1
|
Wu Y, Yang Y, Lin Y, Ding Y, Liu Z, Xiang L, Picardo M, Zhang C. Emerging Role of Fibroblasts in Vitiligo: A Formerly Underestimated Rising Star. J Invest Dermatol 2024; 144:1696-1706. [PMID: 38493384 DOI: 10.1016/j.jid.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 03/18/2024]
Abstract
Vitiligo is a disfiguring depigmentation disorder characterized by loss of melanocytes. Although numerous studies have been conducted on the pathogenesis of vitiligo, the underlying mechanisms remain unclear. Although most studies have focused on melanocytes and keratinocytes, growing evidence suggests the involvement of dermal fibroblasts, residing deeper in the skin. This review aims to elucidate the role of fibroblasts in both the physiological regulation of skin pigmentation and their pathological contribution to depigmentation, with the goal of shedding light on the involvement of fibroblasts in vitiligo. The topics covered in this review include alterations in the secretome, premature senescence, autophagy dysfunction, abnormal extracellular matrix, autoimmunity, and metabolic changes.
Collapse
Affiliation(s)
- Yue Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yiwen Yang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yi Lin
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yuecen Ding
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Ziqi Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Leihong Xiang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Mauro Picardo
- Istituto Dermopatico Immacolata (IDI)- Istituto di Ricovero e Cura a Carattere Scientifico (RCCS), Rome, Italy.
| | - Chengfeng Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
2
|
Yang Y, Wu X, Lu X, Wang C, Xiang L, Zhang C. Identification and Validation of Autophagy-Related Genes in Vitiligo. Cells 2022; 11:cells11071116. [PMID: 35406685 PMCID: PMC8997611 DOI: 10.3390/cells11071116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 02/07/2023] Open
Abstract
Vitiligo is a common depigmented disease with unclear pathogenesis. Autophagy is crucial for maintaining cellular homeostasis and has been linked to a variety of autoimmune disorders; however, there have been no reports exploring the involvement of autophagy-related genes (ARGs) in vitiligo using bioinformatics methodologies. In this study, RNA-sequencing technology was used to identify the differentially expressed genes (DEGs) and the Human Autophagy Database (HADb) was overlapped to identify differentially expressed autophagy-related genes (DEARGs) in stable non-segmental vitiligo (NSV). Bioinformatics analyses were conducted with R packages and Ingenuity Pathways Analysis (IPA). DEARGs were further confirmed with qRT-PCR. Critical autophagy markers were detected with Western blotting analysis. We identified a total of 39 DEARGs in vitiligo lesions. DEARGs-enriched canonical pathways, diseases and bio functions, upstream regulators, and networks were discovered. qRT-PCR confirmed the significant increases in FOS and RGS19 in vitiligo lesions. Lower microtubule-associated protein 1 light chain (LC3) II/LC3I ratio and higher sequestosome 1 (SQSTM1, p62) expression were found in vitiligo lesions. In conclusion, this study provided a new insight that autophagy dysregulation appeared in stable vitiligo lesions and might be involved in the etiology of vitiligo by taking part in multiple pathways and bio functions.
Collapse
|
3
|
Banerjee S, Nara R, Chakraborty S, Chowdhury D, Haldar S. Integrin Regulated Autoimmune Disorders: Understanding the Role of Mechanical Force in Autoimmunity. Front Cell Dev Biol 2022; 10:852878. [PMID: 35372360 PMCID: PMC8971850 DOI: 10.3389/fcell.2022.852878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
The pathophysiology of autoimmune disorders is multifactorial, where immune cell migration, adhesion, and lymphocyte activation play crucial roles in its progression. These immune processes are majorly regulated by adhesion molecules at cell–extracellular matrix (ECM) and cell–cell junctions. Integrin, a transmembrane focal adhesion protein, plays an indispensable role in these immune cell mechanisms. Notably, integrin is regulated by mechanical force and exhibit bidirectional force transmission from both the ECM and cytosol, regulating the immune processes. Recently, integrin mechanosensitivity has been reported in different immune cell processes; however, the underlying mechanics of these integrin-mediated mechanical processes in autoimmunity still remains elusive. In this review, we have discussed how integrin-mediated mechanotransduction could be a linchpin factor in the causation and progression of autoimmune disorders. We have provided an insight into how tissue stiffness exhibits a positive correlation with the autoimmune diseases’ prevalence. This provides a plausible connection between mechanical load and autoimmunity. Overall, gaining insight into the role of mechanical force in diverse immune cell processes and their dysregulation during autoimmune disorders will open a new horizon to understand this physiological anomaly.
