1
|
Jian J, Du F, Wang B, Fang X, Larsen TO, Li Y, Sonnenschein EC. A high-quality genome of the early diverging tychoplanktonic diatom Paralia guyana. Sci Data 2024; 11:1175. [PMID: 39477953 PMCID: PMC11525933 DOI: 10.1038/s41597-024-03843-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/29/2024] [Indexed: 11/02/2024] Open
Abstract
The diatom Paralia guyana is a tychoplanktonic microalgal species that represents one of the early diverging diatoms. P. guyana can thrive in both planktonic and benthic habitats, making a significant contribution to the occurrence of red tide events. Although a dozen diatom genomes have been sequenced, the identity of the early diverging diatoms remains elusive. The understanding of the evolutionary clades and mechanisms of ecological adaptation in P. guyana is limited by the absence of a high-quality genome assembly. In this study, the first high-quality genome assembly for the early diverging diatom P. guyana was established using PacBio single molecular sequencing. The assembled genome has a size of 558.85 Mb, making it the largest diatom genome on record, with a contig N50 size of 26.06 Mb. A total of 27,121 protein-coding genes were predicted in the P. guyana genome, of which 22,904 predicted genes (84.45%) were functionally annotated. This data and analysis provide innovative genomic resources for tychoplanktonic microalgal species and shed light on the evolutionary origins of diatoms.
Collapse
Affiliation(s)
- Jianbo Jian
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
- BGI Genomics, Shenzhen, China
| | - Feichao Du
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | | | | | - Thomas Ostenfeld Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Yuhang Li
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Eva C Sonnenschein
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark.
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea, Wales, UK.
| |
Collapse
|
2
|
Roager L, Kempen PJ, Bentzon-Tilia M, Sonnenschein EC, Gram L. Impact of host species on assembly, composition, and functional profiles of phycosphere microbiomes. mSystems 2024; 9:e0058324. [PMID: 39082797 PMCID: PMC11334532 DOI: 10.1128/msystems.00583-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/01/2024] [Indexed: 08/21/2024] Open
Abstract
Microalgal microbiomes play vital roles in the growth and health of their host, however, their composition and functions remain only partially characterized, especially across microalgal phyla. In this study, a natural seawater microbiome was introduced to three distinct, axenic species of microalgae, the haptophyte Isochrysis galbana, the chlorophyte Tetraselmis suecica, and the diatom Conticribra weissflogii (previously Thalassiosira), and its divergence and assembly under constant illumination was monitored over 49 days using 16S rRNA amplicon and metagenomic analyses. The microbiomes had a high degree of host specificity in terms of taxonomic composition and potential functions, including CAZymes profiles. Rhodobacteraceae and Flavobacteriaceae families were abundant across all microalgal hosts, but I. galbana microbiomes diverged further from T. suecica and C. weissflogii microbiomes. I. galbana microbiomes had a much higher relative abundance of Flavobacteriaceae, whereas the two other algal microbiomes had higher relative abundances of Rhodobacteraceae. This could be due to the bacterivorous mixotrophic nature of I. galbana affecting the carbohydrate composition available to the microbiomes, which was supported by the CAZymes profile of I. galbana microbiomes diverging further from those of T. suecica and C. weissflogii microbiomes. Finally, the presence of denitrification and other anaerobic pathways was found exclusively in the microbiomes of C. weissflogii, which we speculate could be a result of anoxic microenvironments forming in aggregates formed by this diatom during the experiment. These results underline the significant role of the microalgal host species on microbiome composition and functional profiles along with other factors, such as the trophic mode of the microalgal host. IMPORTANCE As the main primary producers of the oceans, microalgae serve as cornerstones of the ecosystems they are part of. Additionally, they are increasingly used for biotechnological purposes such as the production of nutraceuticals, pigments, and antioxidants. Since the bacterial microbiomes of microalgae can affect their hosts in beneficial and detrimental ways, understanding these microbiomes is crucial to both the ecological and applied roles of microalgae. The present study advances the understanding of microalgal microbiome assembly, composition, and functionality across microalgal phyla, which may inform the modeling and engineering of microalgal microbiomes for biotechnological purposes.
