1
|
Alamo L, Cassiano FB, Bordini EAF, Stuani VT, Pacheco LE, Gallinari MDO, Souza Costa CA, Mondelli RFL, Soares DG. An organotypic model of oral mucosa cells for the biological assessment of 3D printed resins for interim restorations. J Prosthet Dent 2024; 132:251-259. [PMID: 35864023 DOI: 10.1016/j.prosdent.2022.04.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 10/17/2022]
Abstract
STATEMENT OF PROBLEM Three-dimensionally (3D) printed resins have become popular as a new class of materials for making interim restorations. However, little is known about how the fabrication parameters can influence biological compatibility with oral tissues. PURPOSE The purpose of this in vitro study was to evaluate the effect of the postpolymerization time on the cytotoxicity of resins for printing interim restorations by using a 3D organotypic model of the oral mucosa. MATERIAL AND METHODS Cylindrical specimens were prepared with conventional acrylic resin (AR), computer-aided design and computer-aided manufacture (CAD-CAM) resin (CC), composite resin (CR), and 2 resins for 3D printing (3DP) marketed as being biocompatible. The 3DPs were submitted to postpolymerization in an ultraviolet (UV) light chamber for 1, 10, or 20 minutes (90 W, 405 nm). Standard specimens of the materials were incubated for 1, 3, and 7 days in close contact with an organotypic model of keratinocytes (NOK-Si) in coculture with gingival fibroblasts (HGF) in a 3D collagen matrix, or directly with 3D HGF cultures. Then, the viability (Live/Dead n=2) and metabolism (Alamar Blue n=6) of the cells were assessed. Spectral scanning of the culture medium was performed to detect released components (n=6) and assessed statistically with ANOVA and the Tukey post hoc test (α=.05). RESULTS Severe reduction of metabolism (>70%) and viability of keratinocytes occurred for 3DP resin postpolymerized for 1 minute in all periods of analysis in a time-dependent manner. The decrease in cell metabolism and viability was moderate for the 3D culture of HGFs in both experimental models, correlated with the intense presence of resin components in the culture medium. The resins postpolymerized for 10 and 20 minutes promoted a mild-moderate cytotoxic effect in the period of 1 day, similar to AR. However, recovery of cell viability occurred at the 7-day incubation period. The 3DP resins submitted to postpolymerization for 20 minutes showed a pattern similar to that of CR and CC at the end of the experiment. CONCLUSIONS The cytotoxic potential of the tested 3DP resins on oral mucosa cells was influenced by postprinting processing, which seemed to have been related with the quantity of residual components leached.
Collapse
Affiliation(s)
- Larissa Alamo
- MS student, Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (USP), São Paulo, Brazil
| | - Fernanda Balestrero Cassiano
- PhD student, Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (USP), São Paulo, Brazil
| | - Ester Alves Ferreira Bordini
- Postdoctoral Researcher, Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (USP), São Paulo, Brazil
| | - Vitor Toledo Stuani
- Postdoctoral Researcher, Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (USP), São Paulo, Brazil
| | - Leandro Edgar Pacheco
- PhD student, Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (USP), São Paulo, Brazil
| | - Marjorie de Oliveira Gallinari
- Postdoctoral Researcher, Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (USP), São Paulo, Brazil
| | - Carlos Alberto Souza Costa
- Full Professor, Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Rafael Francisco Lia Mondelli
- Full Professor, Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (USP), São Paulo, Brazil
| | - Diana Gabriela Soares
- Assistant Professor, Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (USP), São Paulo, Brazil.
