1
|
Hao W, Lin F, Kong W, Shi H, Dong H, Guan Z, Liu G, Wang X, Wang L, Liu M, Jiang Y. Significant role and the underly mechanism of cullin-1 in chronic obstructive pulmonary disease. Open Med (Wars) 2024; 19:20241070. [PMID: 39588388 PMCID: PMC11587924 DOI: 10.1515/med-2024-1070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/14/2024] [Accepted: 09/28/2024] [Indexed: 11/27/2024] Open
Abstract
Background This study investigated the role and mechanisms of cullin-1 (CUL1) in chronic obstructive pulmonary disease (COPD). Methods Cigarette smoke extract (CSE)-treated mouse pulmonary microvascular endothelial cells (mPMECs) and cigarette smoke inhalation (CSI)-stimulated mice were used to construct in vitro and in vivo COPD models, respectively. CUL1 expression was assessed using reverse transcriptase-quantitative polymerase chain reaction, Western blotting, and immunohistochemistry. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and flow cytometry were used to detect cell viability and apoptosis, respectively. We conducted an enzyme-linked immunosorbent assay on mPMECs and bronchoalveolar lavage fluid (BALF) to detect inflammatory factors. Reactive oxygen species, malondialdehyde, and superoxide dismutase were detected using the corresponding kits. The histological characteristics of the lung tissues were determined by hematoxylin and eosin staining. Results CUL1 expression was downregulated in COPD. CUL1 overexpression significantly promoted cell viability, reduced cell apoptosis, and inhibited inflammatory responses and oxidative stress in CSE-treated mPMECs. These changes were reversed by the p53 agonist nutlin-3. In addition, CUL1 overexpression significantly relieved COPD in mice, as confirmed by the reduced secretion of inflammatory factors in BALF, inhibited oxidative stress response, and improved lung function. Conclusion CUL1 plays a protective role in CSE-treated mPMECs and CSI-stimulated mice by inhibiting the p53 signaling pathway.
Collapse
Affiliation(s)
- Wenbo Hao
- Cardiothoracic Surgery, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161006, China
| | - Fei Lin
- Endocrinology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161006, China
| | - Weili Kong
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161006, China
| | - Hanbing Shi
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161006, China
| | - Haiying Dong
- Pathology and Pathophysiology, Qiqihar Medical University, Qiqihar, 161006, China
| | - Zhanjiang Guan
- Intensive Care Unit, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161006, China
| | - Guohua Liu
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161006, China
| | - Xiao Wang
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161006, China
| | - Li Wang
- Radiology Imaging Diagnosis Center, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161006, China
| | - Moran Liu
- Test Center, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161006, China
| | - Yunfei Jiang
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Qiqihar Medical University, No. 27 Taishun Street, Tiefeng District, Qiqihar, 161006, China
| |
Collapse
|
2
|
Overall survival prediction of non-small cell lung cancer by integrating microarray and clinical data with deep learning. Sci Rep 2020; 10:4679. [PMID: 32170141 PMCID: PMC7069964 DOI: 10.1038/s41598-020-61588-w] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 02/24/2020] [Indexed: 02/07/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the most common lung cancers worldwide. Accurate prognostic stratification of NSCLC can become an important clinical reference when designing therapeutic strategies for cancer patients. With this clinical application in mind, we developed a deep neural network (DNN) combining heterogeneous data sources of gene expression and clinical data to accurately predict the overall survival of NSCLC patients. Based on microarray data from a cohort set (614 patients), seven well-known NSCLC biomarkers were used to group patients into biomarker- and biomarker+ subgroups. Then, by using a systems biology approach, prognosis relevance values (PRV) were then calculated to select eight additional novel prognostic gene biomarkers. Finally, the combined 15 biomarkers along with clinical data were then used to develop an integrative DNN via bimodal learning to predict the 5-year survival status of NSCLC patients with tremendously high accuracy (AUC: 0.8163, accuracy: 75.44%). Using the capability of deep learning, we believe that our prediction can be a promising index that helps oncologists and physicians develop personalized therapy and build the foundation of precision medicine in the future.
