1
|
Quadros LCS, Silva-Lovato CH, Dotto MER, Ribeiro JS, Soto AF, Duque TM, Cuevas-Suárez CE, Coelho SM, Badaró MM. In situ study of the effect of endogenous and exogenous agents on color stability, hardness, and surface roughness of an elastomer for facial prostheses. J Prosthodont 2024. [PMID: 38812246 DOI: 10.1111/jopr.13876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/13/2024] [Indexed: 05/31/2024] Open
Abstract
PURPOSE To evaluate in situ the influence of sweat, oil, sunscreen, and disinfectant solution on the color stability, hardness, and roughness of elastomer for facial prostheses. MATERIALS AND METHODS Standardized and intrinsically pigmented specimens remained in contact with human skin from the same person for 30 days, considering exposures (n = 36 per group), absent of exposition (Control, C); sweat and oiliness contact (SO); sweat and oiliness associated with sunscreen (SOS); 0.12% chlorhexidine digluconate immersion (CD0.12%); and all agents exposed (SOSCD). The main variables were color change (CIELab and National Standard Bureau system, NBS), Shore A hardness, and surface roughness, measured at baseline and 30 days. Qualitative analyses were performed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The data were analyzed by Kruskal-Wallis tests (color) and two-way ANOVA (hardness and roughness) with Sidak post-test (α = 0.05). RESULTS CD0.12% (1.54 ± 0.49) and SOSCD (2.10 ± 1.03) had similar effects and caused the smallest color changes, considered mild and noticeable (NBS), respectively. SOS promoted the greatest color change (6.99 ± 1.43, NBS: large) and hardness (17.97 ± 0.56); SOS promoted intermediate roughness (3.48 ± 1.05) between SOSCD (2.25 ± 0.53), and two similar groups: C (4.46 ± 0.95), and CD0.12% (4.39 ± 1.26). The qualitative analysis showed an irregular, dense, dry, and whitish layer on the surface of the specimens exposed to sunscreen, which was reduced when in contact with 0.12% chlorhexidine digluconate. CONCLUSIONS Endogenous and exogenous factors are capable of altering elastomer properties. The 0.12% chlorhexidine digluconate minimized the changes caused by sweat, oil, and sunscreen.
Collapse
Affiliation(s)
| | - Cláudia Helena Silva-Lovato
- Department of Dental Materials, Prosthodontics, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Marta Elisa Rosso Dotto
- Department of Physics, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Juliana Silva Ribeiro
- Department of Dentistry, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Artur Ferronato Soto
- Department of Dentistry, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Thais Mageste Duque
- Department of Dentistry, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Carlos Enrique Cuevas-Suárez
- Dental Materials Laboratory, Academic Area of Dentistry, Autonomous University of Hidalgo State, Pachuca, Mexico
| | - Sérgio Murilo Coelho
- Department of Dentistry, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | | |
Collapse
|
2
|
Ribeiro IS, Muniz IPR, Galantini MPL, Gonçalves CV, Lima PHB, Silva ES, Silva NR, Rosa FCS, Rosa LP, Costa DJ, Amaral JG, da Silva RAA. Characterization of Brazilian green propolis as a photosensitizer for LED light-induced antimicrobial photodynamic therapy (aPDT) against methicillin-resistant Staphylococcus aureus (MRSA) and Vancomycin-intermediate Staphylococcus aureus (VISA). Photochem Photobiol Sci 2023; 22:2877-2890. [PMID: 37923909 DOI: 10.1007/s43630-023-00495-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/11/2023] [Indexed: 11/06/2023]
Abstract