Collapse
|
4
|
Custurone P, Di Bartolomeo L, Irrera N, Borgia F, Altavilla D, Bitto A, Pallio G, Squadrito F, Vaccaro M. Role of Cytokines in Vitiligo: Pathogenesis and Possible Targets for Old and New Treatments. Int J Mol Sci 2021; 22:ijms222111429. [PMID: 34768860 PMCID: PMC8584117 DOI: 10.3390/ijms222111429] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 02/07/2023] Open
Abstract
Vitiligo is a chronic autoimmune dermatosis of which the pathogenesis remains scarcely known. A wide variety of clinical studies have been proposed to investigate the immune mediators which have shown the most recurrency. However, such trials have produced controversial results. The aim of this review is to summarize the main factors involved in the pathogenesis of vitiligo, the latest findings regarding the cytokines involved and to evaluate the treatments based on the use of biological drugs in order to stop disease progression and achieve repigmentation. According to the results, the most recurrent studies dealt with inhibitors of IFN-gamma and TNF-alpha. It is possible that, given the great deal of cytokines involved in the lesion formation process of vitiligo, other biologics could be developed in the future to be used as adjuvants and/or to entirely replace the treatments that have proven to be unsatisfactory so far.
Collapse
Affiliation(s)
- Paolo Custurone
- Department of Clinical and Experimental Medicine, Dermatology, University of Messina, Via C. Valeria, Gazzi, 98125 Messina, Italy; (P.C.); (L.D.B.); (F.B.)
| | - Luca Di Bartolomeo
- Department of Clinical and Experimental Medicine, Dermatology, University of Messina, Via C. Valeria, Gazzi, 98125 Messina, Italy; (P.C.); (L.D.B.); (F.B.)
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, Pharmacology, University of Messina, Via C. Valeria, Gazzi, 98125 Messina, Italy; (N.I.); (D.A.); (A.B.); (G.P.); (F.S.)
| | - Francesco Borgia
- Department of Clinical and Experimental Medicine, Dermatology, University of Messina, Via C. Valeria, Gazzi, 98125 Messina, Italy; (P.C.); (L.D.B.); (F.B.)
| | - Domenica Altavilla
- Department of Clinical and Experimental Medicine, Pharmacology, University of Messina, Via C. Valeria, Gazzi, 98125 Messina, Italy; (N.I.); (D.A.); (A.B.); (G.P.); (F.S.)
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, Pharmacology, University of Messina, Via C. Valeria, Gazzi, 98125 Messina, Italy; (N.I.); (D.A.); (A.B.); (G.P.); (F.S.)
| | - Giovanni Pallio
- Department of Clinical and Experimental Medicine, Pharmacology, University of Messina, Via C. Valeria, Gazzi, 98125 Messina, Italy; (N.I.); (D.A.); (A.B.); (G.P.); (F.S.)
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, Pharmacology, University of Messina, Via C. Valeria, Gazzi, 98125 Messina, Italy; (N.I.); (D.A.); (A.B.); (G.P.); (F.S.)
| | - Mario Vaccaro
- Department of Clinical and Experimental Medicine, Dermatology, University of Messina, Via C. Valeria, Gazzi, 98125 Messina, Italy; (P.C.); (L.D.B.); (F.B.)
