1
|
Omae T, Omori Y, Makihara Y, Yamanegi K, Hanawa S, Yoshikawa K, Noguchi K, Kishimoto H. Mechanism of Tumor Budding in Patient-Derived Metachronous Oral Primary Squamous Cell Carcinoma Cell Lines. Int J Mol Sci 2025; 26:3347. [PMID: 40244200 PMCID: PMC11989605 DOI: 10.3390/ijms26073347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
Tumor budding (TB) occurs at the deepest site of tumor invasion and is a significant prognostic indicator of cervical metastasis in oral squamous cell carcinoma (OSCC). The mechanism of TB, however, remains unclear. This study investigated the roles of the tumor microenvironment and partial epithelial-mesenchymal transition (p-EMT) in TB expression using molecular and cellular physiological analyses. We established oral metachronous carcinoma cell lines (gingival carcinoma: 020, tongue carcinoma with high TB expression: 020G) from two cancers with pathologically different TB in the same patient and subjected them to exome analysis to detect gene mutations related to carcinogenesis and malignancy. Differences in EMT expression induced by transforming growth factor-β (TGF-β) between 020 and 020G were analyzed by Western blotting and reverse transcription polymerase chain reaction, and TGF-β-induced changes in cell morphology, proliferation, migration, and invasive ability were also examined. TGF-β expression was observed in the deepest tumor invasion microenvironment. TGF-β also induced the expression of several p-EMT markers and increased the migration and invasive abilities of 020G compared with 020 cells. In conclusion, TGF-β in the deep-tumor microenvironment can induce p-EMT in tumor cells, expressed as TB.
Collapse
Affiliation(s)
- Takayuki Omae
- Department of Oral and Maxillofacial Surgery, School of Medicine, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Japan; (T.O.); (Y.O.); (Y.M.); (S.H.); (K.Y.); (H.K.)
| | - Yuji Omori
- Department of Oral and Maxillofacial Surgery, School of Medicine, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Japan; (T.O.); (Y.O.); (Y.M.); (S.H.); (K.Y.); (H.K.)
| | - Yuna Makihara
- Department of Oral and Maxillofacial Surgery, School of Medicine, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Japan; (T.O.); (Y.O.); (Y.M.); (S.H.); (K.Y.); (H.K.)
| | - Koji Yamanegi
- Department of Pathology, School of Medicine, Hyogo Medical University, Nishinomiya 663-8501, Japan;
| | - Soutaro Hanawa
- Department of Oral and Maxillofacial Surgery, School of Medicine, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Japan; (T.O.); (Y.O.); (Y.M.); (S.H.); (K.Y.); (H.K.)
| | - Kyohei Yoshikawa
- Department of Oral and Maxillofacial Surgery, School of Medicine, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Japan; (T.O.); (Y.O.); (Y.M.); (S.H.); (K.Y.); (H.K.)
| | - Kazuma Noguchi
- Department of Oral and Maxillofacial Surgery, School of Medicine, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Japan; (T.O.); (Y.O.); (Y.M.); (S.H.); (K.Y.); (H.K.)
| | - Hiromitsu Kishimoto
- Department of Oral and Maxillofacial Surgery, School of Medicine, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Japan; (T.O.); (Y.O.); (Y.M.); (S.H.); (K.Y.); (H.K.)
| |
Collapse
|
2
|
Okuyama K, Suzuki K, Yanamoto S. Relationship between Tumor Budding and Partial Epithelial-Mesenchymal Transition in Head and Neck Cancer. Cancers (Basel) 2023; 15:cancers15041111. [PMID: 36831453 PMCID: PMC9953904 DOI: 10.3390/cancers15041111] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Tumor budding (TB), a microscopic finding in the stroma ahead of the invasive fronts of tumors, has been well investigated and reported as a prognostic marker in head and neck squamous cell carcinoma (HNSCC). Epithelial-mesenchymal transition (EMT) is a crucial step in tumor progression and metastasis, and its status cannot be distinguished from TB. The current understanding of partial EMT (p-EMT), the so-called halfway step of EMT, focuses on the tumor microenvironment (TME). Although this evidence has been investigated, the clinicopathological and biological relationship between TB and p-EMT remains debatable. At the invasion front, previous research suggested that cancer-associated fibroblasts (CAFs) are important for tumor progression, metastasis, p-EMT, and TB formation in the TME. Although there is biological evidence of TB drivers, no report has focused on their organized functional relationships. Understanding the mechanism of TB onset and the relationship between p-EMTs may facilitate the development of novel diagnostic and prognostic methods, and targeted therapies for the prevention of metastasis in epithelial cancer. Thus far, major pieces of evidence have been established from colorectal cancer (CRC), due to a large number of patients with the disease. Herein, we review the current understanding of p-EMT and TME dynamics and discuss the relationship between TB development and p-EMT, focusing on CAFs, hypoxia, tumor-associated macrophages, laminin-integrin crosstalk, membrane stiffness, enzymes, and viral infections in cancers, and clarify the gap of evidence between HNSCC and CRC.
