1
|
Gao Y, Liu H, Zhang C, Su S, Chen Y, Chen X, Li Y, Shao Z, Zhang Y, Shao Q, Li J, Huang Z, Ma J, Gan J. Structural basis for guide RNA trimming by RNase D ribonuclease in Trypanosoma brucei. Nucleic Acids Res 2021; 49:568-583. [PMID: 33332555 PMCID: PMC7797062 DOI: 10.1093/nar/gkaa1197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 11/24/2020] [Indexed: 11/18/2022] Open
Abstract
Infection with kinetoplastid parasites, including Trypanosoma brucei (T. brucei), Trypanosoma cruzi (T. cruzi) and Leishmania can cause serious disease in humans. Like other kinetoplastid species, mRNAs of these disease-causing parasites must undergo posttranscriptional editing in order to be functional. mRNA editing is directed by gRNAs, a large group of small RNAs. Similar to mRNAs, gRNAs are also precisely regulated. In T. brucei, overexpression of RNase D ribonuclease (TbRND) leads to substantial reduction in the total gRNA population and subsequent inhibition of mRNA editing. However, the mechanisms regulating gRNA binding and cleavage by TbRND are not well defined. Here, we report a thorough structural study of TbRND. Besides Apo- and NMP-bound structures, we also solved one TbRND structure in complexed with single-stranded RNA. In combination with mutagenesis and in vitro cleavage assays, our structures indicated that TbRND follows the conserved two-cation-assisted mechanism in catalysis. TbRND is a unique RND member, as it contains a ZFD domain at its C-terminus. In addition to T. brucei, our studies also advanced our understanding on the potential gRNA degradation pathway in T. cruzi, Leishmania, as well for as other disease-associated parasites expressing ZFD-containing RNDs.
Collapse
Affiliation(s)
- Yanqing Gao
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Hehua Liu
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Chong Zhang
- College of Life Sciences, Sichuan University, Chengdu 610041, China
| | - Shichen Su
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yiqing Chen
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xi Chen
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yangyang Li
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Zhiwei Shao
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yixi Zhang
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qiyuan Shao
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jixi Li
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Zhen Huang
- College of Life Sciences, Sichuan University, Chengdu 610041, China
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jianhua Gan
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
2
|
Sarcar SN, Miller DL. A specific, promoter-independent activity of T7 RNA polymerase suggests a general model for DNA/RNA editing in single subunit RNA Polymerases. Sci Rep 2018; 8:13885. [PMID: 30224735 PMCID: PMC6141538 DOI: 10.1038/s41598-018-32231-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/31/2018] [Indexed: 01/23/2023] Open
Abstract
Insertional RNA editing has been observed and characterized in mitochondria of myxomycetes. The single subunit mitochondrial RNA polymerase adds nontemplated nucleotides co-transcriptionally to produce functional tRNA, rRNA and mRNAs with full genetic information. Addition of nontemplated nucleotides to the 3′ ends of RNAs have been observed in polymerases related to the mitochondrial RNA polymerase. This activity has been observed with T7 RNA polymerase (T7 RNAP), the well characterized prototype of the single subunit polymerases, as a nonspecific addition of nucleotides to the 3′ end of T7 RNAP transcripts in vitro. Here we show that this novel activity is an editing activity that can add specific ribonucleotides to 3′ ends of RNA or DNA when oligonucleotides, able to form intramolecular or intermolecular hairpin loops with recessed 3′ ends, are added to T7 RNA polymerase in the presence of at least one ribonucleotide triphosphate. Specific ribonucleotides are added to the recessed 3′ ends through Watson-Crick base pairing with the non-base paired nucleotide adjacent to the 3′ end. Optimization of this activity is obtained through alteration of the lengths of the 5′-extension, hairpin loop, and hairpin duplex. These properties define a T7 RNAP activity different from either transcriptional elongation or initiation.
