1
|
Dammak M, Ben Hlima H, Fendri I, Smaoui S, Abdelkafi S. Tetraselmis species for environmental sustainability: biology, water bioremediation, and biofuel production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34247-0. [PMID: 39060891 DOI: 10.1007/s11356-024-34247-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
With increasing demand of fossil fuels and water pollution and their environmental impacts, marine green microalgae have gained special attention in both scientific and industrial fields. This is due to their fast growth in non-arable lands with high photosynthetic activity, their metabolic plasticity, as well as their high CO2 capture capacity. Tetraselmis species, green and eukaryotic microalgae, are not only considered as a valuable source of biomolecules including pigments, lipids, and starch but also widely used in biotechnological applications. Tetraselmis cultivation for high-value biomolecules and industrial use was demonstrated to be a non-cost-effective strategy because of its low demand in nutrients, such as phosphorus and nitrogen. Recently, phycoremediation of wastewater rich in nutrients, chemicals, and heavy metals has become an efficient and economic-alternative that allows the detoxification of waters and induces mechanisms in algal cells for biomolecules rich-energy synthesis to regulate their metabolic pathways. This review aims to shed light on Tetraselmis species for their different culture conditions and metabolites bioaccumulation, as well as their human health and environmental applications. Additionally, phycoremediation of contaminants associated to biofuel production in Tetraselmis cells and their different intracellular and extracellular mechanisms have also been investigated.
Collapse
Affiliation(s)
- Mouna Dammak
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Département de Génie Biologique, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia
| | - Hajer Ben Hlima
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Département de Génie Biologique, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia
| | - Imen Fendri
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax, Road of Sidi Mansour Km 6, P. O. Box 1177, 3018, Sfax, Tunisia
| | - Slim Smaoui
- Laboratoire de Biotechnologie des Plantes Appliquée À l'Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, 3038, Sfax, Tunisia
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Département de Génie Biologique, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia.
| |
Collapse
|
2
|
Segovia-Campos I, Kanellakopoulos A, Barrozo IJ, Fock-Chin-Ming E, Filella M, Fontaine AB, Pallada S, Triscone G, Perron K, Ariztegui D. Strontium-90 pollution can be bioremediated with the green microalga Tetraselmis chui. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:622-631. [PMID: 38334136 DOI: 10.1039/d3em00336a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Strontium-90 (90Sr) is an artificial radioisotope produced by nuclear fission, with a relatively long half-life of 29 years. This radionuclide is released into the environment in the event of a nuclear incident, posing a serious risk to human and ecosystem health. There is a need to develop new efficient methods for the remediation of 90Sr, as current techniques for its removal have significant technical limitations and involve high energy and economic costs. Recently, several species of green microalgae within the class Chlorodendrophyceae have been found to form intracellular mineral inclusions of amorphous calcium carbonate (ACC), which can be highly enriched in natural (non-radiogenic) Sr. As bioremediation techniques are an attractive option to address radioactive pollution, we investigated the capacity of the unicellular alga Tetraselmis chui (class Chlorodendrophyceae) to sequester 90Sr. The 90Sr uptake capacity of T. chui cells was assessed in laboratory cultures by monitoring the time course of radioactivity in the culture medium using liquid scintillation counting (LSC). T. chui was shown to effectively sequester 90Sr, reducing the initial radioactivity of the culture medium by up to 50%. Thus, this study demonstrates the potential of the microalga T. chui to be used as a bioremediation agent against 90Sr pollution.
Collapse
Affiliation(s)
- Inés Segovia-Campos
- Department of Earth Sciences, University of Geneva, 1205 Geneva, Switzerland.
| | - Anastasios Kanellakopoulos
- Department of Engineering, University of Applied Sciences of Western Switzerland (HES-SO), 1202 Geneva, Switzerland
| | - Ivan John Barrozo
- Department of Engineering, University of Applied Sciences of Western Switzerland (HES-SO), 1202 Geneva, Switzerland
| | - Edouard Fock-Chin-Ming
- Department of Engineering, University of Applied Sciences of Western Switzerland (HES-SO), 1202 Geneva, Switzerland
| | - Montserrat Filella
- Department F.-A. Forel for Environmental and Aquatic Sciences, University of Geneva, Boulevard Carl-Vogt 66, CH-1205 Geneva, Switzerland.
| | - Axel Baxarias Fontaine
- Department of Engineering, University of Applied Sciences of Western Switzerland (HES-SO), 1202 Geneva, Switzerland
| | - Stavroula Pallada
- Department of Engineering, University of Applied Sciences of Western Switzerland (HES-SO), 1202 Geneva, Switzerland
| | - Gilles Triscone
- Department of Engineering, University of Applied Sciences of Western Switzerland (HES-SO), 1202 Geneva, Switzerland
| | - Karl Perron
- Department of Plant Sciences, Microbiology Unit, University of Geneva, 1205 Geneva, Switzerland
| | - Daniel Ariztegui
- Department of Earth Sciences, University of Geneva, 1205 Geneva, Switzerland.
| |
Collapse
|
3
|
Yang F, Huang Y, Long L. Characterization of the chloroplast genome of the marine microalga Tetraselmis marina (Cienkowski) R.E.Norris, Hori & Chihara 1980. Mitochondrial DNA B Resour 2023; 8:1347-1350. [PMID: 38196789 PMCID: PMC10776064 DOI: 10.1080/23802359.2023.2288892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/24/2023] [Indexed: 01/11/2024] Open
Abstract
Tetraselmis marina (Cienkowski) R.E.Norris, Hori & Chihara 1980, a costal green microalga, is considered as a promising animal feed in aquaculture due to the high content of fatty acids and carotenoid. Furthermore, T. marina plays important roles in bioremediation. In this study, we assembled the complete chloroplast genome of T. marina. Results showed that the full length of the complete chloroplast genome was 96,151 bp, containing a large single-copy region of 62,574 bp, a small single-copy region of 1261 bp, and a pair of inverted repeat regions of 16,158 bp. The GC content of the genome was 36.6%. A total of 125 genes were annotated, including 81 protein coding genes, 38 tRNA genes, and six rRNA genes. Phylogenetic analysis based on 22 chloroplast genomes suggested that T. marina was closely related to Tetraselmis sp. CCMP 881.