Collapse
Affiliation(s)
- Line Roager
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Paul J. Kempen
- DTU Nanolab, National Center for Nano Fabrication and Characterization, Technical University of Denmark, Kgs. Lyngby, Denmark
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Mikkel Bentzon-Tilia
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Eva C. Sonnenschein
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
3
|
Audoor S, Bilcke G, Pargana K, Belišová D, Thierens S, Van Bel M, Sterck L, Rijsdijk N, Annunziata R, Ferrante MI, Vandepoele K, Vyverman W. Transcriptional chronology reveals conserved genes involved in pennate diatom sexual reproduction. Mol Ecol 2024; 33:e17320. [PMID: 38506152 DOI: 10.1111/mec.17320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/23/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024]
Abstract
Sexual reproduction is a major driver of adaptation and speciation in eukaryotes. In diatoms, siliceous microalgae with a unique cell size reduction-restitution life cycle and among the world's most prolific primary producers, sex also acts as the main mechanism for cell size restoration through the formation of an expanding auxospore. However, the molecular regulators of the different stages of sexual reproduction and size restoration are poorly explored. Here, we combined RNA sequencing with the assembly of a 55 Mbp reference genome for Cylindrotheca closterium to identify patterns of gene expression during different stages of sexual reproduction. These were compared with a corresponding transcriptomic time series of Seminavis robusta to assess the degree of expression conservation. Integrative orthology analysis revealed 138 one-to-one orthologues that are upregulated during sex in both species, among which 56 genes consistently upregulated during cell pairing and gametogenesis, and 11 genes induced when auxospores are present. Several early, sex-specific transcription factors and B-type cyclins were also upregulated during sex in other pennate and centric diatoms, pointing towards a conserved core regulatory machinery for meiosis and gametogenesis across diatoms. Furthermore, we find molecular evidence that the pheromone-induced cell cycle arrest is short-lived in benthic diatoms, which may be linked to their active mode of mate finding through gliding. Finally, we exploit the temporal resolution of our comparative analysis to report the first marker genes for auxospore identity called AAE1-3 ("Auxospore-Associated Expression"). Altogether, we introduce a multi-species model of the transcriptional dynamics during size restoration in diatoms and highlight conserved gene expression dynamics during different stages of sexual reproduction.
Collapse
Affiliation(s)
- Sien Audoor
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, University Ghent, Ghent, Belgium
| | - Gust Bilcke
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, University Ghent, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Katerina Pargana
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, University Ghent, Ghent, Belgium
| | - Darja Belišová
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, University Ghent, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Sander Thierens
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Michiel Van Bel
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Lieven Sterck
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Nadine Rijsdijk
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, University Ghent, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | | | - Maria Immacolata Ferrante
- Stazione Zoologica Anton Dohrn, Naples, Italy
- Associate to the National Institute of Oceanography and Applied Geophysics, Trieste, Italy
| | - Klaas Vandepoele
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for AI & Computational Biology, VIB, Ghent, Belgium
| | - Wim Vyverman
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, University Ghent, Ghent, Belgium
| |
Collapse
|
4
|
Characterization of a Marine Diatom Chitin Synthase Using a Combination of Meta-Omics, Genomics, and Heterologous Expression Approaches. mSystems 2023; 8:e0113122. [PMID: 36790195 PMCID: PMC10134812 DOI: 10.1128/msystems.01131-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
β-Chitin has important ecological and physiological roles and potential for widespread applications, but the characterization of chitin-related enzymes from β-chitin producers was rarely reported. Querying against the Tara Oceans Gene Atlas, 4,939 chitin-related unique sequences from 12 Pfam accessions were found in Bacillariophyta metatranscriptomes. Putative chitin synthase (CHS) sequences are decreasingly present in Crustacea (39%), Stramenopiles (16%) and Insecta (14%) from the Marine Atlas of Tara Oceans Unigenes version 1 Metatranscriptomes (MATOUv1+T) database. A CHS gene from the model diatom Thalassiosira pseudonana (Thaps3_J4413, designated TpCHS1) was identified. Homology analysis of TpCHS1 in Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP), PhycoCosm, and the PLAZA diatom omics data set showed that Mediophyceae and Thalassionemales species were potential new β-chitin producers besides Thalassiosirales. TpCHS1 was overexpressed in Saccharomyces cerevisiae and Phaeodactylum tricornutum. In transgenic P. tricornutum lines, TpCHS1-eGFP localizes to the Golgi apparatus and plasma membrane and predominantly accumulates in the cleavage furrow during cell division. Enhanced TpCHS1 expression could induce abnormal cell morphology and reduce growth rates in P. tricornutum, which might be ascribed to the inhibition of the G2/M phase. S. cerevisiae was proved to be a better system for expressing large amounts of active TpCHS1, which effectively incorporates UDP-N-acetylglucosamine in radiometric in vitro assays. Our study expands the knowledge on chitin synthase taxonomic distribution in marine eukaryotic microbes, and is the first to collectively characterize an active marine diatom CHS which may play an important role during cell division. IMPORTANCE As the most abundant biopolymer in the oceans, the significance of chitin and its biosynthesis is rarely demonstrated in diatoms, which are the main contributors to the primary productivity of the oceans, ascribed to their huge biomass and efficient photosynthesis. We retrieved genes involved in chitin-based metabolism against the Tara Oceans Gene Atlas to expand our knowledge about their diversity and distribution in the marine environment. Potential new producers of chitin were found from the analysis of various algal transcriptome and genome databases. Heterologous expression confirms that Thalassiosira pseudonana contains an active chitin synthase (CHS) which may play an important role in the cell division process of diatoms. This study provides new insight into CHS geographic and taxonomic distribution in marine eukaryotic microbes, as well as into a new CHS functioning in the biosynthesis of β-chitin in diatoms.