Collapse
Affiliation(s)
- Subha Narayan Sarcar
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, 75083-0688, USA
| | - Dennis L Miller
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, 75083-0688, USA.
| |
Collapse
|
3
|
Read LK, Lukeš J, Hashimi H. Trypanosome RNA editing: the complexity of getting U in and taking U out. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 7:33-51. [PMID: 26522170 DOI: 10.1002/wrna.1313] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 09/21/2015] [Accepted: 09/22/2015] [Indexed: 12/27/2022]
Abstract
RNA editing, which adds sequence information to RNAs post-transcriptionally, is a widespread phenomenon throughout eukaryotes. The most complex form of this process is the uridine (U) insertion/deletion editing that occurs in the mitochondria of kinetoplastid protists. RNA editing in these flagellates is specified by trans-acting guide RNAs and entails the insertion of hundreds and deletion of dozens of U residues from mitochondrial RNAs to produce mature, translatable mRNAs. An emerging model indicates that the machinery required for trypanosome RNA editing is much more complicated than previously appreciated. A family of RNA editing core complexes (RECCs), which contain the required enzymes and several structural proteins, catalyze cycles of U insertion and deletion. A second, dynamic multiprotein complex, the Mitochondrial RNA Binding 1 (MRB1) complex, has recently come to light as another essential component of the trypanosome RNA editing machinery. MRB1 likely serves as the platform for kinetoplastid RNA editing, and plays critical roles in RNA utilization and editing processivity. MRB1 also appears to act as a hub for coordination of RNA editing with additional mitochondrial RNA processing events. This review highlights the current knowledge regarding the complex molecular machinery involved in trypanosome RNA editing. WIREs RNA 2016, 7:33-51. doi: 10.1002/wrna.1313 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Laurie K Read
- University at Buffalo School of Medicine, Buffalo, NY, USA
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.,Canadian Institute for Advanced Research, Toronto, ON, Canada
| | - Hassan Hashimi
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
4
|
Park YJ, Hol WGJ. Explorations of linked editosome domains leading to the discovery of motifs defining conserved pockets in editosome OB-folds. J Struct Biol 2012; 180:362-73. [PMID: 22902563 PMCID: PMC3483419 DOI: 10.1016/j.jsb.2012.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 07/26/2012] [Accepted: 07/31/2012] [Indexed: 01/07/2023]
Abstract
Trypanosomatids form a group of protozoa which contain parasites of human, animals and plants. Several of these species cause major human diseases, including Trypanosoma brucei which is the causative agent of human African trypanosomiasis, also called sleeping sickness. These organisms have many highly unusual features including a unique U-insertion/deletion RNA editing process in the single mitochondrion. A key multi-protein complex, called the ∼20S editosome, or editosome, carries out a cascade of essential RNA-modifying reactions and contains a core of 12 different proteins of which six are the interaction proteins A1 to A6. Each of these interaction proteins comprises a C-terminal OB-fold and the smallest interaction protein A6 has been shown to interact with four other editosome OB-folds. Here we report the results of a "linked OB-fold" approach to obtain a view of how multiple OB-folds might interact in the core of the editosome. Constructs with variants of linked domains in 25 expression and co-expression experiments resulted in 13 soluble multi-OB-fold complexes. In several instances, these complexes were more homogeneous in size than those obtained from corresponding unlinked OB-folds. The crystal structure of A3(OB) linked to A6 could be elucidated and confirmed the tight interaction between these two OB domains as seen also in our recent complex of A3(OB) and A6 with nanobodies. In the current crystal structure of A3(OB) linked to A6, hydrophobic side chains reside in well-defined pockets of neighboring OB-fold domains. When analyzing the available crystal structures of editosome OB-folds, it appears that in five instances "Pocket 1" of A1(OB), A3(OB) and A6 is occupied by a hydrophobic side chain from a neighboring protein. In these three different OB-folds, Pocket 1 is formed by two conserved sequence motifs and an invariant arginine. These pockets might play a key role in the assembly or mechanism of the editosome by interacting with hydrophobic side chains from other proteins.