- Correspondence: ; Tel.: +39-090-2213-933
| |
Collapse
|
5
|
Zhao SJ, Jia H, Xu XL, Bu WB, Zhang Q, Chen X, Ji J, Sun JF. Identification of the Role of Wnt/β-Catenin Pathway Through Integrated Analyses and in vivo Experiments in Vitiligo. Clin Cosmet Investig Dermatol 2021; 14:1089-1103. [PMID: 34511958 PMCID: PMC8423189 DOI: 10.2147/ccid.s319061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/14/2021] [Indexed: 01/18/2023]
Abstract
Purpose Vitiligo is an acquired depigmentation skin disease, which affects an average of 1% of the world’s population. The purpose of this study is to identify the key genes and pathways responsible for vitiligo and find new therapeutic targets. Methods The datasets GSE65127, GSE53146, and GSE75819 were downloaded from the Gene Expression Omnibus (GEO) database. R language was used to identify the differentially expressed genes (DEGs) between lesional skin of vitiligo and non-lesional skin. Next, the key pathways were obtained by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. The protein–protein interaction (PPI) networks were conducted by STRING database and Cytoscape software. Subsequently, module analysis was performed by Cytoscape. Among these results, the Wnt/β-catenin pathway and melanogenesis pathway caught our attention. The expression level of β-catenin, microphthalmia-associated transcription factor (MITF) and tyrosinase (TYR) was detected by immunofluorescence in vitiligo lesions and healthy skin. Moreover, zebrafish was treated with XAV-939, an inhibitor of the Wnt/β-catenin pathway. After that, the area of melanin granules as a percentage of the head area was measured. The mRNA expression of β-catenin, lymphoid-enhancing factor 1(lef1), tyr and mitf were detected by q-PCR (quantitative polymerase chain reaction) in zebrafish (Danio rerio). Results A total of 2442 DEGs were identified, including 1068 upregulated and 1374 downregulated DEGs. The key pathways were identified by GO and KEGG analyses, such as “NOD-like receptor signaling pathway”, “Wnt signaling pathway”, “Melanogenesis”, “mTOR signaling pathway”, “PI3K-Akt signaling pathway”, “Calcium signaling pathway” and “Rap1 signaling pathway”. The immunofluorescence results showed that the level of β-catenin, MITF and TYR was significantly downregulated in vitiligo lesional skin. In zebrafish, the mean percentage area of melanin granules and the expression of β-catenin, lef1, tyr and mitf were decreased after treated with XAV-939. Conclusion The present study identified key genes and signaling pathways associated with the pathophysiology of vitiligo. Among them, the Wnt/β-catenin pathway played an essential role in pigmentation and could be a breakthrough point in vitiligo treatment.
Collapse
Affiliation(s)
- Si-Jia Zhao
- Department of Pathology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, People's Republic of China
| | - Hong Jia
- Department of Dermatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, People's Republic of China
| | - Xiu-Lian Xu
- Department of Pathology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, People's Republic of China
| | - Wen-Bo Bu
- Department of Dermatologic Surgery, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, People's Republic of China
| | - Qian Zhang
- Department of Dermatologic Surgery, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, People's Republic of China
| | - Xi Chen
- Department of Medicine 3, Universitätsklinikum Erlangen, Friedrich Alexander University Erlangen Nuremberg, Erlangen, Bavaria, Germany
| | - Juan Ji
- Department of Dermatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, People's Republic of China
| | - Jian-Fang Sun
- Department of Pathology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
6
|
Abe Y, Hozumi Y, Okamura K, Suzuki T. Expression of discoidin domain receptor 1 and E-cadherin in epidermis affects melanocyte behavior in rhododendrol-induced leukoderma mouse model. J Dermatol 2020; 47:1330-1334. [PMID: 32770866 DOI: 10.1111/1346-8138.15534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/04/2020] [Indexed: 01/10/2023]
Abstract
Vitiligo is a depigmentation disease characterized by gradual loss of melanin and melanocytes from the epidermis. The mechanism of melanocyte loss is not yet known. In this report, we showed that the expression of discoidin domain receptor 1 and E-cadherin, known adhesion molecules, was variable or absent in the epidermis of rhododendrol-induced leukoderma (RDIL) mice during the depigmentation process. Our findings suggest that melanocyte damage by rhododendrol promotes reduction of adhesion molecules not only in melanocytes but also in keratinocytes, and this is associated with the detachment of melanocytes from the basal layer.