Collapse
|
5
|
Caprara CDSC, Mathias TK, Santos MDFC, D’Oca MGM, D’Oca CDRM, Roselet F, Abreu PC, Ramos DF. Application of 1H HR-MAS NMR-Based Metabolite Fingerprinting of Marine Microalgae. Metabolites 2023; 13:metabo13020202. [PMID: 36837821 PMCID: PMC9965007 DOI: 10.3390/metabo13020202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Natural products from the marine environment as well as microalgae, have been known for the complexity of the metabolites they produce due to their adaptability to different environmental conditions, which has been an inexhaustible source of several bioactive properties, such as antioxidant, anti-tumor, and antimicrobial. This study aims to characterize the main metabolites of three species of microalgae (Nannochloropsis oceanica, Chaetoceros muelleri, and Conticribra weissflogii), which have important applications in the biofuel and nutrition industries, by 1H High-resolution magic angle spinning nuclear magnetic resonance (1H HR-MAS NMR), a method which is non-destructive, is highly reproducible, and requires minimal sample preparation. Even though the three species were found in the same ecosystem and a superior production of lipid compounds was observed, important differences were identified in relation to the production of specialized metabolites. These distinct properties favor the use of these compounds as leaders in the development of new bioactive compounds, especially against environmental, human, and animal pathogens (One Health), and demonstrate their potential in the development of alternatives for aquaculture.
Collapse
Affiliation(s)
| | - Tatiane Ksyvickas Mathias
- NMR Laboratory, NMR Center, Departamento de Química, Universidade Federal do Paraná, Curitiba 81530-900, PR, Brazil
| | - Maria de Fátima C. Santos
- NMR Laboratory, NMR Center, Departamento de Química, Universidade Federal do Paraná, Curitiba 81530-900, PR, Brazil
| | - Marcelo G. M. D’Oca
- NMR Laboratory, NMR Center, Departamento de Química, Universidade Federal do Paraná, Curitiba 81530-900, PR, Brazil
| | - Caroline Da R. M. D’Oca
- NMR Laboratory, NMR Center, Departamento de Química, Universidade Federal do Paraná, Curitiba 81530-900, PR, Brazil
| | - Fabio Roselet
- Laboratório de Produção de Microalgas (LPM), Instituto de Oceanografia, Universidade Federal do Rio Grande (FURG), Rio Grande 96210-030, RS, Brazil
| | - Paulo Cesar Abreu
- Laboratório de Produção de Microalgas (LPM), Instituto de Oceanografia, Universidade Federal do Rio Grande (FURG), Rio Grande 96210-030, RS, Brazil
| | - Daniela Fernandes Ramos
- Laboratório de Desenvolvimento de Novos Fármacos (LADEFA), Universidade Federal do Rio Grande (FURG), Rio Grande 96200-400, RS, Brazil
- Núcleo de Desenvolvimento de Novos Fármacos—NUDEFA, Rua General Osório, s/n°, Campus Saúde, 2° andar, Rio Grande 96200-400, RS, Brazil
- Correspondence: ; Tel.: +55-53-3237-4634
| |
Collapse
|