Collapse
Affiliation(s)
- Kohei Okuyama
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, 1011 North University Ave, Ann Arbor, MI 48109, USA
- University of Michigan Rogel Cancer Center, 1600 Huron Pathway, Ann Arbor, MI 48105, USA
- Department of Oral and Maxillofacial Surgical Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
- Correspondence: or
| | - Keiji Suzuki
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan
| | - Souichi Yanamoto
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|
3
|
Laminin Immunostaining in Biopsies as a Useful Biomarker of Early Invasion in Actinic Cheilitis and Differential Diagnosis Between Actinic Cheilitis and Lip Cancer: New Insights. Head Neck Pathol 2022:10.1007/s12105-022-01504-y. [PMID: 36303015 DOI: 10.1007/s12105-022-01504-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/25/2022] [Indexed: 02/09/2023]
Abstract
BACKGROUND Squamous cell carcinoma of the lip (LSCC) and oral cavity can be life-threatening if not diagnosed early. Precancerous lesions like actinic cheilitis (AC), can transform into LSCC. Laminin is a fundamental component for basement membrane (BM) and its integrity may prevent neoplastic invasion. Therefore, laminin immunostaining of BM may be useful in identifying early invasion in actinic cheilitis and thus in the differential diagnosis between AC and invasive LSCC or high-grade epithelial dysplasia (ED). MATERIALS AND METHODS Biopsies from 46 patients with oral lesions were histologically analyzed and immunohistochemically stained for laminin-1. RESULTS AC was diagnosed in 34 patients and LSCC in 12 patients, including 3 patients with AC and concomitant high-grade ED/in situ carcinoma. Laminin-1 immunostaining revealed intense and linear expression of the BM in AC with low-grade ED. Loss of laminin expression was observed in LSCC. Intracellular laminin expression in parabasal cells was noted in AC with high-grade ED/in situ carcinoma. CONCLUSION Laminin immunostaining could be useful in identifying AC cases suspected of early invasion. It could also contribute to the histopathological differential diagnosis between AC with low- and high-grade ED and between AC and invasive LSCC. The findings of this study provide new insights into the mechanism involved in the progression process of AC into LSCC, encouraging preclinical studies that may document the stochastic role of laminin in this process.
Collapse
|
4
|
Lecaudey LA, Singh P, Sturmbauer C, Duenser A, Gessl W, Ahi EP. Transcriptomics unravels molecular players shaping dorsal lip hypertrophy in the vacuum cleaner cichlid, Gnathochromis permaxillaris. BMC Genomics 2021; 22:506. [PMID: 34225643 PMCID: PMC8256507 DOI: 10.1186/s12864-021-07775-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Teleosts display a spectacular diversity of craniofacial adaptations that often mediates ecological specializations. A considerable amount of research has revealed molecular players underlying skeletal craniofacial morphologies, but less is known about soft craniofacial phenotypes. Here we focus on an example of lip hypertrophy in the benthivorous Lake Tangnayika cichlid, Gnathochromis permaxillaris, considered to be a morphological adaptation to extract invertebrates out of the uppermost layer of mud bottom. We investigate the molecular and regulatory basis of lip hypertrophy in G. permaxillaris using a comparative transcriptomic approach. RESULTS We identified a gene regulatory network involved in tissue overgrowth and cellular hypertrophy, potentially associated with the formation of a locally restricted hypertrophic lip in a teleost fish species. Of particular interest were the increased expression level of apoda and fhl2, as well as reduced expression of cyp1a, gimap8, lama5 and rasal3, in the hypertrophic lip region which have been implicated in lip formation in other vertebrates. Among the predicted upstream transcription factors, we found reduced expression of foxp1 in the hypertrophic lip region, which is known to act as repressor of cell growth and proliferation, and its function has been associated with hypertrophy of upper lip in human. CONCLUSION Our results provide a genetic foundation for future studies of molecular players shaping soft and exaggerated, but locally restricted, craniofacial morphological changes in fish and perhaps across vertebrates. In the future, we advocate integrating gene regulatory networks of various craniofacial phenotypes to understand how they collectively govern trophic and behavioural adaptations.
