1
|
Wada M, Ito K. Misdecoding of rare CGA codon by translation termination factors, eRF1/eRF3, suggests novel class of ribosome rescue pathway in S. cerevisiae. FEBS J 2019; 286:788-802. [PMID: 30471181 PMCID: PMC7379694 DOI: 10.1111/febs.14709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 10/24/2018] [Accepted: 11/22/2018] [Indexed: 12/13/2022]
Abstract
The CGA arginine codon is a rare codon in Saccharomyces cerevisiae. Thus, full-length mature protein synthesis from reporter genes with internal CGA codon repeats are markedly reduced, and the reporters, instead, produce short-sized polypeptides via an unknown mechanism. Considering the product size and similar properties between CGA sense and UGA stop codons, we hypothesized that eukaryote polypeptide-chain release factor complex eRF1/eRF3 catalyses polypeptide release at CGA repeats. Herein, we performed a series of analyses and report that the CGA codon can be, to a certain extent, decoded as a stop codon in yeast. This also raises an intriguing possibility that translation termination factors eRF1/eRF3 rescue ribosomes stalled at CGA codons, releasing premature polypeptides, and competing with canonical tRNAICG to the CGA codon. Our results suggest an alternative ribosomal rescue pathway in eukaryotes. The present results suggest that misdecoding of low efficient codons may play a novel role in global translation regulation in S. cerevisiae.
Collapse
Affiliation(s)
- Miki Wada
- Department of Computational Biology and Medical SciencesGraduate School of Frontier SciencesThe University of TokyoKashiwa‐cityJapan
- Technical officeThe Institute of Medical ScienceThe University of TokyoMinato‐kuJapan
| | - Koichi Ito
- Department of Computational Biology and Medical SciencesGraduate School of Frontier SciencesThe University of TokyoKashiwa‐cityJapan
| |
Collapse
|
2
|
Atkins JF, Loughran G, Bhatt PR, Firth AE, Baranov PV. Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use. Nucleic Acids Res 2016; 44:7007-78. [PMID: 27436286 PMCID: PMC5009743 DOI: 10.1093/nar/gkw530] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/26/2016] [Indexed: 12/15/2022] Open
Abstract
Genetic decoding is not ‘frozen’ as was earlier thought, but dynamic. One facet of this is frameshifting that often results in synthesis of a C-terminal region encoded by a new frame. Ribosomal frameshifting is utilized for the synthesis of additional products, for regulatory purposes and for translational ‘correction’ of problem or ‘savior’ indels. Utilization for synthesis of additional products occurs prominently in the decoding of mobile chromosomal element and viral genomes. One class of regulatory frameshifting of stable chromosomal genes governs cellular polyamine levels from yeasts to humans. In many cases of productively utilized frameshifting, the proportion of ribosomes that frameshift at a shift-prone site is enhanced by specific nascent peptide or mRNA context features. Such mRNA signals, which can be 5′ or 3′ of the shift site or both, can act by pairing with ribosomal RNA or as stem loops or pseudoknots even with one component being 4 kb 3′ from the shift site. Transcriptional realignment at slippage-prone sequences also generates productively utilized products encoded trans-frame with respect to the genomic sequence. This too can be enhanced by nucleic acid structure. Together with dynamic codon redefinition, frameshifting is one of the forms of recoding that enriches gene expression.
Collapse
Affiliation(s)
- John F Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland School of Microbiology, University College Cork, Cork, Ireland Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Gary Loughran
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Pramod R Bhatt
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
3
|
Chai B, Li C, Yu J, Hao Y, Guo P, Shen Q. Stop codon recognition in the early-diverged protozoans Giardia lamblia and Trichomonas vaginalis. Mol Biochem Parasitol 2015; 202:15-21. [PMID: 26310515 DOI: 10.1016/j.molbiopara.2015.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/25/2015] [Accepted: 08/18/2015] [Indexed: 10/23/2022]
Abstract
Two classes of polypeptide release factors (RFs) are responsible for maintaining accuracy in translation termination; however, their detailed mechanism of action and evolutionary history of these factors remain elusive. The structure and function of RFs vary in bacteria and eukaryotes, a fact that is suggestive of evolutionary changes in the translation termination system. Giardia lamblia (Diplomonada) and Trichomonas vaginalis (Parabasalia) are considered as early-diverged eukaryotes. The class II release factor, eRF3, of Giardia (Gl-eRF3) appears to have only one domain that corresponds to EF-1α and lacks the N-terminal domain, similar to that of eRF3 of other organisms. In the present study, we show that the chimeric molecules Gl/Sc eRF1 and Tv/Sc eRF1, which are composed of the N-terminal domain of Gl-eRF1 or Tv-eRF1, fused to the core domain (M and C domain) of Saccharomyces cerevisiae eRF1 (Sc-eRF1), resulting in loss of the RF properties of the N-terminal domain. This suggests that the conformation of eRF1 for stop codon recognition in Giardia and Trichomonas varies from the eRF1s of other eukaryotes, including ciliates and yeast. Further studies using intra-N-terminal chimeras of eRF1 indicated that the combination of the GTS loop and NIKS motif from Gl-eRF1 and the Y-C-F motif from Sc-eRF1within the N terminal domain of hybrid eRF1 could restore UGA, but not UAG and UGA recognition. In contrast, the combination of the GTS loop and the NIKS motif of Sc-eRF1 and the Y-C-F motif of Gl-eRF1 could restore UAG and UAA recognition, but not UGA recognition. Thus, these results confirm the findings of previous studies that three motifs in eRF1 are necessary for discrimination of the three bases of stop codons. The NIKS motif is responsible for recognition of the first two bases of UAA and UAG, and the Y-C-F motif identifies the second base of UGA by Gl-eRF1. Amino acid residue substitutions in Gl/Sc-eRF1 by corresponding residues of Sc-eRF1 could change and even restore RF activity, further suggesting different conformation of eRF1 are used for stop codon recognition in Giardia and in Saccharomyces.