Collapse
Affiliation(s)
- Young-Jun Park
- Biomolecular Structure Center, Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Wim G. J. Hol
- Biomolecular Structure Center, Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195, USA,To whom correspondence should be addressed. Telephone: +1 (206) 685 7044; Fax: +1 (206) 685 7002;
| |
Collapse
|
5
|
Park YJ, Budiarto T, Wu M, Pardon E, Steyaert J, Hol WGJ. The structure of the C-terminal domain of the largest editosome interaction protein and its role in promoting RNA binding by RNA-editing ligase L2. Nucleic Acids Res 2012; 40:6966-77. [PMID: 22561373 PMCID: PMC3413154 DOI: 10.1093/nar/gks369] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 04/10/2012] [Accepted: 04/11/2012] [Indexed: 12/20/2022] Open
Abstract
Trypanosomatids, such as the sleeping sickness parasite Trypanosoma brucei, contain a ∼ 20S RNA-editing complex, also called the editosome, which is required for U-insertion/deletion editing of mitochondrial mRNAs. The editosome contains a core of 12 proteins including the large interaction protein A1, the small interaction protein A6, and the editing RNA ligase L2. Using biochemical and structural data, we identified distinct domains of T. brucei A1 which specifically recognize A6 and L2. We provide evidence that an N-terminal domain of A1 interacts with the C-terminal domain of L2. The C-terminal domain of A1 appears to be required for the interaction with A6 and also plays a key role in RNA binding by the RNA-editing ligase L2 in trans. Three crystal structures of the C-terminal domain of A1 have been elucidated, each in complex with a nanobody as a crystallization chaperone. These structures permitted the identification of putative dsRNA recognition sites. Mutational analysis of conserved residues of the C-terminal domain identified Arg703, Arg731 and Arg734 as key requirements for RNA binding. The data show that the editing RNA ligase activity is modulated by a novel mechanism, i.e. by the trans-acting RNA binding C-terminal domain of A1.
Collapse
Affiliation(s)
- Young-Jun Park
- Biomolecular Structure Center, Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195, USA, Structural Biology Brussels, Vrije Universiteit Brussel and Department of Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Tanya Budiarto
- Biomolecular Structure Center, Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195, USA, Structural Biology Brussels, Vrije Universiteit Brussel and Department of Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Meiting Wu
- Biomolecular Structure Center, Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195, USA, Structural Biology Brussels, Vrije Universiteit Brussel and Department of Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Els Pardon
- Biomolecular Structure Center, Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195, USA, Structural Biology Brussels, Vrije Universiteit Brussel and Department of Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Jan Steyaert
- Biomolecular Structure Center, Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195, USA, Structural Biology Brussels, Vrije Universiteit Brussel and Department of Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Wim G. J. Hol
- Biomolecular Structure Center, Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195, USA, Structural Biology Brussels, Vrije Universiteit Brussel and Department of Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
6
|
Aphasizhev R, Aphasizheva I. Uridine insertion/deletion editing in trypanosomes: a playground for RNA-guided information transfer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2011; 2:669-85. [PMID: 21823228 PMCID: PMC3154072 DOI: 10.1002/wrna.82] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
RNA editing is a collective term referring to enzymatic processes that change RNA sequence apart from splicing, 5' capping or 3' extension. In this article, we focus on uridine insertion/deletion mRNA editing found exclusively in mitochondria of kinetoplastid protists. This type of editing corrects frameshifts, introduces start and stops codons, and often adds much of the coding sequence to create an open reading frame. The mitochondrial genome of trypanosomatids, the most extensively studied clade within the order Kinetoplastida, is composed of ∼50 maxicircles with limited coding capacity and thousands of minicircles. To produce functional mRNAs, a multitude of nuclear-encoded factors mediate interactions of maxicircle-encoded pre-mRNAs with a vast repertoire of minicircle-encoded guide RNAs. Editing reactions of mRNA cleavage, U-insertions or U-deletions, and ligation are catalyzed by the RNA editing core complex (RECC, the 20S editosome) while each step of this enzymatic cascade is directed by guide RNAs. These 50-60 nucleotide (nt) molecules are 3' uridylated by RET1 TUTase and stabilized via association with the gRNA binding complex (GRBC). Remarkably, the information transfer between maxicircle and minicircle transcriptomes does not rely on template-dependent polymerization of nucleic acids. Instead, intrinsic substrate specificities of key enzymes are largely responsible for the fidelity of editing. Conversely, the efficiency of editing is enhanced by assembling enzymes and RNA binding proteins into stable multiprotein complexes. WIREs RNA 2011 2 669-685 DOI: 10.1002/wrna.82 For further resources related to this article, please visit the WIREs website.