| |
Collapse
|
2
|
Monou PK, Andriotis E, Tzetzis D, Tzimtzimis E, Panteris E, Andreadis D, Demiri E, Vizirianakis IS, Fatouros DG. Evaluation of 3D-Printed Solid Microneedles Coated with Electrosprayed Polymeric Nanoparticles for Simultaneous Delivery of Rivastigmine and N-Acetyl Cysteine. ACS APPLIED BIO MATERIALS 2024; 7:2710-2724. [PMID: 38591866 DOI: 10.1021/acsabm.3c00750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
In the current study, coated microneedle arrays were fabricated by means of digital light processing (DLP) printing. Three different shapes were designed, printed, and coated with PLGA particles containing two different actives. Rivastigmine (RIV) and N-acetyl-cysteine (NAC) were coformulated via electrohydrodynamic atomization (EHDA), and they were incorporated into the PLGA particles. The two actives are administered as a combined therapy for Alzheimer's disease. The printed arrays were evaluated regarding their ability to penetrate skin and their mechanical properties. Optical microscopy and scanning electron microscopy (SEM) were employed to further characterize the microneedle structure. Confocal laser microscopy studies were conducted to construct 3D imaging of the coating and to simulate the diffusion of the particles through artificial skin samples. Permeation studies were performed to investigate the transport of the drugs across human skin ex vivo. Subsequently, a series of tape strippings were performed in an attempt to examine the deposition of the APIs on and within the skin. Light microscopy and histological studies revealed no drastic effects on the membrane integrity of the stratum corneum. Finally, the cytocompatibility of the microneedles and their precursors was evaluated by measuring cell viability (MTT assay and live/dead staining) and membrane damages followed by LDH release.
Collapse
Affiliation(s)
- Paraskevi Kyriaki Monou
- Department of Pharmacy, Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece
| | - Eleftherios Andriotis
- Department of Pharmacy, Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Dimitrios Tzetzis
- Digital Manufacturing and Materials Characterization Laboratory, School of Science and Technology, International Hellenic University, 57001 Thessaloniki, Greece
| | - Emmanouil Tzimtzimis
- Digital Manufacturing and Materials Characterization Laboratory, School of Science and Technology, International Hellenic University, 57001 Thessaloniki, Greece
| | - Emmanuel Panteris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Dimitrios Andreadis
- Department of Oral Medicine/Pathology, School of Dentistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Efterpi Demiri
- Clinic of Plastic and Reconstructive Surgery, Papageorgiou General Hospital, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis S Vizirianakis
- Department of Pharmacy, Laboratory of Pharmacology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Dimitrios G Fatouros
- Department of Pharmacy, Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece
| |
Collapse
|
3
|
Wei X, Pan Y, Wang M, Wang Y, Lin H, Jiang L, Lin D, Cheng H. Comparative analysis of leaching residual monomer and biological effects of four types of conventional and CAD/CAM dental polymers: an in vitro study. Clin Oral Investig 2022; 26:2887-2898. [PMID: 35083585 DOI: 10.1007/s00784-021-04271-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/02/2021] [Indexed: 01/25/2023]
Abstract
OBJECTIVES The objective of this study is to investigate leaching residual monomer and biological effects of four types of conventional and computer-aided design/computer-aided manufacturing (CAD/CAM) dental polymers on human gingival fibroblasts (HGFs). MATERIALS AND METHODS A total of 540 disk-shaped specimens were fabricated from four different materials (n=135 per group): compression-molding polymethylmethacrylate (PMMA) (conventional denture polymer), CAD/CAM PMMA (CAD/CAM denture polymer), bis-acrylic composite resin (conventional temporary polymer), and CAD/CAM PMMA (CAD/CAM temporary polymer). Specimens were eluted in cell culture medium for 72 h at 37°C, and the residual monomer in eluates subsequently was measured by high-performance liquid chromatography (HPLC). The biological effects of material eluates on HGFs were analyzed by CCK-8 assay, flow cytometry, real-time quantitative PCR, Western blotting, and enzyme-linked immunosorbent assay (ELISA) to identify cell death patterns and its biological mechanism. RESULTS Methyl methacrylate (MMA) was detected only in compression-molding PMMA, and by-products were detected in bis-acrylic composite resin. The cell proliferation of CAD/CAM denture polymer or CAD/CAM temporary polymer was greater than that of compression-molding PMMA or bis-acrylic composite resin at 72 h in culture. No apoptosis and necrosis were detected in CAD/CAM dental polymers. Apoptosis was detected only in bis-acrylic composite resin and further confirmed by the upregulation of Bax and cleaved Caspase-3, as well as the downregulation of Bcl-2 gene. And no significant variation in inflammatory cytokines secretion was observed in all materials. CONCLUSIONS CAD/CAM dental polymers (including temporary and denture polymers) have favorable biocompatibility due to lower residual monomer, which provides scientific evidence to the controversy of biocompatibility of conventional and CAD/CAM dental polymers. CLINICAL RELEVANCE The use of CAD/CAM dental polymers is recommended in the fabrication of temporary restorations and dentures due to their favorable biocompatibility.