Collapse
Affiliation(s)
- Laurène Alicia Lecaudey
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Pooja Singh
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria
- Department of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4 Canada
| | - Christian Sturmbauer
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria
| | - Anna Duenser
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria
| | - Wolfgang Gessl
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria
| | - Ehsan Pashay Ahi
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland
| |
Collapse
|
5
|
Li GS, Hou W, Chen G, Yao YX, Chen XY, Zhang XG, Liang Y, Li MX, Huang ZG, Dang YW, Liang QH, Wu HY, Li RQ, Wei HY. Clinical Significance of Integrin Subunit Beta 4 in Head and Neck Squamous Cell Carcinoma. Cancer Biother Radiopharm 2020; 37:256-275. [PMID: 33179959 DOI: 10.1089/cbr.2020.3943] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background: The expression level and clinical significance of integrin subunit beta 4 (ITGB4) in head and neck squamous cell carcinoma (HNSCC) remain unclear. Materials and Methods: Expression of ITGB4 in HNSCC tissues were evaluated by calculating standard mean differences (SMDs) based on gene chips, RNA-seq, and immunohistochemistry data (n = 2330) from multiple sources. Receiver operating characteristic (ROC) curves were used to detect the ability of ITGB4 to distinguish HNSCC from non-HNSCC samples. The relationship between the expression level of ITGB4 and clinical parameters was evaluated by calculating SMDs. Results: Identical results of mRNA and protein levels indicated remarkable up-expression of ITGB4 in HNSCC tissues. Further ROC curves showed that ITGB4 could distinguish HNSCC from non-HNSCC samples. Genetic alteration analysis of ITGB4 in HNSCC indicated that overexpression of ITGB4 in HNSCC was likely not owing to genetic alteration of ITGB4. Moreover, ITGB4 overexpression level may be correlated with clinical T stage. Conclusion: ITGB4 likely plays an essential role in HNSCC occurrence based on our study and its potential diagnostic value is worthy of further exploration in the future.
Collapse
Affiliation(s)
- Guo-Sheng Li
- Department of Organic Chemistry and Medicinal Chemistry, Pharmaceutical College, Guangxi Medical University, Nanning, People's Republic of China
| | - Wei Hou
- Guangxi Key Laboratory of Thalassemia Research, Life Sciences Institute, Guangxi Medical University, Nanning, People's Republic of China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Yu-Xuan Yao
- Department of Organic Chemistry and Medicinal Chemistry, Pharmaceutical College, Guangxi Medical University, Nanning, People's Republic of China
| | - Xiao-Yi Chen
- Department of Organic Chemistry and Medicinal Chemistry, Pharmaceutical College, Guangxi Medical University, Nanning, People's Republic of China
| | - Xiao-Guohui Zhang
- Department of Organic Chemistry and Medicinal Chemistry, Pharmaceutical College, Guangxi Medical University, Nanning, People's Republic of China
| | - Yao Liang
- Department of Organic Chemistry and Medicinal Chemistry, Pharmaceutical College, Guangxi Medical University, Nanning, People's Republic of China
| | - Ming-Xuan Li
- Department of Organic Chemistry and Medicinal Chemistry, Pharmaceutical College, Guangxi Medical University, Nanning, People's Republic of China
| | - Zhi-Guang Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Qing-Hua Liang
- Department of Clinical Laboratory, Guangxi Jiangbin Hospital, Nanning, People's Republic of China
| | - Hua-Yu Wu
- Department of Cell Biology and Genetics, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, People's Republic of China
| | - Rong-Qiao Li
- Department of Clinical Laboratory, Guangxi Jiangbin Hospital, Nanning, People's Republic of China
| | - Hong-Yu Wei
- Department of Organic Chemistry and Medicinal Chemistry, Pharmaceutical College, Guangxi Medical University, Nanning, People's Republic of China
| |
Collapse
|
6
|
de Freitas Filho SAJ, Servato JPS, de Sá RT, Siqueira CS, de Faria PR, Loyola AM, Cardoso SV. Evaluation of specific modified histones in lip carcinogenesis. Pathol Res Pract 2018; 214:876-880. [PMID: 29699903 DOI: 10.1016/j.prp.2018.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/12/2018] [Accepted: 04/12/2018] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Histones regulate chromatin density and therefore influence gene expression and cellular proliferation. These properties are modified by methylation, acetylation and phosphorylation of histones. The aim of this study was to investigate the variation of specific modified histones in actinic cheilitis (AC) and squamous cell carcinoma of the lip (SCCL). METHODS Samples of non-neoplastic tissue of the lip (NNTL, n = 9), AC (n = 33), and SCCL (n = 27) were submitted to immunohistochemistry to detect the modified histones H3K36me3, H3K9ac, H4K12ac, and H3S10 ph. RESULTS Reactivity for all of the modified histones was significantly decreased from NNTL to AC, but not from AC to SCCL. Dysplasia in AC or histological grade in SCCL were not related to the reactivity of any modified histones. CONCLUSIONS Histone modifications are related to initial actinic damage, but not to malignant transformation in the lip.