Staphylococcus aureus is the primary cause of skin and soft tissue infections. Its significant adaptability and the development of resistance are the main factors linked to its spread and the challenges in its treatment. Antimicrobial photodynamic therapy emerges as a promising alternative. This work aimed to characterize the antimicrobial photodynamic activity of Brazilian green propolis, along with the key bioactive compounds associated with this activity. Initially, a scanning spectrometry was conducted to assess the wavelengths with the potential to activate green propolis. Subsequently, reference strains of methicillin-resistant Staphylococcus aureus (MRSA ATCC 43300) and vancomycin-intermediate Staphylococcus aureus (VISA ATCC 700699) were exposed to varying concentrations of green propolis: 1 µg/mL, 5 µg/mL, 10 µg/mL, 50 µg /mL and 100 µg/mL and were stimulated by blue, green or red LED light. Finally, high-performance liquid chromatography coupled with a diode array detector and tandem mass spectrometry techniques, along with classic molecular networking analysis, was performed to identify potential bioactive molecules with photodynamic activity. Brazilian green propolis exhibits a pronounced absorption peak and heightened photo-responsiveness when exposed to blue light within the range of 400 nm and 450 nm. This characteristic reveals noteworthy significant photodynamic activity against MRSA and VISA at concentrations from 5 µg/mL. Furthermore, the propolis comprises compounds like curcumin and other flavonoids sourced from flavone, which possess the potential for photodynamic activity and other antimicrobial functions. Consequently, Brazilian green propolis holds promise as an excellent bactericidal agent, displaying a synergistic antibacterial property enhanced by light-induced photodynamic effects.
Collapse
Affiliation(s)
- Israel Souza Ribeiro
- Universidade Federal da Bahia, Campus Anísio Teixeira-Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, CEP: 45.029-094, Vitória da Conquista, Bahia, Brasil
- Universidade Federal Do Sul da Bahia, Campus Paulo Freire, 250 Praça Joana Angélica, Bairro São José, 45.988-058, Teixeira de Freitas, Bahia, Brasil
| | - Igor Pereira Ribeiro Muniz
- Universidade Federal da Bahia, Campus Anísio Teixeira-Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, CEP: 45.029-094, Vitória da Conquista, Bahia, Brasil
| | - Maria Poliana Leite Galantini
- Universidade Federal da Bahia, Campus Anísio Teixeira-Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, CEP: 45.029-094, Vitória da Conquista, Bahia, Brasil
| | - Caroline Vieira Gonçalves
- Universidade Federal da Bahia, Campus Anísio Teixeira-Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, CEP: 45.029-094, Vitória da Conquista, Bahia, Brasil
| | - Paulo Henrique Bispo Lima
- Universidade Federal da Bahia, Campus Anísio Teixeira-Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, CEP: 45.029-094, Vitória da Conquista, Bahia, Brasil
| | - Emely Soares Silva
- Universidade Federal da Bahia, Campus Anísio Teixeira-Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, CEP: 45.029-094, Vitória da Conquista, Bahia, Brasil
| | - Nathalia Rosa Silva
- Universidade Federal da Bahia, Campus Anísio Teixeira-Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, CEP: 45.029-094, Vitória da Conquista, Bahia, Brasil
| | - Francine Cristina Silva Rosa
- Universidade Federal da Bahia, Campus Anísio Teixeira-Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, CEP: 45.029-094, Vitória da Conquista, Bahia, Brasil
| | - Luciano Pereira Rosa
- Universidade Federal da Bahia, Campus Anísio Teixeira-Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, CEP: 45.029-094, Vitória da Conquista, Bahia, Brasil
| | - Dirceu Joaquim Costa
- Universidade Estadual Do Sudoeste da Bahia, Campus Vitória da Conquista, Av. Edmundo Silveira Flores, 27-43-Lot, Alto da Boa Vista, CEP: 45029-066, Vitória da Conquista, Bahia, Brasil
| | - Juliano Geraldo Amaral
- Universidade Federal da Bahia, Campus Anísio Teixeira-Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, CEP: 45.029-094, Vitória da Conquista, Bahia, Brasil
| | - Robson Amaro Augusto da Silva
- Universidade Federal da Bahia, Campus Anísio Teixeira-Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, CEP: 45.029-094, Vitória da Conquista, Bahia, Brasil.