Collapse
Affiliation(s)
- Yuko Abe
- Department of Dermatology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Yutaka Hozumi
- Department of Dermatology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Ken Okamura
- Department of Dermatology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Tamio Suzuki
- Department of Dermatology, Yamagata University Faculty of Medicine, Yamagata, Japan
| |
Collapse
|
7
|
Srivastava N, Bishnoi A, Mehta S, Rani S, Kumar R, Bhardwaj S, Sendhil Kumaran M, Keshavamurthy V, Gupta S, Parsad D. Aberrant ETS-1 signalling impedes the expression of cell adhesion molecules and matrix metalloproteinases in non-segmental vitiligo. Exp Dermatol 2020; 29:539-547. [PMID: 32350934 DOI: 10.1111/exd.14107] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/03/2020] [Accepted: 04/26/2020] [Indexed: 01/14/2023]
Abstract
Cell adhesion is a complex process that involves multiple molecules on the cell surface (ie cell adhesion molecules [CAMs]), surrounding cells and extracellular matrix (ECM). Repigmentation in vitiligo is dependent on the ECM remodelling and cellular migration, primarily attributed to the transcriptional activation of matrix metalloproteinases (MMPs). In this study, we aimed to demonstrate the role of ETS-1 signalling in the regulation of MMPs and CAMs. Therefore, we studied the expression of ETS-1, MMPs (MMP-2, MMP-9) and CAMs including E-cadherin, ITGA-1 and ICAM-1 in vitiligo (both active and stable) ex vivo. Further, we compared melanocyte morphology and their adhesion towards collagen IV and laminin between control and vitiligo groups in vitro. Also, we silenced ETS-1 in melanocytes cultured from control skin and observed post-silencing effect on above-mentioned MMPs and CAMs. We perceived absent ETS-1 and significantly reduced CAMs and MMPs in vitiligo compared with normal skin. Scanning electron microscopy (SEM) revealed a translucent material surrounding individual melanocytes in stable vitiligo and controls, whereas active vitiligo melanocytes demonstrated loss of this extracellular substance. Adhesion assays revealed significantly decreased binding of cultured melanocytes to collagen IV and laminin V plates in both stable and active vitiligo. Importantly, ETS-1 silencing resulted in significantly reduced expression of CAMs and MMPs. In conclusion, absent ETS-1 expression in both stable and active non-segmental vitiligo seems to impede the expression of CAMs, apart from MMPs, probably leading to progressive depigmentation in active disease and absence of spontaneous repigmentation in stable disease.
Collapse
Affiliation(s)
- Niharika Srivastava
- Department of Dermatology, Venereology and Leprosy, PGIMER, Chandigarh, India.,Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, India
| | - Anuradha Bishnoi
- Department of Dermatology, Venereology and Leprosy, PGIMER, Chandigarh, India
| | - Sakshi Mehta
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, India
| | - Seema Rani
- Department of Zoology, Panjab University, Chandigarh, India.,Department of Zoology, Hindu Girls College, Sonepat, India
| | - Ravinder Kumar
- Department of Zoology, Panjab University, Chandigarh, India
| | - Supriya Bhardwaj
- Department of Dermatology, Venereology and Leprosy, PGIMER, Chandigarh, India
| | | | - Vinay Keshavamurthy
- Department of Dermatology, Venereology and Leprosy, PGIMER, Chandigarh, India
| | - Sarika Gupta
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, India
| | - Davinder Parsad
- Department of Dermatology, Venereology and Leprosy, PGIMER, Chandigarh, India
| |
Collapse
|
8
|
Yan S, Shi J, Sun D, Lyu L. Current insight into the roles of microRNA in vitiligo. Mol Biol Rep 2020; 47:3211-3219. [PMID: 32086720 DOI: 10.1007/s11033-020-05336-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/18/2020] [Indexed: 12/11/2022]
Abstract
Vitiligo is a common chronic depigmented skin disease characterized by melanocyte loss or dysfunction in the lesion. The pathogenesis of vitiligo has not been fully clarified. Most studies have suggested that the occurrence and progression of vitiligo are due to multiple factors and gene interactions in which noncoding RNAs contribute to an individual's susceptibility to vitiligo. Noncoding RNAs, including microRNAs (miRNAs), are a hot topic in posttranscriptional regulatory mechanism research. miRNAs are noncoding RNAs with a length of approximately 22 nucleotides and play a negative regulatory role by binding to the 3'-UTR or 5'-UTR of the target mRNA to inhibit translation or initiate mRNA degradation. Previous studies have screened the differential expression profiles of miRNAs in the skin lesions, melanocytes, peripheral blood mononuclear cells (PBMCs) and sera of patients and mouse models with vitiligo. Moreover, several studies have focused on miRNA-25, miRNA-155 and other miRNAs involved in melanin metabolism, oxidative stress, and melanocyte proliferation and apoptosis. These miRNAs and regulatory processes further illuminate the pathogenesis of vitiligo and provide hope for the application of small molecules in the treatment of vitiligo. In this review, we summarize miRNA expression profiles in different tissues of vitiligo patients and the mechanisms by which key miRNAs mediate vitiligo development.
