Monash Centre for Additive Manufacturing (MCAM), 11 Normanby Road, Nottinghill, Victoria 3168, Australia
- RMIT Centre for Additive Manufacturing, School of Engineering, RMIT University, 3001 Melbourne, Australia
| | - Jessica E. Frith
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
18
|
Piglionico S, Bousquet J, Fatima N, Renaud M, Collart-Dutilleul PY, Bousquet P. Porous Tantalum VS. Titanium Implants: Enhanced Mineralized Matrix Formation after Stem Cells Proliferation and Differentiation. J Clin Med 2020; 9:3657. [PMID: 33203015 PMCID: PMC7697356 DOI: 10.3390/jcm9113657] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 02/05/2023] Open
Abstract
Titanium dental implants are used routinely, with surgical procedure, to replace missing teeth. Even though they lead to satisfactory results, novel developments with implant materials can still improve implant treatment outcomes. The aim of this study was to investigate the efficiency of porous tantalum (Ta) dental implants for osseointegration, in comparison to classical titanium (Ti). Mesenchymal stem cells from the dental pulp (DPSC) were incubated on Ta, smooth titanium (STi), and rough titanium (RTi) to assess their adhesion, proliferation, osteodifferentiation, and mineralized matrix production. Cell proliferation was measured at 4 h, 24 h, 48 h with MTT test. Early osteogenic differentiation was followed after 4, 8, 12 days by alkaline phosphatase (ALP) quantification. Cells organization and matrix microstructure were studied with scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). Collagen production and matrix mineralization were evaluated by immunostaining and histological staining. MTT test showed significantly higher proliferation of DPSC on Ta at 24 h and 48 h. However, APL quantification after 8 and 12 days was significantly lower for Ta, revealing a delayed differentiation, where cells were proliferating the more. After 3 weeks, collagen immunostaining showed an efficient production of collagen on all samples. However, Red Alizarin staining clearly revealed a higher calcification on Ta. The overall results tend to demonstrate that DPSC differentiation is delayed on Ta surface, due to a longer proliferation period until cells cover the 3D porous Ta structure. However, after 3 weeks, a more abundant mineralized matrix is produced on and inside Ta implants. Cell populations on porous Ta proliferate greater and faster, leading to the production of more calcium phosphate deposits than cells on roughened and smooth titanium surfaces, revealing a potential enhanced capacity for osseointegration.
Collapse
Affiliation(s)
- Sofia Piglionico
- Laboratory Bioengineering Nanosciences LBN, University of Montpellier, 34193 Montpellier, France; (S.P.); (J.B.); (N.F.); (M.R.); (P.B.)
- Faculty of Dentistry, National University of Cuyo, Mendoza M5500, Argentina
| | - Julie Bousquet
- Laboratory Bioengineering Nanosciences LBN, University of Montpellier, 34193 Montpellier, France; (S.P.); (J.B.); (N.F.); (M.R.); (P.B.)
| | - Naveen Fatima
- Laboratory Bioengineering Nanosciences LBN, University of Montpellier, 34193 Montpellier, France; (S.P.); (J.B.); (N.F.); (M.R.); (P.B.)
| | - Matthieu Renaud
- Laboratory Bioengineering Nanosciences LBN, University of Montpellier, 34193 Montpellier, France; (S.P.); (J.B.); (N.F.); (M.R.); (P.B.)
| | - Pierre-Yves Collart-Dutilleul
- Laboratory Bioengineering Nanosciences LBN, University of Montpellier, 34193 Montpellier, France; (S.P.); (J.B.); (N.F.); (M.R.); (P.B.)
- CSERD, CHU de Montpellier, 34193 Montpellier, France
| | - Philippe Bousquet
- Laboratory Bioengineering Nanosciences LBN, University of Montpellier, 34193 Montpellier, France; (S.P.); (J.B.); (N.F.); (M.R.); (P.B.)
- CSERD, CHU de Montpellier, 34193 Montpellier, France
| |
Collapse
|
19
|
Enhancement of Bone Ingrowth into a Porous Titanium Structure to Improve Osseointegration of Dental Implants: A Pilot Study in the Canine Model. MATERIALS 2020; 13:ma13143061. [PMID: 32650581 PMCID: PMC7412235 DOI: 10.3390/ma13143061] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/06/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022]
Abstract
A porous titanium structure was suggested to improve implant stability in the early healing period or in poor bone quality. This study investigated the effect of a porous structure on the osseointegration of dental implants. A total of 28 implants (14 implants in each group) were placed in the posterior mandibles of four beagle dogs at 3 months after extraction. The control group included machined surface implants with an external implant–abutment connection, whereas test group implants had a porous titanium structure added to the apical portion. Resonance frequency analysis (RFA); removal torque values (RTV); and surface topographic and histometric parameters including bone-to-implant contact length and ratio, inter-thread bone area and ratio in total, and the coronal and apical parts of the implants were measured after 4 weeks of healing. RTV showed a significant difference between the groups after 4 weeks of healing (p = 0.032), whereas no difference was observed in RFA. In the test group, surface topography showed bone tissue integrated into the porous structures. In the apical part of the test group, all the histometric parameters exhibited significant increases compared to the control group. Within the limitations of this study, enhanced bone growth into the porous structure was achieved, which consequently improved osseointegration of the implant.
Collapse
|
20
|
The progress on physicochemical properties and biocompatibility of tantalum-based metal bone implants. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2480-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
21
|
Biomechanical analysis of the osseointegration of porous tantalum implants. J Prosthet Dent 2019; 123:811-820. [PMID: 31703918 DOI: 10.1016/j.prosdent.2019.09.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 11/24/2022]
Abstract
STATEMENT OF PROBLEM Although implants containing porous tantalum undergo osseointegration, whether this material significantly alters new bone formation and improves implant stability during healing in comparison to titanium is unclear. PURPOSE The purpose of this in vivo study was to determine the influence of the inclusion of porous tantalum into a dental implant on the biomechanical properties of the bone-implant interface and peri-implant bone which may contribute to secondary implant stability. MATERIAL AND METHODS Threaded titanium implants with a porous tantalum midsection (Trabecular Metal Dental Implant; Zimmer Biomet) or without (Tapered Screw-Vent; Zimmer Biomet) were placed in rabbit tibiae and allowed to heal for 4, 8, or 12 weeks. The implants were evaluated by resonance frequency analysis and removed with surrounding bone for nanoindentation testing. Two-way ANOVA was used to determine the impact of implant type, bone region, and time on the outcomes implant stability quotient (ISQ), hardness, and elastic modulus (α=.05). RESULTS Resonance frequency analysis found no significant difference in ISQ values between implant types at 4, 8, or 12 weeks, and ISQ values did not increase for either implant over time. Nanoindentation showed no significant differences in hardness or elastic modulus in newly formed bone adjacent to either implant type at any time point. CONCLUSIONS The stiffness of the bone-implant interface was similar for threaded titanium implants with or without porous tantalum when placed in the rabbit tibia and allowed to heal for at least 4 weeks. The new peri-implant bone adjacent to dental implants containing porous tantalum showed no difference in nanomechanical properties to the new bone around implants comprised completely of threaded titanium at all healing time points.
Collapse
|