| |
Collapse
|
3
|
Peter M, Kanathila H, Bembalagi M, Santhosh VN, Vas R, Patil S, Roy TR, Monsy M, Gopu BN, Chindak S. An In Vitro Comparative Evaluation of Conventional and Novel Thymus vulgaris Derived Herbal Disinfectant Solutions against Pathogenic Biofilm on Maxillofacial Silicones and Its Impact on Color Stability. J Contemp Dent Pract 2023; 24:967-973. [PMID: 38317394 DOI: 10.5005/jp-journals-10024-3602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
AIM This study aims to assess the antimicrobial efficacy and impact on color stability of Thymus (T.) vulgaris solution compared to conventional disinfectants on maxillofacial silicones. MATERIALS AND METHODS Various solutions were evaluated, including T. vulgaris solutions at 5 and 10%, saline (control), chlorhexidine (4%), and soap water. The substrates were MDX4-4210 silicone elastomers, and the microorganisms tested were Candida (C.) albicans and Staphylococcus (S.) aureus. The viability of microorganisms was determined through an 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) reduction assay, and color stability was measured using a spectrophotometer with X-Rite Europe software. Statistical analysis was performed using the Kruskal-Wallis test, Mann-Whitney U post hoc test, and Wilcoxon Signed Rank test. RESULTS Soap water demonstrated superior disinfectant action against both microorganisms, while T. vulgaris solutions at 5 and 10% exhibited comparable antimicrobial efficacy. Chlorhexidine and 10% T. vulgaris solution showed minimal color changes in the silicone material. In contrast, soap water and the 5% T. vulgaris solution resulted in clinically unacceptable color alterations. CONCLUSION This study underscores the potential of T. vulgaris as an herbal disinfectant for combating microbial biofilms on maxillofacial silicones, particularly at concentrations of 5 and 10%. The importance of maintaining color stability is emphasized, with Chlorhexidine and the 10% T. vulgaris solution demonstrating effective preservation of esthetics. These findings suggest the viability of considering T. vulgaris as an alternative disinfectant in clinical settings for maxillofacial silicone prostheses. CLINICAL SIGNIFICANCE Maxillofacial silicones are vital in restoring aesthetic features for individuals with facial trauma, congenital deformities, or post-surgical interventions. Yet, biofilm-related infections jeopardize their durability and visual integrity. Clinically, T. vulgaris signifies a potential advance in prosthodontic care, offering valuable insights for improving antimicrobial performance and aesthetic durability in maxillofacial prostheses. How to cite this article: Peter M, Kanathila H, Bembalagi M, et al. An In Vitro Comparative Evaluation of Conventional and Novel Thymus vulgaris Derived Herbal Disinfectant Solutions against Pathogenic Biofilm on Maxillofacial Silicones and Its Impact on Color Stability. J Contemp Dent Pract 2023;24(12):967-973.