Collapse
|
3
|
Ren ZQ, Yan WJ, Zhang XZ, Zhang PB, Zhang C, Chen SK. CUL1 Knockdown Attenuates the Adhesion, Invasion, and Migration of Triple-Negative Breast Cancer Cells via Inhibition of Epithelial-Mesenchymal Transition. Pathol Oncol Res 2019; 26:1153-1163. [PMID: 31175550 DOI: 10.1007/s12253-019-00681-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 05/31/2019] [Indexed: 12/18/2022]
Abstract
Cullin-1 (CUL1) is an important factor for tumor growth and a potential therapeutic target for breast cancer therapy, but the molecular mechanism in triple-negative breast cancer (TNBC) is unknown. In the present study, CUL1 shRNA was transfected into BT549 and MDA-MB-231 breast cancer cells. Cell morphology, adhesion, invasion, and migration assays were carried out in the CUL1 knockdown cells. Additionally, protein expression levels of epithelial-mesenchymal transition (EMT)-related factors, Akt phosphorylation at S473 (pAkt), glycogen synthase kinase-3β phosphorylation at ser9 (pGSK3β), cytoplasmic and nuclear β-catenin, and epidermal growth factor receptor phosphorylation at Tyr1068 (pEGFR) were detected by Western blot analysis. CUL1 knockdown significantly suppressed the adhesion, invasion and migration capabilities of the cells, and decreased the expression of Snail1/2, ZEB1/2, Twist1/2, Vimentin, and increased the expression of Cytokeratin 18 (CK18). Moreover, CUL1 knockdown significantly downregulated the phosphorylated levels of Akt, GSK3β, and EGFR, inhibiting the translocation of β-catenin from the cytoplasm to the nucleus. The results indicate that CUL1 knockdown prohibited the metastasis behaviors of breast cancer cells through downregulation (dephosphorylation) of the EMT signaling pathways of EGFR and Akt/GSK3β/β-catenin in breast cancer. These results strongly suggested that reinforcement of the EMT might be a key for CUL1 to accelerate TNBC metastasis.
Collapse
Affiliation(s)
- Ze-Qiang Ren
- General Surgery of the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221006, People's Republic of China.
| | - Wen-Jing Yan
- School of Nursing, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, People's Republic of China
| | - Xiu-Zhong Zhang
- General Surgery of the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221006, People's Republic of China
| | - Peng-Bo Zhang
- General Surgery of the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221006, People's Republic of China
| | - Chong Zhang
- General Surgery of the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221006, People's Republic of China
| | - Shou-Kun Chen
- General Surgery of the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221006, People's Republic of China
| |
Collapse
|
4
|
Wei DM, Chen WJ, Meng RM, Zhao N, Zhang XY, Liao DY, Chen G. Augmented expression of Ki-67 is correlated with clinicopathological characteristics and prognosis for lung cancer patients: an up-dated systematic review and meta-analysis with 108 studies and 14,732 patients. Respir Res 2018; 19:150. [PMID: 30103737 PMCID: PMC6088431 DOI: 10.1186/s12931-018-0843-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/13/2018] [Indexed: 02/08/2023] Open
Abstract
Background Lung cancer ranks as the leading cause of cancer-related deaths worldwide and we performed this meta-analysis to investigate eligible studies and determine the prognostic effect of Ki-67. Methods In total, 108 studies in 95 articles with 14,732 patients were found to be eligible, of which 96 studies reported on overall survival (OS) and 19 studies reported on disease-free survival (DFS) with relation to Ki-67 expression in lung cancer patients. Results The pooled hazard ratio (HR) indicated that a high Ki-67 level could be a valuable prognostic factor for lung cancer (HR = 1.122 for OS, P < 0.001 and HR = 1.894 for DFS, P < 0.001). Subsequently, the results revealed that a high Ki-67 level was significantly associated with clinical parameters of lung cancer including age (odd ratio, OR = 1.246 for older patients, P = 0.018), gender (OR = 1.874 for males, P < 0.001) and smoking status (OR = 3.087 for smokers, P < 0.001). Additionally, significant positive correlations were found between Ki-67 overexpression and poorer differentiation (OR = 1.993, P = 0.003), larger tumor size (OR = 1.436, P = 0.003), and higher pathologic stages (OR = 1.867 for III-IV, P < 0.001). Furthermore, high expression of Ki-67 was found to be a valuable predictive factor for lymph node metastasis positive (OR = 1.653, P < 0.001) and advanced TNM stages (OR = 1.497 for stage III-IV, P = 0.024). Finally, no publication bias was detected in any of the analyses. Conclusions This study highlights that the high expression of Ki-67 is clinically relevant in terms of the prognostic and clinicopathological characteristics for lung cancer. Nevertheless, more prospective well-designed studies are warranted to validate these findings. Electronic supplementary material The online version of this article (10.1186/s12931-018-0843-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dan-Ming Wei
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China
| | - Wen-Jie Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China
| | - Rong-Mei Meng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China
| | - Na Zhao
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China
| | - Xiang-Yu Zhang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China
| | - Dan-Yu Liao
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China.