Collapse
Affiliation(s)
- Baofeng Chai
- Key Laboratory of Chemical Biology and Molecular Engineering, Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China.
| | - Cui Li
- Faculty of Environment and Economics, Shanxi University of Finance and Economics, Taiyuan 030006, China
| | - Jingfei Yu
- Key Laboratory of Chemical Biology and Molecular Engineering, Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Yanrong Hao
- Key Laboratory of Chemical Biology and Molecular Engineering, Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Ping Guo
- Key Laboratory of Chemical Biology and Molecular Engineering, Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Quan Shen
- Key Laboratory of Chemical Biology and Molecular Engineering, Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
4
|
Saito K, Ito K. Genetic analysis of L123 of the tRNA-mimicking eukaryote release factor eRF1, an amino acid residue critical for discrimination of stop codons. Nucleic Acids Res 2015; 43:4591-601. [PMID: 25897120 PMCID: PMC4482090 DOI: 10.1093/nar/gkv376] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/09/2015] [Indexed: 11/18/2022] Open
Abstract
In eukaryotes, the tRNA-mimicking polypeptide-chain release factor, eRF1, decodes stop codons on the ribosome in a complex with eRF3; this complex exhibits striking structural similarity to the tRNA–eEF1A–GTP complex. Although amino acid residues or motifs of eRF1 that are critical for stop codon discrimination have been identified, the details of the molecular mechanisms involved in the function of the ribosomal decoding site remain obscure. Here, we report analyses of the position-123 amino acid of eRF1 (L123 in Saccharomyces cerevisiae eRF1), a residue that is phylogenetically conserved among species with canonical and variant genetic codes. In vivo readthrough efficiency analysis and genetic growth complementation analysis of the residue-123 systematic mutants suggested that this amino acid functions in stop codon discrimination in a manner coupled with eRF3 binding, and distinctive from previously reported adjacent residues. Furthermore, aminoglycoside antibiotic sensitivity analysis and ribosomal docking modeling of eRF1 in a quasi-A/T state suggested a functional interaction between the side chain of L123 and ribosomal residues critical for codon recognition in the decoding site, as a molecular explanation for coupling with eRF3. Our results provide insights into the molecular mechanisms underlying stop codon discrimination by a tRNA-mimicking protein on the ribosome.
Collapse
Affiliation(s)
- Kazuki Saito
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-city, Chiba 277-8562, Japan
| | - Koichi Ito
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-city, Chiba 277-8562, Japan
| |
Collapse
|
5
|
Wada M, Ito K. A genetic approach for analyzing the co-operative function of the tRNA mimicry complex, eRF1/eRF3, in translation termination on the ribosome. Nucleic Acids Res 2014; 42:7851-66. [PMID: 24914055 PMCID: PMC4081094 DOI: 10.1093/nar/gku493] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During termination of translation in eukaryotes, a GTP-binding protein, eRF3, functions within a complex with the tRNA-mimicking protein, eRF1, to decode stop codons. It remains unclear how the tRNA-mimicking protein co-operates with the GTPase and with the functional sites on the ribosome. In order to elucidate the molecular characteristics of tRNA-mimicking proteins involved in stop codon decoding, we have devised a heterologous genetic system in Saccharomyces cerevisiae. We found that eRF3 from Pneumocystis carinii (Pc-eRF3) did not complement depletion of S. cerevisiae eRF3. The strength of Pc-eRF3 binding to Sc-eRF1 depends on the GTP-binding domain, suggesting that defects of the GTPase switch in the heterologous complex causes the observed lethality. We isolated mutants of Pc-eRF3 and Sc-eRF1 that restore cell growth in the presence of Pc-eRF3 as the sole source of eRF3. Mapping of these mutations onto the latest 3D-complex structure revealed that they were located in the binding-interface region between eRF1 and eRF3, as well as in the ribosomal functional sites. Intriguingly, a novel functional site was revealed adjacent to the decoding site of eRF1, on the tip domain that mimics the tRNA anticodon loop. This novel domain likely participates in codon recognition, coupled with the GTPase function.
Collapse
Affiliation(s)
- Miki Wada
- Technical office, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-city, Chiba, 277-8562, Japan
| | - Koichi Ito
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-city, Chiba, 277-8562, Japan
| |
Collapse
|