Collapse
Affiliation(s)
- Shili Yan
- Science and Technology Achievement Incubation Center, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China
- Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jingpei Shi
- Science and Technology Achievement Incubation Center, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China
- School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Dongjie Sun
- Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lechun Lyu
- Science and Technology Achievement Incubation Center, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China.
| |
Collapse
|
9
|
Kundu R, Kaur G, Punia R, Thami G. Evaluation of active and stable stages of vitiligo using S-100 and human melanoma black-45 immunostains. INDIAN JOURNAL OF DERMATOPATHOLOGY AND DIAGNOSTIC DERMATOLOGY 2020. [DOI: 10.4103/ijdpdd.ijdpdd_44_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
10
|
Bellei B, Picardo M. Premature cell senescence in human skin: Dual face in chronic acquired pigmentary disorders. Ageing Res Rev 2020; 57:100981. [PMID: 31733332 DOI: 10.1016/j.arr.2019.100981] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/16/2019] [Accepted: 11/07/2019] [Indexed: 01/10/2023]
Abstract
Although senescence was originally described as an in vitro acquired cellular characteristic, it was recently recognized that senescence is physiologically and pathologically involved in aging and age-related diseases in vivo. The definition of cellular senescence has expanded to include the growth arrest caused by various cellular stresses, including DNA damage, inadequate mitochondria function, activated oncogene or tumor suppressor genes and oxidative stress. While senescence in normal aging involves various tissues over time and contributes to a decline in tissue function even with healthy aging, disease-induced premature senescence may be restricted to one or a few organs triggering a prolonged and more intense rate of accumulation of senescent cells than in normal aging. Organ-specific high senescence rate could lead to chronic diseases, especially in post-mitotic rich tissue. Recently, two opposite acquired pathological conditions related to skin pigmentation were described to be associated with premature senescence: vitiligo and melasma. In both cases, it was demonstrated that pathological dysfunctions are not restricted to melanocytes, the cell type responsible for melanin production and transport to surrounding keratinocytes. Similar to physiological melanogenesis, dermal and epidermal cells contribute directly and indirectly to deregulate skin pigmentation as a result of complex intercellular communication. Thus, despite senescence usually being reported as a uniform phenotype sharing the expression of characteristic markers, skin senescence involving mainly the dermal compartment and its paracrine function could be associated with the disappearance of melanocytes in vitiligo lesions and with the exacerbated activity of melanocytes in the hyperpigmentation spots of melasma. This suggests that the difference may arise in melanocyte intrinsic differences and/or in highly defined microenvironment peculiarities poorly explored at the current state of the art. A similar dualistic phenotype has been attributed to intratumoral stromal cells as cancer-associated fibroblasts presenting a senescent-like phenotype which influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. Here, we present a framework dissecting senescent-related molecular alterations shared by vitiligo and melasma patients and we also discuss disease-specific differences representing new challenges for treatment.
Collapse
Affiliation(s)
- Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center for Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy.