| |
Collapse
|
5
|
Li H, Wang F, Fei Y, Lei Y, Lu F, Guo P, Li W, Xun X. Aberrantly expressed genes and miRNAs in human hypopharyngeal squamous cell carcinoma based on RNA‑sequencing analysis. Oncol Rep 2018; 40:647-658. [PMID: 29916534 PMCID: PMC6072292 DOI: 10.3892/or.2018.6506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 06/04/2018] [Indexed: 01/18/2023] Open
Abstract
The aim of the present study was to investigate the key genes, miRNAs and pathways in hypopharyngeal squamous cell carcinoma (HPSCC) and to elucidate the mechanisms underlying HPSCC development. The gene and microRNA (miRNA) expression profiles of HPSCC tissues and adjacent normal tissues from three subjects were obtained. Differentially expressed genes (DEGs) and differentially expressed miRNAs were identified in HPSCC. Functional annotation and protein-protein interaction (PPI) network were conducted to elucidate the biological functions of DEGs. A total of 160 DEGs (16 upregulated and 144 downregulated genes) and 79 differentially expressed miRNAs (48 upregulated and 31 downregulated miRNAs) were identified in HPSCC. The deregulated genes were significantly involved in spliceosome, cell cycle and RNA degradation. In the PPI network, S-phase kinase associated protein 1 (SKP1), non-POU domain containing octamer binding (NONO) and zinc activated ion channel (ZACN) were identified as hub proteins. On the whole, the present study may help to gain a comprehensive understanding of tumorigenesis in HPSCC and provide valuable information for early diagnosis and drug design of HPSCC in future research.
Collapse
Affiliation(s)
- Hu Li
- Department of Otolaryngology, Head and Neck Surgery, The First People's Hospital of Jining, Jining, Shandong 272000, P.R. China
| | - Fuling Wang
- Department of Obstetrics, The First Maternity and Child Health Hospital of Jining, Jining, Shandong 272000, P.R. China
| | - Yonghua Fei
- Department of Otolaryngology, Head and Neck Surgery, The First People's Hospital of Jining, Jining, Shandong 272000, P.R. China
| | - Yanhua Lei
- Department of Otolaryngology, Head and Neck Surgery, The First People's Hospital of Jining, Jining, Shandong 272000, P.R. China
| | - Fengxiang Lu
- Department of Otolaryngology, Head and Neck Surgery, The First People's Hospital of Jining, Jining, Shandong 272000, P.R. China
| | - Ping Guo
- Department of Otolaryngology, Head and Neck Surgery, The First People's Hospital of Jining, Jining, Shandong 272000, P.R. China
| | - Wei Li
- Department of Otolaryngology, Head and Neck Surgery, The First People's Hospital of Jining, Jining, Shandong 272000, P.R. China
| | - Xuehong Xun
- Department of Otolaryngology, Head and Neck Surgery, The First People's Hospital of Jining, Jining, Shandong 272000, P.R. China
| |
Collapse
|
6
|
Wang W, Deng J, Wang Q, Yao Q, Chen W, Tan Y, Ge Z, Zhou J, Zhou Y. Synergistic role of Cul1 and c-Myc: Prognostic and predictive biomarkers in colorectal cancer. Oncol Rep 2017; 38:245-252. [PMID: 28560438 DOI: 10.3892/or.2017.5671] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 05/03/2017] [Indexed: 11/06/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors, and its high rates of recurrence and metastasis are the important causes of treatment failure in CRC. Therefore, the development of valuable molecular markers to accurately predict the prognosis of CRC patients is vital. In the present study, we determined the expression of Cullin1 (Cul1) and c-Myc in a CRC tissue microarray containing 470 cancer and corresponding normal tissues by immunohistochemistry. We found that Cul1 and c-Myc expression was significantly upregulated in the CRC cancer tissues compared with that noted in the adjacent non-cancer tissues. High Cul1 expression in cancer tissues was associated with depth of invasion (P=0.005), lymph node metastasis (P=0.001) and TNM stage (P=0.015). High c-Myc expression in cancer tissues was significantly positively association with age (P=0.004), depth of invasion (P<0.001), lymph node metastasis (P<0.001) and TNM stage (P<0.001). Multivariate Cox regression analysis revealed that Cul1 or c-Myc expression was an independent and unfavorable prognostic factor for CRC patients [hazard ratio (HR), 0.749, 95% confidence interval (CI), 0.563-0.996, P<0.05; and HR, 0.384, 95% CI, 0.257-0.472, P<0.001, respectively]. Furthermore, Cul1 and c-Myc exhibited synergistic potential for the prediction of CRC prognosis, and the patients with low expression of both Cul1 and c-Myc had a favorable survival outcome (P<0.001).