Collapse
Affiliation(s)
- Xia Wei
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350004, Fujian, China
| | - Yu Pan
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350004, Fujian, China
| | - Mingjun Wang
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350004, Fujian, China
| | - Yinghui Wang
- Institute of Stomatology and Research Center of Dental Esthetics and Biomechanics, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou, 350002, Fujian, China
| | - Honglei Lin
- Institute of Stomatology and Research Center of Dental Esthetics and Biomechanics, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou, 350002, Fujian, China
| | - Lei Jiang
- Institute of Stomatology and Research Center of Dental Esthetics and Biomechanics, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou, 350002, Fujian, China
| | - Donghong Lin
- Department of Clinical Laboratory, School of Medical Technology and Engineering, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350004, Fujian, China.
| | - Hui Cheng
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350004, Fujian, China.
| |
Collapse
|
4
|
Pantea M, Totan AR, Imre M, Petre AE, Țâncu AMC, Tudos C, Farcașiu AT, Butucescu M, Spînu TC. Biochemical Interaction between Materials Used for Interim Prosthetic Restorations and Saliva. MATERIALS (BASEL, SWITZERLAND) 2021; 15:226. [PMID: 35009373 PMCID: PMC8746092 DOI: 10.3390/ma15010226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/17/2021] [Accepted: 12/24/2021] [Indexed: 11/23/2022]
Abstract
The purpose of this study was to analyze the oxidative stress level and inflammatory status of saliva in the presence of certain materials used for obtaining interim prosthetic restorations. Four types of interim resin materials were investigated: a pressure/heat-cured acrylic resin (Superpont C+B, SpofaDental a.s Czech Republic, /KaVo Kerr Group), a milled resin (Telio CAD polymethyl methacrylate, Ivoclar Vivadent AG, Liechtenstein), a 3D printed resin (NextDent C&B MFH, NextDent by 3D Systems, the Netherlands), and a pressure/heat-cured micro-filled indirect composite resin (SR Chromasit, Ivoclar Vivadent AG, Liechtenstein). The disk-shaped resin samples (30 mm diameter, 2 mm high) were obtained in line with the producers' recommendations. The resulting resin specimens were incubated with saliva samples collected from twenty healthy volunteers. In order to analyze the antioxidant activity of the tested materials, certain salivary parameters were evaluated before and after incubation: uric acid, gamma glutamyl transferase (GGT), oxidative stress responsive kinase-1 (OXSR-1), and total antioxidant capacity (TAC); the salivary levels of tumor necrosis factor (TNFα) and interleukin-6 (IL-6) (inflammatory markers) were measured as well. The obtained results are overall favorable, showing that the tested materials did not cause significant changes in the salivary oxidative stress level and did not influence the inflammatory salivary status.
Collapse
Affiliation(s)
- Mihaela Pantea
- Department of Fixed Prosthodontics and Occlusology, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020221 Bucharest, Romania; (M.P.); (A.E.P.); (T.C.S.)
| | - Alexandra Ripszky Totan
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania;
| | - Marina Imre
- Department of Complete Denture, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020221 Bucharest, Romania;
| | - Alexandru Eugen Petre
- Department of Fixed Prosthodontics and Occlusology, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020221 Bucharest, Romania; (M.P.); (A.E.P.); (T.C.S.)
| | - Ana Maria Cristina Țâncu
- Department of Complete Denture, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020221 Bucharest, Romania;
| | - Cristian Tudos
- Resident in General Dentistry, Emergency Hospital of Saint Pantelimon, 021661 Bucharest, Romania;
| | - Alexandru Titus Farcașiu
- Department of Removable Prosthodontics, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020221 Bucharest, Romania;
| | - Mihai Butucescu
- Department of Operative Dentistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020221 Bucharest, Romania
| | - Tudor Claudiu Spînu
- Department of Fixed Prosthodontics and Occlusology, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020221 Bucharest, Romania; (M.P.); (A.E.P.); (T.C.S.)