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology and Integrated Center for Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| |
Collapse
|
11
|
A Network Pharmacology Approach to Uncover the Molecular Mechanisms of Herbal Formula Kang-Bai-Ling for Treatment of Vitiligo. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:3053458. [PMID: 31781265 PMCID: PMC6875403 DOI: 10.1155/2019/3053458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/15/2019] [Accepted: 10/04/2019] [Indexed: 12/19/2022]
Abstract
Background Kang-bai-ling (KBL), a Chinese patent medicine, has been demonstrated as an effective therapy for vitiligo in China. However, the pharmacological mechanisms of KBL have not been completely elucidated. Methods In this study, the potential multicomponent, multitarget, and multipathway mechanism of KBL against vitiligo was clarified by using network pharmacology-based strategy. In brief, potential targets of KBL were collected based on TCMSP databases, followed by network establishment concerning the interactions of potential targets of KBL with well-known therapeutic targets of vitiligo by using protein-protein interaction (PPI) data. As a result, key nodes with higher level of seven topological parameters, including “degree centrality (DC),” “betweenness centrality (BC),” “closeness centrality (CC),” “eigenvector centrality (EC),” “network centrality (NC),” and “local average connectivity (LAC)” were identified as the main targets in the network, followed by subsequent incorporation into the ClueGO for GO and KEGG signaling pathway enrichment analysis. Results In accordance with the topological importance, a total of 23 potential targets of KBL on vitiligo were identified as main hubs. Additionally, enrichment analysis suggested that targets of KBL on vitiligo were mainly clustered into multiple biological processes (associated with DNA translation, lymphocyte differentiation and activation, steroid biosynthesis, autoimmune and systemic inflammatory reaction, neuron apoptosis, and vitamin deficiency) and related pathways (TNF, JAK-STAT, ILs, TLRs, prolactin, and NF-κB), indicating the underlying mechanisms of KBL on vitiligo. Conclusion In this work, we successfully illuminated the “multicompounds, multitargets” therapeutic action of KBL on vitiligo by using network pharmacology. Moreover, our present outcomes might shed light on the further clinical application of KBL on vitiligo treatment.
Collapse
|
12
|
Su M, Yi H, He X, Luo L, Jiang S, Shi Y. miR-9 regulates melanocytes adhesion and migration during vitiligo repigmentation induced by UVB treatment. Exp Cell Res 2019; 384:111615. [PMID: 31499059 DOI: 10.1016/j.yexcr.2019.111615] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 11/18/2022]
Abstract
The decreased adhesion ability of melanocytes to the neighboring keratinocytes prompts melanocytes to lose from the epidermis, comprising the critical step in vitiligo pathogenesis. The repigmentation process involves the migration of melanocytes to the lesional area. This study aims to investigate the role and mechanism of microRNA (miR)-9 in the adhesion and migration of melanocytes during vitiligo repigmentation induced by UVB treatment. The HaCaT keratinocytes were used to mimic lesional condition and the PIG1 melanocytes as perilesional condition. Human lesional vitiligo specimens showed increased miR-9 and decreased adhesion molecules such as E-cadherin and β1 integrin. Furthermore, UVB exposure upregulated IL-10, E-cadherin, and β1 integrin, downregulated miR-9 in HaCaT cells. Moreover, the increased IL-10 by UVB exposure decreased miR-9 level by inducing miR-9 methylation via methyltransferase DNMT3A in HaCaT cells. Additionally, miR-9 targeted and inhibited E-cadherin and β1 integrin in HaCaT cells, and suppressed migration of PIG1 cells to UVB-exposed HaCaT cells. In conclusion, miR-9 was suppressed by IL-10 and inhibited migration of PIG1 cells to HaCaT cells during UVB-mediated vitiligo repigmentation.