Collapse
Affiliation(s)
- Weimin Wang
- Department of Oncology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu 214200, P.R. China
| | - Jianliang Deng
- Department of Oncology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu 214200, P.R. China
| | - Qianqian Wang
- Department of Oncology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu 214200, P.R. China
| | - Qiang Yao
- Department of Oncology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu 214200, P.R. China
| | - Wenjiao Chen
- Department of Oncology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu 214200, P.R. China
| | - Yongfei Tan
- Department of Oncology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu 214200, P.R. China
| | - Zhijun Ge
- Department of Oncology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu 214200, P.R. China
| | - Jianwei Zhou
- Department of Molecular Cell Biology and Toxicology, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yan Zhou
- Department of Oncology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu 214200, P.R. China
| |
Collapse
|
7
|
Liu YQ, Wang XL, Cheng X, Lu YZ, Wang GZ, Li XC, Zhang J, Wen ZS, Huang ZL, Gao QL, Yang LN, Cheng YX, Tao SC, Liu J, Zhou GB. Skp1 in lung cancer: clinical significance and therapeutic efficacy of its small molecule inhibitors. Oncotarget 2016; 6:34953-67. [PMID: 26474281 PMCID: PMC4741501 DOI: 10.18632/oncotarget.5547] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/29/2015] [Indexed: 12/24/2022] Open
Abstract
Skp1 is an essential adaptor protein of the Skp1-Cul1-F-box protein complex and is able to stabilize the conformation of some ubiquitin E3 ligases. However, the role Skp1 plays during tumorigenesis remains unclear and Skp1-targeting agent is lacking. Here we showed that Skp1 was overexpressed in 36/64 (56.3%) of non-small cell lung cancers, and elevated Skp1 was associated with poor prognosis. By structure-based high-throughput virtual screening, we found some Skp1-targeting molecules including a natural compound 6-O-angeloylplenolin (6-OAP). 6-OAP bound Skp1 at sites critical to Skp1-Skp2 interaction, leading to dissociation and proteolysis of oncogenic E3 ligases NIPA, Skp2, and β-TRCP, and accumulation of their substrates Cyclin B1, P27 and E-Cadherin. 6-OAP induced prometaphase arrest and exerted potent anti-lung cancer activity in two murine models and showed low adverse effect. These results indicate that Skp1 is critical to lung cancer pathogenesis, and Skp1 inhibitor inactivates crucial oncogenic E3 ligases and exhibits significant therapeutic potentials.
Collapse
Affiliation(s)
- Yong-Qiang Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences & University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao-Lu Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences & University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Cheng
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences & University of Chinese Academy of Sciences, Beijing 100101, China
| | - Yong-Zhi Lu
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Gui-Zhen Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences & University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xin-Chun Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences & University of Chinese Academy of Sciences, Beijing 100101, China
| | - Jian Zhang
- School of Life Sciences, Anhui University, Hefei 230039, China
| | - Zhe-Sheng Wen
- Department of Thoracic Surgery, The Cancer Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zhi-Liang Huang
- Department of Thoracic Surgery, The Cancer Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Qin-Lei Gao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Li-Na Yang
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong-Xian Cheng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Sheng-Ce Tao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinsong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Guang-Biao Zhou
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences & University of Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
8
|
Chen L, Liu T, Tu Y, Rong D, Cao Y. Cul1 promotes melanoma cell proliferation by promoting DEPTOR degradation and enhancing cap-dependent translation. Oncol Rep 2015; 35:1049-56. [PMID: 26717892 DOI: 10.3892/or.2015.4442] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 09/15/2015] [Indexed: 11/06/2022] Open
Abstract
Cullin1 (Cul1) serves as a rigid scaffold in the SCF (Skp1/Cullin/Rbx1/F-box protein) E3 ubiquitin ligase complex and has been found to be overexpressed in melanoma and to enhance melanoma cell proliferation by promoting G1-S phase transition. However, the underlying mechanisms involved in the regulation of melanoma cell proliferation by Cul1 remain poorly understood. In the present study, we found that Cul1 promoted mTORC1 activity and cap-dependent translation by enhancing the ubiquitination and degradation of DEPTOR. We further showed that suppression of the eIF4F complex assembly profoundly inhibited the promoting effect of Cul1 on melanoma cell proliferation, while enhancement of the eIF4F complex activity reversed the inhibitory effect of Cul1 depletion on melanoma cell proliferation, indicating that Cul1 contributes to melanoma cell proliferation by activating cap‑dependent translation. These data elucidate the role of Cul1 in cap-dependent translation and improves our understanding of the underlying mechanisms involved in the regulation of melanoma cell proliferation by Cul1.