Collapse
MESH Headings
- Endonucleases/chemistry
- Endonucleases/genetics
- Endonucleases/metabolism
- Models, Biological
- Models, Molecular
- Protozoan Proteins/chemistry
- Protozoan Proteins/genetics
- Protozoan Proteins/metabolism
- RNA Editing/genetics
- RNA Editing/physiology
- RNA Helicases/chemistry
- RNA Helicases/genetics
- RNA Helicases/metabolism
- RNA, Guide, Kinetoplastida/genetics
- RNA, Guide, Kinetoplastida/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Protozoan/chemistry
- RNA, Protozoan/genetics
- RNA, Protozoan/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Trypanosoma/genetics
- Trypanosoma/metabolism
- Uridine/chemistry
Collapse
Affiliation(s)
- Ruslan Aphasizhev
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, USA.
| | | |
Collapse
|
7
|
Moshiri H, Acoca S, Kala S, Najafabadi HS, Hogues H, Purisima E, Salavati R. Naphthalene-based RNA editing inhibitor blocks RNA editing activities and editosome assembly in Trypanosoma brucei. J Biol Chem 2011; 286:14178-89. [PMID: 21378165 DOI: 10.1074/jbc.m110.199646] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
RNA editing, catalyzed by the multiprotein editosome complex, is an essential step for the expression of most mitochondrial genes in trypanosomatid pathogens. It has been shown previously that Trypanosoma brucei RNA editing ligase 1 (TbREL1), a core catalytic component of the editosome, is essential in the mammalian life stage of these parasitic pathogens. Because of the availability of its crystal structure and absence from human, the adenylylation domain of TbREL1 has recently become the focus of several studies for designing inhibitors that target its adenylylation pocket. Here, we have studied new and existing inhibitors of TbREL1 to better understand their mechanism of action. We found that these compounds are moderate to weak inhibitors of adenylylation of TbREL1 and in fact enhance adenylylation at higher concentrations of protein. Nevertheless, they can efficiently block deadenylylation of TbREL1 in the editosome and, consequently, result in inhibition of the ligation step of RNA editing. Further experiments directly showed that the studied compounds inhibit the interaction of the editosome with substrate RNA. This was supported by the observation that not only the ligation activity of TbREL1 but also the activities of other editosome proteins such as endoribonuclease, terminal RNA uridylyltransferase, and uridylate-specific exoribonuclease, all of which require the interaction of the editosome with the substrate RNA, are efficiently inhibited by these compounds. In addition, we found that these compounds can interfere with the integrity and/or assembly of the editosome complex, opening the exciting possibility of using them to study the mechanism of assembly of the editosome components.
Collapse
Affiliation(s)
- Houtan Moshiri
- Department of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec H3G1Y6, Canada
| | | | | | | | | | | | | |
Collapse
|
8
|
Knoop V. When you can't trust the DNA: RNA editing changes transcript sequences. Cell Mol Life Sci 2011; 68:567-86. [PMID: 20938709 PMCID: PMC11114842 DOI: 10.1007/s00018-010-0538-9] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 09/13/2010] [Accepted: 09/23/2010] [Indexed: 12/25/2022]
Abstract
RNA editing describes targeted sequence alterations in RNAs so that the transcript sequences differ from their DNA template. Since the original discovery of RNA editing in trypanosomes nearly 25 years ago more than a dozen such processes of nucleotide insertions, deletions, and exchanges have been identified in evolutionarily widely separated groups of the living world including plants, animals, fungi, protists, bacteria, and viruses. In many cases gene expression in mitochondria is affected, but RNA editing also takes place in chloroplasts and in nucleocytosolic genetic environments. While some RNA editing systems largely seem to repair defect genes (cryptogenes), others have obvious functions in modulating gene activities. The present review aims for an overview on the current states of research in the different systems of RNA editing by following a historic timeline along the respective original discoveries.
Collapse
Affiliation(s)
- Volker Knoop
- Abteilung Molekulare Evolution, Institut für Zelluläre und Molekulare Botanik (IZMB), Bonn, Germany.
| |
Collapse
|