Collapse
Affiliation(s)
- Fangfang Yang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Yi Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Lijuan Long
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
4
|
Segovia‐Campos I, Filella M, Perron K, Ariztegui D. High calcium and strontium uptake by the green microalga Tetraselmis chui is related to micropearl formation and cell growth. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:38-50. [PMID: 36151741 PMCID: PMC10103758 DOI: 10.1111/1758-2229.13124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 09/01/2022] [Indexed: 05/20/2023]
Abstract
Strontium-rich micropearls (intracellular inclusions of amorphous calcium carbonate) have been observed in several species of green microalgae within the class Chlorodendrophyceae, suggesting the potential use of these organisms for 90 Sr bioremediation purposes. However, very little is known about the micropearl formation process and the Ca and Sr uptake dynamics of these microalgae. To better understand this phenomenon, we investigated, through laboratory cultures, the behaviour of two species within the class Chorodendrophyceae: Tetraselmis chui, forming micropearls, and T. marina, not forming micropearls. We show that T. chui growth and micropearl formation requires available Ca in the culture medium, and that the addition of dissolved Sr can partially replace the function of Ca in cells. On the other hand, T. marina can grow without added Ca and Sr, probably due to its inability to form micropearls. T. chui cells show a high Ca and Sr uptake, significantly decreasing the concentration of both elements in the culture medium. Strontium is incorporated in micropearls in a short period of time, suggesting that micropearl formation is, most likely, a fast process that only takes a few hours. In addition, we show that micropearls equally distribute between daughter cells during cell division.
Collapse
Affiliation(s)
| | | | - Karl Perron
- Microbiology UnitUniversity of GenevaGenevaSwitzerland
| | - Daniel Ariztegui
- Department of Earth SciencesUniversity of GenevaGenevaSwitzerland
| |
Collapse
|
5
|
First Observation of Unicellular Organisms Concentrating Arsenic in ACC Intracellular Inclusions in Lake Waters. GEOSCIENCES 2022. [DOI: 10.3390/geosciences12010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In unicellular organisms, intracellular inclusions of amorphous calcium carbonate (ACC) were initially described in cyanobacteria and, later, in unicellular eukaryotes from Lake Geneva (Switzerland/France). Inclusions in unicellular eukaryotes, named micropearls, consist of hydrated ACCs, frequently enriched in Sr or Ba, and displaying internal oscillatory zonations, due to variations in the Ba:Ca or Sr:Ca ratios. An analysis of our database, consisting of 1597 micropearl analyses from Lake Geneva and 34 from Lake Titicaca (Bolivia/Peru), showed that a certain number of Sr- and Ba-enriched micropearls from these lakes contain As in amounts measurable by EDXS. A Q-mode statistical analysis confirmed the existence of five chemically distinct morpho-chemical groups of As-bearing micropearls, among which was a new category identified in Lake Geneva, where As is often associated with Mg. This new type of micropearl is possibly produced in a small (7–12 μm size) bi-flagellated organism. Micropearls from Lake Titicaca, which contain Sr, were found in an organism very similar to Tetraselmis cordiformis, which was observed earlier in Lake Geneva. Lake Titicaca micropearls contain larger As amounts, which can be explained by the high As concentration in the water of this lake. The ubiquity of this observed biomineralization process points to the need for a better understanding of the role of amorphous or crystalline calcium carbonates in As cycling in surface waters.
Collapse
|
6
|
Segovia-Campos I, Martignier A, Filella M, Jaquet JM, Ariztegui D. Micropearls and other intracellular inclusions of amorphous calcium carbonate: an unsuspected biomineralization capacity shared by diverse microorganisms. Environ Microbiol 2021; 24:537-550. [PMID: 33817930 PMCID: PMC9292747 DOI: 10.1111/1462-2920.15498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/24/2021] [Accepted: 04/01/2021] [Indexed: 11/29/2022]
Abstract
An unsuspected biomineralization process, which produces intracellular inclusions of amorphous calcium carbonate (ACC), was recently discovered in unicellular eukaryotes. These mineral inclusions, called micropearls, can be highly enriched with other alkaline‐earth metals (AEM) such as Sr and Ba. Similar intracellular inclusions of ACC have also been observed in prokaryotic organisms. These comparable biomineralization processes involving phylogenetically distant microorganisms are not entirely understood yet. This review gives a broad vision of the topic in order to establish a basis for discussion on the possible molecular processes behind the formation of the inclusions, their physiological role, the impact of these microorganisms on the geochemical cycles of AEM and their evolutionary relationship. Finally, some insights are provided to guide future research.
Collapse
Affiliation(s)
- Inés Segovia-Campos
- Department of Earth Sciences, University of Geneva, Geneva, CH-1205, Switzerland
| | - Agathe Martignier
- Department of Earth Sciences, University of Geneva, Geneva, CH-1205, Switzerland
| | - Montserrat Filella
- Department F.-A. Forel, University of Geneva, Geneva, CH-1205, Switzerland
| | - Jean-Michel Jaquet
- Department of Earth Sciences, University of Geneva, Geneva, CH-1205, Switzerland
| | - Daniel Ariztegui
- Department of Earth Sciences, University of Geneva, Geneva, CH-1205, Switzerland
| |
Collapse
|