Collapse
Affiliation(s)
- Lan Chen
- Department of Dermatology, The Affiliated Hospital of Guiyang Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Tianyu Liu
- Department of Dermatology, The Affiliated Hospital of Guiyang Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yunhua Tu
- Department of Dermatology, The Affiliated Hospital of Guiyang Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Dongyun Rong
- Department of Dermatology, The Affiliated Hospital of Guiyang Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yu Cao
- Department of Dermatology, The Affiliated Hospital of Guiyang Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
9
|
Hou YC, Deng JY. Role of E3 ubiquitin ligases in gastric cancer. World J Gastroenterol 2015; 21:786-793. [PMID: 25624711 PMCID: PMC4299330 DOI: 10.3748/wjg.v21.i3.786] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/01/2014] [Accepted: 12/01/2014] [Indexed: 02/07/2023] Open
Abstract
E3 ubiquitin ligases have an important role in carcinogenesis and include a large family of proteins that catalyze the ubiquitination of many protein substrates for targeted degradation by the 26S proteasome. So far, E3 ubiquitin ligases have been reported to have a role in a variety of biological processes including cell cycle regulation, cell proliferation, and apoptosis. Recently, several kinds of E3 ubiquitin ligases were demonstrated to be generally highly expressed in gastric cancer (GC) tissues and to contribute to carcinogenesis. In this review, we summarize the current knowledge and information about the clinical significance of E3 ubiquitin ligases in GC. Bortezomib, a proteasome inhibitor, encouraged the evaluation of other components of the ubiquitin proteasome system for pharmaceutical intervention. The clinical value of novel treatment strategies targeting aberrant E3 ubiquitin ligases for GC are discussed in the review.
Collapse
|
10
|
Cullin1 regulates proliferation, migration and invasion of glioma cells. Med Oncol 2014; 31:227. [PMID: 25201578 DOI: 10.1007/s12032-014-0227-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 09/02/2014] [Indexed: 10/24/2022]
Abstract
This study was designed to explore the role of Cullin1 (Cul1) in the pathogenesis of human glioma and to investigate the role of Cul1 in the growth, migration and invasion of glioma cells. Expression of Cul1 in 191 glioma tissues, 8 normal brain tissues and 8 tumor adjacent normal brain tissues was analyzed by tissue microarray and immunohistochemistry. Cul1 expression in human glioblastoma cells was knocked down by specific siRNA to study the effect of down-regulation of Cul1 on proliferation, invasion and migration of glioma cells. Our results showed that Cul1 expression increased significantly in tissues from the benign tumor and malignant tumor in comparison with those from the tumor-adjacent normal brain (P<0.05 for both). We did not find any correlation between Cul1 expression and clinicopathological parameters. In addition, we found that knockdown of Cul1 by RNA interference markedly inhibited cell proliferation and caused cessation of cell cycle. This reduced cell proliferation was due to G1 phase arrest as cyclinA, cyclinD1 and cyclinE were diminished, whereas p21 and p27 were up-regulated. We further demonstrated that silencing of Cul1 in glioma cells inhibited the cell migration and invasion abilities, and down-regulation of MMP-2 and MMP-9 expression greatly contributed to the reduced cell invasion and migration abilities. Our data indicated that Cul1 expression significantly increased in human glioma, and it may be involved in proliferation, migration and invasion of glioma cells.
Collapse
|