Collapse
Affiliation(s)
- Meekha Peter
- Department of Prosthodontics, KLE Vishwanath Katti Institute of Dental Sciences & Hospital, KLE Academy of Higher Education and Research (KLE University), Belagavi, Karnataka, India, Orcid: https://orcid.org/0000-0001-7509-4070
| | - Hema Kanathila
- Department of Prosthodontics, KLE Vishwanath Katti Institute of Dental Sciences & Hospital, KLE Academy of Higher Education and Research (KLE University), Belagavi, Karnataka, India, Orcid: https://orcid.org/0000-0002-5876-1377
| | - Mahantesh Bembalagi
- Department of Public Health Dentistry, KLE Vishwanath Katti Institute of Dental Sciences & Hospital, KLE Academy of Higher Education and Research (KLE University), Belagavi, Karnataka, India, Orcid: https://orcid.org/0000-0002-2809-7313
| | - Varkey Nadakkavukaran Santhosh
- Department of Public Health Dentistry, Department of Prosthodontics, KLE Vishwanath Katti Institute of Dental Sciences & Hospital, KLE Academy of Higher Education and Research (KLE University), Belagavi, Karnataka, India, Phone: +91 9108858449, e-mail: , Orcid: https://orcid.org/0000-0001-9197-2646
| | - Rhea Vas
- Department of Public Health and Policy, London School of Hygiene and Tropical Medicine, London, United Kingdom, Orcid: https://orcid.org/0000-0003-4401-5696
| | - Suvidha Patil
- Department of Prosthodontics, KLE Vishwanath Katti Institute of Dental Sciences & Hospital, KLE Academy of Higher Education and Research (KLE University), Belagavi, Karnataka, India
| | - Treasa Richa Roy
- Department of Prosthodontics, KLE Vishwanath Katti Institute of Dental Sciences & Hospital, KLE Academy of Higher Education and Research (KLE University), Belagavi, Karnataka, India
| | - Mibin Monsy
- JSS Dental College and Hospital, Mysuru, India
| | | | - Shreya Chindak
- Department of Prosthodontics, KLE Vishwanath Katti Institute of Dental Sciences & Hospital, KLE Academy of Higher Education and Research (KLE University), Belagavi, Karnataka, India
| |
Collapse
|
4
|
Božić DD, Ćirković I, Milovanović J, Bufan B, Folić M, Savić Vujović K, Pavlović B, Jotić A. In Vitro Antibiofilm Effect of N-Acetyl-L-cysteine/Dry Propolis Extract Combination on Bacterial Pathogens Isolated from Upper Respiratory Tract Infections. Pharmaceuticals (Basel) 2023; 16:1604. [PMID: 38004469 PMCID: PMC10674846 DOI: 10.3390/ph16111604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Bacterial biofilms play an important role in the pathogenesis of chronic upper respiratory tract infections. In addition to conventional antimicrobial therapy, N-acetyl-L-cysteine (NAC) and propolis are dietary supplements that are often recommended as supportive therapy for upper respiratory tract infections. However, no data on the beneficial effect of their combination against bacterial biofilms can be found in the scientific literature. Therefore, the aim of our study was to investigate the in vitro effect of N-acetyl-L-cysteine (NAC) and dry propolis extract in fixed combinations (NAC/dry propolis extract fixed combination) on biofilm formation by bacterial species isolated from patients with chronic rhinosinusitis, chronic otitis media, and chronic adenoiditis. The prospective study included 48 adults with chronic rhinosinusitis, 29 adults with chronic otitis media, and 33 children with chronic adenoiditis. Bacteria were isolated from tissue samples obtained intraoperatively and identified using the MALDI-TOF Vitek MS System. The antimicrobial activity, synergism, and antibiofilm effect of NAC/dry propolis extract fixed combination were studied in vitro. A total of 116 different strains were isolated from the tissue samples, with staphylococci being the most frequently isolated in all patients (57.8%). MICs of the NAC/dry propolis extract fixed combination ranged from 1.25/0.125 to 20/2 mg NAC/mg propolis. A synergistic effect (FICI ≤ 0.5) was observed in 51.7% of strains. The majority of isolates from patients with chronic otitis media were moderate biofilm producers and in chronic adenoiditis they were weak biofilm producers, while the same number of isolates in patients with chronic rhinosinusitis were weak and moderate biofilm producers. Subinhibitory concentrations of the NAC/propolis combination ranging from 0.625-0.156 mg/mL to 10-2.5 mg/mL of NAC combined with 0.062-0.016 mg/mL to 1-0.25 mg/mL of propolis inhibited biofilm formation in all bacterial strains. Suprainhibitory concentrations ranging from 2.5-10 mg/mL to 40-160 mg/mL of NAC in combination with 0.25-1 mg/mL to 4-16 mg/mL of propolis completely eradicated the biofilm. In conclusion, the fixed combination of NAC and dry propolis extract has a synergistic effect on all stages of biofilm formation and eradication of the formed biofilm in bacteria isolated from upper respiratory tract infections.