| |
Collapse
|
5
|
Comparison of Fracture Resistance in Thermal and Self-Curing Acrylic Resins-An In Vitro Study. Polymers (Basel) 2021; 13:polym13081234. [PMID: 33920377 PMCID: PMC8069947 DOI: 10.3390/polym13081234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 02/03/2023] Open
Abstract
Thermal and self-curing acrylic resins are frequently and versatilely used in dental medicine since they are biocompatible, have no flavor or odor, have satisfactory thermal qualities and polishing capacity, and are easy and fast. Thus, given their widespread use, their fracture resistance behavior is especially important. In this research work, we comparatively analyzed the fracture resistance capacity of thermo and self-curing acrylic resins in vitro. Materials and Methods: Five prosthesis bases were created for each of the following acrylic resins: Lucitone®, ProBase®, and Megacryl®, which were submitted to different forces through the use of the CS® Dental Testing Machine, usually mobilized in the context of fatigue tests. To this end, a point was defined in the center of the anterior edge of the aforementioned acrylic resin bases, for which the peak tended until a fracture occurred. Thermosetting resins were, on average, more resistant to fracture than self-curable resins, although the difference was not statistically significant. The thermosetting resins of the Lucitone® and Probase® brands demonstrated behavior that was more resistant to fracture than the self-curing homologues, although the difference was not statistically significant. Thermosetting resins tended to be, on average, more resistant to fracture and exhibited the maximum values for impact strength, compressive strength, tensile strength, hardness, and dimensional accuracy than self-curing resins, regardless of brand.
Collapse
|
6
|
Giti R, Dabiri S, Motamedifar M, Derafshi R. Surface roughness, plaque accumulation, and cytotoxicity of provisional restorative materials fabricated by different methods. PLoS One 2021; 16:e0249551. [PMID: 33819292 PMCID: PMC8021148 DOI: 10.1371/journal.pone.0249551] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 03/21/2021] [Indexed: 11/18/2022] Open
Abstract
Fabricating method may affect the surface properties and biological characteristics of provisional restorations. This study aimed to evaluate the surface roughness, plaque accumulation, and cytotoxicity of provisional restorative materials fabricated by the conventional, digital subtractive and additive methods. Sixty-six bar-shaped specimens (2×4×10 mm) were fabricated by using provisional restorative materials through the conventional, digital subtractive and additive methods (n = 22 per group). Ten specimens of each group were used for surface roughness and plaque accumulation tests, 10 specimens for cytotoxicity assay, and 2 specimens of each group were used for qualitative assessment by scanning electron microscopy. The Ra (roughness average) and Rz (roughness height) values (μm) were measured via profilometer, and visual inspection was performed through scanning electron microscopy. Plaque accumulation of Streptococcus mutans and cytotoxicity on human gingival fibroblast-like cells were evaluated. The data were analyzed with one-way ANOVA and Tukey's post hoc test (α = 0.05). Surface roughness, biofilm accumulation and cytotoxicity were significantly different among the groups (P<0.05). Surface roughness was significantly higher in the conventional group (P<0.05); however, the two other groups were not significantly different (P>0.05). Significantly higher bacterial attachment was observed in the additive group than the subtractive (P<0.001) and conventional group (P = 0.025); while, the conventional and subtractive groups were statistically similar (P = 0.111). Regarding the cytotoxicity, the additive group had significantly higher cell viability than the subtractive group (P = 0.006); yet, the conventional group was not significantly different from the additive (P = 0.354) and subtractive group (P = 0.101). Surface roughness was the highest in conventionally cured group; but, the additive group had the most plaque accumulation and lowest cytotoxicity.
Collapse
Affiliation(s)
- Rashin Giti
- Department of Prosthodontics, Biomaterials Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Shima Dabiri
- Department of Prosthodontics, Biomaterials Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Mohammad Motamedifar
- Department of Bacteriology and Virology, Shiraz HIV/AIDS Research Center, Institute of Health, Medical School, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Reza Derafshi
- Department of Prosthodontics, Biomaterials Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
- * E-mail:
| |
Collapse
|
7
|
Raszewski Z. Effect of Acrylic Polymerization on Cytotoxicity, Residual Monomer Content and Mechanical Properties. DENTAL HYPOTHESES 2020. [DOI: 10.4103/denthyp.denthyp_85_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|