Collapse
Affiliation(s)
| | - João Paulo Silva Servato
- Laboratory of Biopathology, School of Dentistry, University of Uberaba (UNIUBE), Uberaba, MG, Brazil
| | - Rodrigo Tavares de Sá
- Area of Pathology, School of Dentistry, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | | | - Paulo Rogério de Faria
- Department of Morphology, Biomedical Science Institute, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Adriano Mota Loyola
- Area of Pathology, School of Dentistry, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Sérgio Vitorino Cardoso
- Area of Pathology, School of Dentistry, Federal University of Uberlândia, Uberlândia, MG, Brazil.
| |
Collapse
|
7
|
The opposing roles of laminin-binding integrins in cancer. Matrix Biol 2017; 57-58:213-243. [DOI: 10.1016/j.matbio.2016.08.007] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/02/2016] [Accepted: 08/17/2016] [Indexed: 02/06/2023]
|
8
|
Qin Y, Rodin S, Simonson OE, Hollande F. Laminins and cancer stem cells: Partners in crime? Semin Cancer Biol 2016; 45:3-12. [PMID: 27491691 DOI: 10.1016/j.semcancer.2016.07.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/30/2016] [Indexed: 01/31/2023]
Abstract
As one of the predominant protein families within the extracellular matrix both structurally and functionally, laminins have been shown to be heavily involved in tumor progression and drug resistance. Laminins participate in key cellular events for tumor angiogenesis, cell invasion and metastasis development, including the regulation of epithelial-mesenchymal transition and basement membrane remodeling, which are tightly associated with the phenotypic characteristics of stem-like cells, particularly in the context of cancer. In addition, a great deal of studies and reports has highlighted the critical roles of laminins in modulating stem cell phenotype and differentiation, as part of the stem cell niche. Stemming from these discoveries a growing body of literature suggests that laminins may act as regulators of cancer stem cells, a tumor cell subpopulation that plays an instrumental role in long-term cancer maintenance, metastasis development and therapeutic resistance. The accumulating evidence in this emerging research area suggests that laminins represent potential therapeutic targets for anti-cancer treatments against cancer stem cells, and that they may be used as predictive and prognostic markers to inform clinical management and improve patient survival.
Collapse
Affiliation(s)
- Yan Qin
- Department of Pathology, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Sergey Rodin
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.
| | - Oscar E Simonson
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden; Department of Cardiothoracic Surgery, Uppsala University Hospital, Uppsala, Sweden.
| | - Frédéric Hollande
- Department of Pathology, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
9
|
Gomes JO, de Vasconcelos Carvalho M, Fonseca FP, Gondak RO, Lopes MA, Vargas PA. CD1a+ and CD83+ Langerhans cells are reduced in lower lip squamous cell carcinoma. J Oral Pathol Med 2016; 45:433-9. [PMID: 26661374 DOI: 10.1111/jop.12389] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Actinic cheilitis (AC) is a potentially malignant lesion diagnosed in the lip of patients chronically exposed to the sun that may give rise to a fully invasive lower lip squamous cell carcinoma (LLSCC). It is known that ultraviolet radiation causes dendritic cells (DCs) depletion in the epidermis, but the role of this cellular population in lip cancer progression remains uncertain. Therefore, this study investigated the distribution of DCs in normal, dysplastic and neoplastic tissues of the lower lip. METHODS Thirteen cases of lower lip mucocele, 42 of ACs and 21 of LLSCC were retrieved and original diagnoses confirmed by two oral pathologists, who further classified ACs as low- and high-risk lesions. Immunoreactions against CD1a and CD83 identified immature and mature DCs, respectively. RESULTS Immature CD1a+ Langerhans cells (LCs) were significantly decreased in LLSCC when compared to morphologically normal (P < 0.009) and dysplastic epitheliums (P < 0.003), whereas mature CD83+ LCs were significantly decreased in LLSCC when compared to normal epithelium (P = 0.038). There was no significant difference between low- and high-risk ACs regarding CD1a+ and CD83+ LCs (P > 0.05), but ACs demonstrated a lower concentration of CD1a+ LCs than normal epithelium (P < 0.009). There was no significant difference in the distribution of CD1a+ and CD83+ interstitial dendritic cells (IDCs) in the connective tissue among the studied groups (P > 0.05). CONCLUSION These results suggest that depletion of epithelial LCs, but not IDCs in the connective tissue, would represent an important step for lip cancer development.
Collapse
Affiliation(s)
| | | | | | | | | | - Pablo Agustin Vargas
- Department of Oral Diagnosis, University of Campinas, Piracicaba, Brazil
- Department of Oral Pathology and Oral Biology, Faculty of Health Sciences, School of Dentistry, University of Pretoria, Pretoria, South Africa
| |
Collapse
|