Collapse
Affiliation(s)
- Dragana D. Božić
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia;
| | - Ivana Ćirković
- Institute of Microbiology and Immunology, Dr Subotića 1, 11000 Belgrade, Serbia;
- Faculty of Medicine, University of Belgrade, Dr Subotića 8, 11000 Belgrade, Serbia; (J.M.); (M.F.); (K.S.V.); (B.P.); (A.J.)
| | - Jovica Milovanović
- Faculty of Medicine, University of Belgrade, Dr Subotića 8, 11000 Belgrade, Serbia; (J.M.); (M.F.); (K.S.V.); (B.P.); (A.J.)
- Clinic for Otorhinolaryngology and Maxillofacial Surgery, University Clinical Center of Serbia, Pasterova 2, 11000 Belgrade, Serbia
| | - Biljana Bufan
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia;
| | - Miljan Folić
- Faculty of Medicine, University of Belgrade, Dr Subotića 8, 11000 Belgrade, Serbia; (J.M.); (M.F.); (K.S.V.); (B.P.); (A.J.)
- Clinic for Otorhinolaryngology and Maxillofacial Surgery, University Clinical Center of Serbia, Pasterova 2, 11000 Belgrade, Serbia
| | - Katarina Savić Vujović
- Faculty of Medicine, University of Belgrade, Dr Subotića 8, 11000 Belgrade, Serbia; (J.M.); (M.F.); (K.S.V.); (B.P.); (A.J.)
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Dr Subotica 1, 11129 Belgrade, Serbia
| | - Bojan Pavlović
- Faculty of Medicine, University of Belgrade, Dr Subotića 8, 11000 Belgrade, Serbia; (J.M.); (M.F.); (K.S.V.); (B.P.); (A.J.)
- Clinic for Otorhinolaryngology and Maxillofacial Surgery, University Clinical Center of Serbia, Pasterova 2, 11000 Belgrade, Serbia
| | - Ana Jotić
- Faculty of Medicine, University of Belgrade, Dr Subotića 8, 11000 Belgrade, Serbia; (J.M.); (M.F.); (K.S.V.); (B.P.); (A.J.)
- Clinic for Otorhinolaryngology and Maxillofacial Surgery, University Clinical Center of Serbia, Pasterova 2, 11000 Belgrade, Serbia
| |
Collapse
|
5
|
Kareem YM, Hamad TI. Assessment of the antibacterial effect of Barium Titanate nanoparticles against Staphylococcus epidermidis adhesion after addition to maxillofacial silicone. F1000Res 2023; 12:385. [PMID: 37663198 PMCID: PMC10468664 DOI: 10.12688/f1000research.132727.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 09/05/2023] Open
Abstract
Background: Maxillofacial silicones are the most popular and acceptable material for making maxillofacial prostheses, but they are not perfect in every sense. To enhance their effectiveness, more improvements to their properties are required, such as their antimicrobial efficiency. This study assess the antibacterial effect of barium titanate nanoparticles in various percentages against staphylococcus epidermidis biofilm adhesion after addition to maxillofacial silicone. Methods: Barium titanate nanoparticles were added into VST-50 platinum silicone elastomer in four weight percentages (0.25wt%, 0.5wt%, 0.75wt% and 1wt%). 50 specimens were prepared and categorized into five groups; one control group and four experimental groups. All conducted data was statistically analyzed using (one-way ANOVA) analysis of variance, and Games-Howell multiple comparison test (significant level at p < 0.05). Shapiro-Wilk and Levene's tests were used, respectively, to evaluate the normal distribution and homogeneity of the data. Result: One-way ANOVA test revealed a highly significant difference between all groups, and Games-Howell test revealed a highly significant difference between the control group and the four experimental groups. The 0.25wt% and 0.5wt% groups revealed a highly significant difference between them and with the (0.75%wt and 0.1%wt) groups. While the 0.75wt% group revealed a significant difference with 1wt% group. Conclusions: The addition of barium titanate to VST-50 maxillofacial silicone enhanced the antibacterial activity of silicon against Staphylococcus epidermidis, and this activity seems to be concentration dependent. FTIR analysis demonstrated no chemical interaction between the Barium Titanate and the VST-50 maxillofacial silicone elastomer. SEM pictures show that the barium titanate nanopowder was effectively dispersed inside the maxillofacial silicone matrix.