Collapse
Affiliation(s)
- Mengyun Su
- Department of Dermatology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, 430060, China
| | - Hong Yi
- Department of Dermatology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, No. 100 Hongkong Road, Wuhan, 430015, China
| | - Xiaolei He
- Department of Dermatology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, 430060, China
| | - Longfei Luo
- Department of Dermatology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, 430060, China
| | - Shan Jiang
- Department of Dermatology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, 430060, China
| | - Ying Shi
- Department of Dermatology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, 430060, China.
| |
Collapse
|
13
|
Bishnoi A, Parsad D. Clinical and Molecular Aspects of Vitiligo Treatments. Int J Mol Sci 2018; 19:ijms19051509. [PMID: 29783663 PMCID: PMC5983813 DOI: 10.3390/ijms19051509] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/11/2018] [Accepted: 05/15/2018] [Indexed: 12/15/2022] Open
Abstract
Vitiligo is an asymptomatic but cosmetically disfiguring disorder that results in the formation of depigmented patches on skin and/or mucosae. Vitiligo can be segmental or non-segmental depending upon the morphology of the clinical involvement. It can also be classified as progressing or stable based on the activity of the disease. Further, the extent of involvement can be limited (localized disease) or extensive (generalized disease). The treatment of vitiligo therefore depends on the clinical classification/characteristics of the disease and usually comprises of 2 strategies. The first involves arresting the progression of active disease (to provide stability) in order to limit the area involved by depigmentation. The second strategy aims at repigmentation of the depigmented area. It is also important to maintain the disease in a stable phase and to prevent relapse. Accordingly, a holistic treatment approach for vitiligo should be individualistic and should take care of all these considerations. In this review, we shall discuss the vitiligo treatments and their important clinical and molecular aspects.
Collapse
Affiliation(s)
- Anuradha Bishnoi
- Department of Dermatology, Venereology and Leprology, Post Graduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India.
| | - Davinder Parsad
- Department of Dermatology, Venereology and Leprology, Post Graduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India.
| |
Collapse
|
14
|
Wang LM, Zhang B, Li JJ, Zhou YC, Wang DX. The expression change of RORγt, BATF, and IL-17 in Chinese vitiligo patients with 308 nanometers excimer laser treatment. Dermatol Ther 2018; 31:e12598. [PMID: 29642271 DOI: 10.1111/dth.12598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/21/2017] [Accepted: 03/18/2018] [Indexed: 11/29/2022]
Abstract
This study aims to explore the expression of RORγt, BATF, and IL-17 in Chinese vitiligo patients with 308 nm excimer laser treatment. One hundred and sixty-four vitiligo patients treated with 308 nm excimer laser were enrolled as Case group and 137 health examiners as Control group. Quantitative real-time polymerase chain reaction and immunohistochemistry were conducted to detect the expressions of RORγt, BATF, and IL-17. Expression of RORγt, BATF, IL-17A, and IL-17F were higher in Case group than Control group, with the diagnostic accuracy of 88.04, 87.38, 97.34, and 89.04%, respectively. Pearson correlation analysis showed a positive correlation in RORγt, BATF, IL-17A, and IL-17F mRNAs in vitiligo patients. Moreover, their expressions were higher in active vitiligo patients than stable ones. Besides, the expressions of RORγt, BATF, IL-17A, and IL-17F in vitiligo skin were significantly higher than those in non lesional skin and normal controls. After treatment, their expressions were significantly decreased. Active vitiligo and the high expressions of RORγt, BATF, and IL-17F were the independent risk factors for the ineffectiveness of 308 nm excimer laser treatment. The expressions of RORγt, BATF, IL-17 were significantly enhanced in vitiligo patients, which were correlated with the activity of vitiligo and 308 nm excimer laser therapeutic effects.
Collapse
Affiliation(s)
- Lu-Mei Wang
- Department of Dermatology, Dong Guan People's Hospital, Guangdong Province, Dongguan 523018, People's Republic of China
| | - Bin Zhang
- Department of Gynaecology and Obstetrics, Dong Guan People's Hospital, Guangdong Province, Dongguan 523018, People's Republic of China
| | - Jun-Jie Li
- Department of Dermatology, Dong Guan People's Hospital, Guangdong Province, Dongguan 523018, People's Republic of China
| | - Yun-Cong Zhou
- Department of Dermatology, Dong Guan People's Hospital, Guangdong Province, Dongguan 523018, People's Republic of China
| | - Dong-Xia Wang
- Department of Interventional Therapy, Dong Guan People's Hospital, Guangdong Province, Dongguan 523018, People's Republic of China
| |
Collapse
|