Collapse
Affiliation(s)
- Yasir Mohammed Kareem
- B.D.S. Department of Prosthodontic, College of Dentistry, University of Baghdad, Baghdad, Baghdad Governorate, Iraq
| | - Thekra Ismael Hamad
- B.D.S., M.Sc., Ph.D., Prof. Department of Prosthodontic, College of Dentistry, University of Baghdad, Baghdad, Baghdad Governorate, Iraq
| |
Collapse
|
6
|
Bouchelaghem S, Das S, Naorem RS, Czuni L, Papp G, Kocsis M. Evaluation of Total Phenolic and Flavonoid Contents, Antibacterial and Antibiofilm Activities of Hungarian Propolis Ethanolic Extract against Staphylococcus aureus. Molecules 2022; 27:574. [PMID: 35056886 PMCID: PMC8782033 DOI: 10.3390/molecules27020574] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 11/24/2022] Open
Abstract
Propolis is a natural bee product that is widely used in folk medicine. This study aimed to evaluate the antimicrobial and antibiofilm activities of ethanolic extract of propolis (EEP) on methicillin-resistant and sensitive Staphylococcus aureus (MRSA and MSSA). Propolis samples were collected from six regions in Hungary. The minimum inhibitory concentrations (MIC) values and the interaction of EEP-antibiotics were evaluated by the broth microdilution and the chequerboard broth microdilution methods, respectively. The effect of EEP on biofilm formation and eradication was estimated by crystal violet assay. Resazurin/propidium iodide dyes were applied for simultaneous quantification of cellular metabolic activities and dead cells in mature biofilms. The EEP1 sample showed the highest phenolic and flavonoid contents. The EEP1 successfully prevented the growth of planktonic cells of S. aureus (MIC value = 50 µg/mL). Synergistic interactions were shown after the co-exposition to EEP1 and vancomycin at 108 CFU/mL. The EEP1 effectively inhibited the biofilm formation and caused significant degradation of mature biofilms (50-200 µg/mL), as a consequence of the considerable decrement of metabolic activity. The EEP acts effectively as an antimicrobial and antibiofilm agent on S. aureus. Moreover, the simultaneous application of EEP and vancomycin could enhance their effect against MRSA infection.
Collapse
Affiliation(s)
- Sarra Bouchelaghem
- Department of General and Environmental Microbiology, Institute of Biology, University of Pécs, Ifjúság Str. 6, 7624 Pécs, Hungary; (S.B.); (R.S.N.); (L.C.); (G.P.)
| | - Sourav Das
- Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság Str. 13, 7624 Pécs, Hungary;
| | - Romen Singh Naorem
- Department of General and Environmental Microbiology, Institute of Biology, University of Pécs, Ifjúság Str. 6, 7624 Pécs, Hungary; (S.B.); (R.S.N.); (L.C.); (G.P.)
| | - Lilla Czuni
- Department of General and Environmental Microbiology, Institute of Biology, University of Pécs, Ifjúság Str. 6, 7624 Pécs, Hungary; (S.B.); (R.S.N.); (L.C.); (G.P.)
| | - Gábor Papp
- Department of General and Environmental Microbiology, Institute of Biology, University of Pécs, Ifjúság Str. 6, 7624 Pécs, Hungary; (S.B.); (R.S.N.); (L.C.); (G.P.)
| | - Marianna Kocsis
- Department of Plant Biology, Institute of Biology, University of Pécs, Ifjúság str. 6, 7624 Pécs, Hungary
| |
Collapse
|